石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (2): 553-564.doi: 10.11743/ogg20240218
柏明星1,2(), 张志超1,2(), 陈巧珍3, 徐龙4, 杜思宇1,2, 刘业新1,2
收稿日期:
2023-09-12
修回日期:
2024-03-19
出版日期:
2024-04-30
发布日期:
2024-04-30
通讯作者:
张志超
E-mail:bai510714@163.com;1209712605@qq.com
第一作者简介:
柏明星(1984—),男,教授、博士生导师,CO2驱油与地质埋存。E‑mail: bai510714@163.com。
基金项目:
Mingxing BAI1,2(), Zhichao ZHANG1,2(), Qiaozhen CHEN3, Long XU4, Siyu DU1,2, Yexin LIU1,2
Received:
2023-09-12
Revised:
2024-03-19
Online:
2024-04-30
Published:
2024-04-30
Contact:
Zhichao ZHANG
E-mail:bai510714@163.com;1209712605@qq.com
摘要:
应用CO2置换法开采天然气水合物被认为是一种极具潜力的提高CH4采收率和CO2埋存率的技术。论述了CO2及其混合气置换法开采天然气水合物的机理,梳理了CO2混N2/H2及地热辅助CO2提高水合物中CH4采收率的技术进展。研究表明:①应用纯CO2置换开采天然气水合物时,CH4的采收率较低,而将CO2与N2、H2以不同比例混合后注入天然气水合物藏中进行CH4开采,能够有效提高CH4的采收率。②CO2与N2或H2混合注入水合物层时,多种气体分子在竞争吸附作用下降低了CH4分子与水合物分子笼之间的范德华力,同时降低了混合气中CO2的分压,导致水合物相平衡曲线上移,抑制了置换过程中CO2水合物的生成速率,减轻了包裹作用的不利影响,从而提高CH4采收率。③CO2混合N2注入开采水合物时,N2的混入虽然能够减轻包裹作用的影响,但新形成的N2水合物会堵塞CO2进入水合物分子笼的通道,因此提高CH4采收率效果有限。④在水合物层条件下H2并不会形成新的水合物,而且混入少量的H2又会与N2发生吸附竞争,从而抑制N2水合物的形成,故将低浓度的H2气混入CO2与N2的混合气中能够进一步提高对水合物中CH4的置换率,从而提高CH4的采收率。因此,混入H2被认为是提高CO2置换开发水合物效果的重要途径。⑤混合气周期注气方式可明显提高水合物中CH4的采收率和CO2水合物藏封存率。⑥应用地热辅助CO2开采水合物的方法也能够降低新形成水合物的包裹作用,同时实现CO2在地热层和水合物层的两次埋存,在提高CH4采收率的同时,大大提高CO2在地层中的埋存率。
中图分类号:
表1
不同相态的CO2置换开采提高天然气水合物采收率效果[1,27]"
相态类型 | 分析技术 | 水合物介质 | 温度/K | 压力/MPa | CH4采收率/% | 文献来源 |
---|---|---|---|---|---|---|
液态CO2 | GC | 冰粒/纯水 | 263.0/275.0 | 9.0 | 14.0/40.3 | Lee等[ |
液态CO2 | Raman | 纯水 | 273.2 | 3.6/5.4/6.0 | 37.6/27.0/29.0 | Ota等[ |
液态CO2 | GC | 纯水 | 283.5 | 4.5/5.0 | 20.6/18.1 | 张凤琦等[ |
液态CO2 | GC | 石英砂+水 | 282.2 | 6.0 ~ 8.0 | 13.0 ~ 45.0 | Zhang等[ |
液态CO2 | GC | 石英砂+盐水 | 275.2 | 4.1 ~ 4.2 | 26.0 ~ 33.0 | Yuan等[ |
液态CO2 | GC | 石英砂+盐水 | 280.2 | 4.2 | 35.0 | Yuan等[ |
液态CO2 | GC | 石英砂+SDS溶液 | 281.2 | 5.0 | 18.6 | Zhou等[ |
液态CO2 | GC | 石英砂+盐水 | 273.2 | 4.0 | 26.4 | Wang[ |
液态CO2 | Raman+SEM | 纯水 | 277.0 | 6.0 | 11.4 | Falenty等[ |
液态CO2 | NMR | 砂岩+盐水 | 273.2 | 8.3 | 59.0 | Kvamme等[ |
CO2乳液 | GC | 石英砂+SDS溶液 | 281.2 | 5.0 | 27.1 | Zhou等[ |
CO2乳液 | GC | 石英砂+水 | 281.0 | 5.0 | 27.1 | 周锡堂等[ |
超临界CO2 | GC | 石英砂+冰颗粒/盐水 | 275.2 | 7.5 | 37.5 | Deusner等[ |
超临CO2 | GC | 石英砂+冰颗粒/盐水 | 275.2/281.2/283.2 | 13.0 | 3.4/40.7/10.7 | Deusner等[ |
表2
CO2+H2混合气置换法提高天然气水合物采收率效果[1,27]"
混合气比例 | 分析技术 | 水合物介质 | 温度/K | 压力/MPa | CH4采收率/% | 文献来源 |
---|---|---|---|---|---|---|
72 %CO2 + 28 %H2 | GC | 砂岩+咸水 | 275.6 | 5.0 | 28.0 | Wang等[ |
55 %CO2 + 45 %H2 | GC | 砂岩+咸水 | 275.6 | 5.0 | 47.0 | Wang等[ |
36 %CO2 + 64 %H2 | GC | 砂岩+咸水 | 275.6 | 5.0 | 25.0 | Wang等[ |
18 %CO2 + 82 %H2 | GC | 砂岩+咸水 | 275.6 | 5.0 | 70.0 | Xu等[ |
40 %CO2 + 60 %H2 | Raman+GC | 纯水 | 274.0 | 4.5 | 78.0 | Xu等[ |
40 %CO2 + 60 %H2 | Raman+GC | 纯水 | 274.0 | 4.5 | 48.1 | Ding等[ |
60.1 %CO2 + 39.9 %H2 | Raman+GC | 纯水 | 274.2 | 4.5 | 71.0 | Ding等[ |
60.1 %CO2 + 39.9 %H2 | Raman+GC | 纯水 | 274.2 | 6.0 | 32.0 | Sun等[ |
74 %CO2 + 26 %H2 | GC | 石英岩+咸水 | 276.0 | 3.6 | 52.4 | Sun等[ |
74 %CO2 + 26 %H2 | GC | 石英岩+咸水 | 276.0 | 3.6 | 46.0 | Sun等[ |
74 %CO2 + 26 %H2 | GC | 石英岩+咸水 | 276.0 | 3.6 | 41.4 | Sun等[ |
43 %CO2 + 57 %H2 | GC | 石英岩+咸水 | 276.0 | 3.7 | 61.0 | Sun等[ |
20 %CO2 + 80 %H2 | GC | 石英岩+咸水 | 276.0 | 3.7 | 58.0 | Sun等[ |
100 %H2 | GC | 石英岩+咸水 | 276.0 | 3.7 | 63.0 | Sun等[ |
74 %CO2 + 26 %H2 | GC | 石英砂+咸水 | 276.0 | 3.7 | 30.0 ~ 50.0 | Sun等[ |
40 %CO2 + 60 %H2 | GC | 石英砂+咸水 | 276.0 | 3.7 | 40.0 ~ 75.0 | Sun等[ |
22 %CO2 + 78 %H2 | GC | 石英砂+咸水 | 276.0 | 3.7 | 12.0 ~ 88.0 | Sun等[ |
22 %CO2 + 78 %H2 | GC | 石英砂+咸水 | 276.0 | 3.7 | 15.0 ~ 95.0 | Sun等[ |
表3
CO2+N2混合气置换法提高天然气水合物中CH4采收率效果[1,27]"
混合气比例 | 分析技术 | 水合物介质 | 温度/K | 压力/MPa | CH4采收率/% | 文献来源 |
---|---|---|---|---|---|---|
10 %CO2+90 %N2 | NMR+DSC | 多孔硅胶+水 | 274.00 | 11.5/14.6/18.6 | 77.0/80.0/79.0 | Lee等[ |
10 %CO2+90 %N2 | GC | 纯水+SDS溶液 | 298.20 | 9.1 | 41.0 | Pandey等[ |
14.6 %CO2+85.4 %N2 | GC | 硅砂+水 | 273.30 | 4.2 | 53.3 | Yang等[ |
19 %CO2+81 %N2 | GC | 石英砂+冰粒 | 274.20 | 15.8 | 6.1 | 王曦等[ |
20 %CO2+80 %N2 | Raman+NMR | 粉末冰颗粒 | 274.20 | 12.0 | 85.0 | Park等[ |
20 %CO2+80 %N2 | SEM | 黏土+水 | 273.20 | 15.0 | 85.0 | Koh等[ |
20 %CO2+80 %N2 | NMR+GC | 多孔硅胶+水 | 273.00 | 10.0 | 42.0 | Cha等[ |
20 %CO2+80 %N2 | GC | 玻璃珠+水 | 275.20 | 9.8 | 49.2 | Koh等[ |
20 %CO2+80 %N2 | GC | 玻璃珠+水 | 274.00 | 9.5 | 39.3 | Youn等[ |
22 %CO2+78 %N2 | GC | 石英砂+盐水 | 273.20 | 5.0 | 36.9 | Liu等[ |
23 %CO2+77 %N2 | Raman+GC | 石英砂+水 | 281.00 | 10.0 | 90.0 | Schicks等[ |
25 %CO2+75 %N2 | GC | 砂土+水 | 274.20 | 10.0 | 25.0 | Liu等[ |
25 %CO2+75 %N2 | GC | 高岭石+水 | 274.20 | 10.0 | 24.5 | 潘栋彬等[ |
25 %CO2+75 %N2 | GC | 伊利石+水 | 274.20 | 10.0 | 25.0 | 潘栋彬等[ |
25 %CO2+75 %N2 | GC | 蒙脱石+水 | 274.20 | 10.0 | 18.2 | 潘栋彬等[ |
28 %CO2+72 %N2 | GC+CCD | 纯水+SDS溶液 | 284.20 | 9.0 | 13.2 | Niu等[ |
40 %CO2+60 %N2 | NMR+GC | 多孔硅胶+水 | 274.00 | 10.0 | 51.0 | Mok等[ |
50 %CO2+50 %N2 | Raman+CCD+GC | 纯水 | 273.90 | 5.0/6.7 | 8.3/17.7 | Zhou等[ |
53 %CO2+47 %N2 | GC | 石英砂+冰粒 | 274.15 | 2.1/3.4 | 12.6/19.0 | 王曦等[ |
53 %CO2+47 %N2 | GC | 纯水 | 279.15 | 8.0 | 52.4 | Ouyang等[ |
53 %CO2+47 %N2 | GC | 石英砂+热水 | 274.15 | 14.0 | 91.6 | 操原[ |
59 %CO2+41 %N2 | GC | 石英砂+水 | 277.15 | 7.0 | 40.8 | Yasue等[ |
60 %CO2+40 %N2 | GC | 石英砂+水 | 277.15/280.15 | 7.0 | 30.0 | Masuda等[ |
60 %CO2+40 %N2 | Raman+FTIR+GC | 纯水 | 274.00 | 4.5 | 73.4 | Xu等[ |
75 %CO2+25 %N2 | GC | 石英砂+冰粒 | 275.15 | 3.0 | 41.4 | Li等[ |
75 %CO2+25 %N2 | GC | 石英砂+水 | 275.65 | 4.8 | 68.8 | Tupsakhare等[ |
75 %CO2+25 %N2 | Raman+CCD+GC | 纯水 | 274.00 | 2.6/3.1/3.5 | 9.5/12.6/17.9 | Zhou等[ |
87.6 %CO2+12.4 %N2 | GC | 石英砂+水 | 277.15 | 8.9 | 46.3 | Mu等[ |
1 | 王佳贤, 刘昌岭, 宁伏龙, 等. CO2-CH4置换水合物开采方法及其强化技术研究进展[J]. 海洋地质与第四纪地质, 2023, 43(1): 190-204. |
WANG Jiaxian, LIU Changling, NING Fulong, et al. Technological research progress on CO2-CH4 replacement for hydrate exploitation and enhancement[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 190-204. | |
2 | MARIA G A. Natural gas recovery from hydrate compounds using CO2 replacement strategies: Experimental study on thermal stimulation[J]. Energy Procedia, 2018, 148: 647-654. |
3 | 吴传芝, 赵克斌, 孙长青, 等. 天然气水合物基本性质与主要研究方向[J]. 非常规油气, 2018, 5(4): 92-99. |
WU Chuanzhi, ZHAO Kebin, SUN Changqing, et al. Basic characteristics and major research fields of natural gas hydrate[J]. Unconventional Oil & Gas, 2018, 5(4): 92-99. | |
4 | SLOAN E D Jr, KOH C A. Clathrate hydrates of natural gases[M]. 3rd ed. Boca Raton: CRC Press, 2007. |
5 | 张金华, 方念乔, 魏伟, 等. 天然气水合物成藏条件与富集控制因素[J]. 中国石油勘探, 2018, 23(3): 35-46. |
ZHANG Jinhua, FANG Nianqiao, WEI Wei, et al. Accumulation conditions and enrichment controlling factors of natural gas hydrate reservoirs[J]. China Petroleum Exploration, 2018, 23(3): 35-46. | |
6 | 梁金强, 王宏斌, 苏新, 等. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7): 128-135. |
LIANG Jinqiang, WANG Hongbin, SU Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(7): 128-135. | |
7 | 毛雪莲, 朱继田, 宋鹏, 等. 琼东南盆地深水区天然气水合物稳定域分布特征与预测[J]. 海洋地质前沿, 2021, 37(10): 58-63. |
MAO Xuelian, ZHU Jitian, SONG Peng, et al. Preliminary study on the distribution pattern of gas hydrate stability zone in the deep-water areas of Qiongdongnan Basin[J]. Marine Geology Frontiers, 2021, 37(10): 58-63. | |
8 | WANG Xiaohui, SUN Yifei, WANG Yunfei, et al. Gas production from hydrates by CH4-CO2/H2 replacement[J]. Applied Energy, 2017, 188: 305-314. |
9 | WANG Xiaohui, LI Fengguang, XU Yuxi, et al. Elastic properties of hydrate-bearing sandy sediment during CH4-CO2 replacement[J]. Energy Conversion and Management, 2015, 99: 274-281. |
10 | WANG Yi, LI Xiaosen, LI Gang, et al. Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system[J]. Applied Energy, 2013, 110: 90-97. |
11 | FENG Jingchun, LI Gang, LI Xiaosen, et al. Evolution of hydrate dissociation by warm brine stimulation combined depressurization in the South China Sea[J]. Energies, 2013, 6(10): 5402-5425. |
12 | KONNO Y, MASUDA Y, HARIGUCHI Y, et al. Key factors for depressurization-induced gas production from oceanic methane hydrates[J]. Energy & Fuels, 2010, 24(3): 1736-1744. |
13 | ZHAO Jiafei, XU Kun, SONG Yongchen, et al. A review on research on replacement of CH4 in natural gas hydrates by use of CO2 [J]. Energies, 2012, 5(2): 399-419. |
14 | TAN Zhongfu, PAN Ge, LIU Pingkuo. Focus on the development of natural gas hydrate in China[J]. Sustainability, 2016, 8(6): 520. |
15 | EJIKE C E. Assessment of hazards in gas hydrates recovery[J]. Open Journal of Yangtze Oil and Gas, 2019, 4(4): 231-239. |
16 | DORNAN P, ALAVI S, WOO T K. Free energies of carbon dioxide sequestration and methane recovery in clathrate hydrates[J]. Journal of Chemical Physics, 2007, 127(12): 124510. |
17 | OTA M, ABE Y, WATANABE M, et al. Methane recovery from methane hydrate using pressurized CO2 [J]. Fluid Phase Equilibria, 2005, 228/229: 553-559. |
18 | 万义钊, 吴能友, 胡高伟, 等. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业, 2018, 38(4): 117-128. |
WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J]. Natural Gas Industry, 2018, 38(4): 117-128. | |
19 | MISYURA S Y, DONSKOY I G. Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition[J]. Fuel, 2020, 262: 116614. |
20 | STANWIX P L, RATHNAYAKE N M, DE OBANOS F P P, et al. Characterising thermally controlled CH4-CO2 hydrate exchange in unconsolidated sediments[J]. Energy & Environmental Science, 2018, 11(7): 1828-1840. |
21 | PHIRANI J, MOHANTY K K. Kinetic simulation of CO2 flooding of methane hydrates[C]//SPE Annual Technical Conference and Exhibition, Florence, 2010. London: Society of Petroleum Engineers, 2010: SPE-134178-MS. |
22 | KOMAI T, YAMAMOTO Y, OHGA K. Dynamics of reformation and replacement of CO2 and CH4 gas hydrates[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 272-280. |
23 | LEE B R, KOH C A, SUM A K. Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2 [J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14922-14927. |
24 | MU Liang, VON SOLMS N. Hydrate thermal dissociation behavior and dissociation enthalpies in methane-carbon dioxide swapping process[J]. The Journal of Chemical Thermodynamics, 2018, 117: 33-42. |
25 | MOK J, CHOI W, SEO Y. Time-dependent observation of a cage-specific guest exchange in sI hydrates for CH4 recovery and CO2 sequestration[J]. Chemical Engineering Journal, 2020, 389: 124434. |
26 | 王菲菲. 二氧化碳置换甲烷水合物微观实验研究[D]. 武汉: 中国地质大学, 2015. |
WANG Feifei. Micro-experimental study on replacement of CH4 hydrate by use of CO2 [D]. Wuhan: China University of Geosciences, 2015. | |
27 | DING Yalong, XU Chungang, YU Yisong, et al. Methane recovery from natural gas hydrate with simulated IGCC syngas[J]. Energy, 2017, 120: 192-198. |
28 | OTA M, MOROHASHI K, ABE Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2 [J]. Energy Conversion and Management, 2005, 46(11/12): 1680-1691. |
29 | OTA M, SAITO T, AIDA T, et al. Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2 [J]. AIChE Journal, 2007, 53(10): 2715-2721. |
30 | 张凤琦, 陈国兴, 郭开华, 等. 液态二氧化碳置换整形甲烷水合物过程特性[J]. 过程工程学报, 2018, 18(3): 639-645. |
ZHANG Fengqi, CHEN Guoxing, GUO Kaihua, et al. Process characteristics on replacement of bulk-methane hydrates with liquid cardon dioxide[J]. The Chinese Journal of Process Engineering, 2018, 18(3): 639-645. | |
31 | ZHANG Yu, XIONG Lijun, LI Xiaosen, et al. Replacement of CH4 in hydrate in porous sediments with liquid CO2 injection[J]. Chemical Engineering & Technology, 2014, 37(12): 2022-2029. |
32 | YUAN Qing, SUN Changyu, LIU Bei, et al. Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2 [J]. Energy Conversion and Management, 2013, 67: 257-264. |
33 | ZHOU Xitang, FAN Shuanshi, LIANG Deqing, et al. Determination of appropriate condition on replacing methane from hydrate with carbon dioxide[J]. Energy Conversion and Management, 2008, 49(8): 2124-2129. |
34 | FALENTY A, QIN J, SALAMATIN A N, et al. Fluid composition and kinetics of the in situ replacement in CH4-CO2 hydrate system[J]. The Journal of Physical Chemistry C, 2016, 120(48): 27159-27172. |
35 | KVAMME B, GRAUE A, BUANES T, et al. Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers[J]. International Journal of Greenhouse Gas Control, 2007, 1(2): 236-246. |
36 | ZHOU Xitang, FAN Shuanshi, LIANG Deqing, et al. Replacement of methane from quartz sand-bearing hydrate with carbon dioxide-in-water emulsion[J]. Energy & Fuels, 2008, 22(3): 1759-1764. |
37 | 周锡堂, 樊栓狮, 梁德青. CO2乳状液置换天然气水合物中CH4的动力学研究[J]. 天然气地球科学, 2013, 24(2): 259-264. |
ZHOU Xitang, FAN Shuanshi, LIANG Deqing. Kinetic research on replacement of methane in gas hydrate with carbon dioxide emulsion[J]. Natural Gas Geoscience, 2013, 24(2): 259-264. | |
38 | DEUSNER C, BIGALKE N, KOSSEL E, et al. Methane production from gas hydrate deposits through injection of supercritical CO2 [J]. Energies, 2012, 5(7): 2112-2140. |
39 | DING Yalong, WANG Huaqin, XU Chungang, et al. The effect of CO2 partial pressure on CH4 recovery in CH4-CO2 swap with simulated IGCC syngas[J]. Energies, 2020, 13(5): 1017. |
40 | DING Yalong, WANG Huaqin, XU Chungang, et al. The effect of CO2 partial pressure on CH4 recovery in CH4-CO2 swap with simulated IGCC syngas[J]. Energies, 2020, 13(5): 1017. |
41 | SUN Yifei, WANG Yunfei, ZHONG Jinrong, et al. Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode[J]. Applied Energy, 2019, 240: 215-225. |
42 | CAO Bojian, SUN Yifei, CHEN Hongnan, et al. An approach to the high efficient exploitation of nature gas hydrate and carbon sequestration via injecting CO2/H2 gas mixture with varying composition[J]. Chemical Engineering Journal, 2023, 455: 140634. |
43 | SUN Yifei, ZHONG Jinrong, LI Rui, et al. Natural gas hydrate exploitation by CO2/H2 continuous injection-production mode[J]. Applied Energy, 2018, 226: 10-21. |
44 | XU Chungang, CAI Jing, YU Yisong, et al. Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates[J]. Fuel, 2018, 216: 255-265. |
45 | WANG Yanhong, LANG Xuemei, FAN Shuanshi, et al. Review on enhanced technology of natural gas hydrate recovery by carbon dioxide replacement[J]. Energy & Fuels, 2021, 35(5): 3659-3674. |
46 | PARK Y, KIM D Y, LEE J W, et al. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(34): 12690-12694. |
47 | KOH D Y, AHN Y H, KANG H, et al. One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas[J]. AIChE Journal, 2015, 61(3): 1004-1014. |
48 | NIU Mengya, WU Guozhong, YIN Zhenyuan, et al. Effectiveness of CO2-N2 injection for synergistic CH4 recovery and CO2 sequestration at marine gas hydrates condition[J]. Chemical Engineering Journal, 2021, 420(Part 1): 129615. |
49 | LEE Y, KIM Y, LEE J, et al. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter[J]. Applied Energy, 2015, 150: 120-127. |
50 | PANDEY J S, VON SOLMS N. Hydrate stability and methane recovery from gas hydrate through CH4-CO2 replacement in different mass transfer scenarios[J]. Energies, 2019, 12(12): 2309. |
51 | YANG Jinhai, OKWANANKE A, TOHIDI B, et al. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration[J]. Energy Conversion and Management, 2017, 136: 431-438. |
52 | 王曦. CO2+N2混合气置换开采天然气水合物实验研究及过程模拟[D]. 广州: 华南理工大学, 2017. |
WANG Xi. Experimental research and process simulation of natural gas hydrate replacement production by injecting CO2+N2 mixture gas[D]. Guangzhou: South China University of Technology, 2017. | |
53 | KOH D Y, KANG H, KIM D O, et al. Recovery of methane from gas hydrates intercalated within natural sediments using CO2 and a CO2/N2 gas mixture[J]. ChemSusChem, 2012, 5(8): 1443-1448. |
54 | Minjun CHA, SHIN K, LEE H, et al. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy[J]. Environmental Science & Technology, 2015, 49(3): 1964-1971. |
55 | CHATURVEDI K R, SINHA A S K, NAIR V C, et al. Enhanced carbon dioxide sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir: Possibility of natural gas production[J]. Energy, 2021, 227: 120521. |
56 | YOUN Y, Minjun CHA, KWON M, et al. One-dimensional approaches for methane hydrate production by CO2/N2 gas mixture in horizontal and vertical column reactor[J]. Korean Journal of Chemical Engineering, 2016, 33(5): 1712-1719. |
57 | LIU Bei, PAN Heng, WANG Xiaohui, et al. Evaluation of different CH4-CO2 replacement processes in hydrate-bearing sediments by measuring P-wave velocity[J]. Energies, 2013, 6(12): 6242-6254. |
58 | SCHICKS J M, STRAUCH B, HEESCHEN K U, et al. From microscale (400 μl) to macroscale (425 L): Experimental investigations of the CO2/N2-CH4 exchange in gas hydrates simulating the Iġnik Sikumi field trial[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3608-3620. |
59 | 潘栋彬. 海洋天然气水合物射流破碎与注CO2/N2置换联合开采研究[D]. 长春: 吉林大学, 2021. |
PAN Dongbin. Investigation on exploitation of marine gas hydrate by water jetting combined with CO2/N2 replacement[D]. Changchun: Jilin University, 2021. | |
60 | OUYANG Qian, FAN Shuanshi, WANG Yanhong, et al. Enhanced methane production efficiency with in situ intermittent heating assisted CO2 replacement of hydrates[J]. Energy & Fuels, 2020, 34(10): 12476-12485. |
61 | 操原. 二氧化碳与氮气混合气辅热联合置换开采天然气水合物实验研究[D]. 广州: 华南理工大学, 2018. |
CAO Yuan. Experimental study on gas hydrate exploitation by combining N2 and CO2 mixture replacement and heat injection[D]. Guangzhou: South China University of Technology, 2018. | |
62 | YASUE M, MASUDA Y, LIANG Yunfeng. Estimation of methane recovery efficiency from methane hydrate by the N2–CO2 gas mixture injection method[J]. Energy & Fuels, 2020, 34(5): 5236-5250. |
63 | MASUDA Y. Methane recovery from hydrate-bearing sediments by N2-CO2 gas mixture injection: Experimental investigation on CO2-CH4 exchange ratio[C]//International Conference on Gas Hydrate (ICGH 2011), Edinburgh, Scotland, KingdomUnited, July 17-21, 2011. 2011. |
64 | LI Bing, XU Tianfu, ZHANG Guobiao, et al. An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N2 replacement[J]. Energy Conversion and Management, 2018, 165: 738-747. |
65 | TUPSAKHARE S S, CASTALDI M J. Efficiency enhancements in methane recovery from natural gas hydrates using injection of CO2/N2 gas mixture simulating in-situ combustion[J]. Applied Energy, 2019, 236: 825-836. |
66 | MU Liang, VON SOLMS N. Methane production and carbon capture by hydrate swapping[J]. Energy & Fuels, 2017, 31(4): 3338-3347. |
67 | 兰天庆, 马媛媛, 贡同, 等. 超临界状态CO2封存技术研究进展[J]. 应用化工, 2019, 48(6): 1451-1455, 1473. |
LAN Tianqing, MA Yuanyuan, GONG Tong, et al. Research progress on CO2 storage technology in supercritical state[J]. Applied Chemical Industry, 2019, 48(6): 1451-1455, 1473. | |
68 | 陈颖, 金吉能, 兰天庆. CO2置换联合地热开采陆域可燃冰-地质封存一体化技术[J]. 现代化工, 2021, 41(12): 69-73. |
CHEN Ying, JIN Jineng, LAN Tianqing. CO2 replacement combined with geothermal-mining land combustible ice-geological storage integrated technology[J]. Modern Chemical Industry, 2021, 41(12): 69-73. | |
69 | PRUESS K. Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4): 351-367. |
70 | LIU Yongge, HOU Jian, ZHAO Haifeng, et al. A method to recover natural gas hydrates with geothermal energy conveyed by CO2 [J]. Energy, 2018, 144: 265-278. |
71 | 李清平, 周守为, 赵佳飞, 等. 天然气水合物开采技术研究现状与展望[J]. 中国工程科学, 2022, 24(3): 214-224. |
LI Qingping, ZHOU Shouwei, ZHAO Jiafei, et al. Research status and prospects of natural gas hydrate exploitation technology[J]. Strategic Study of CAE, 2022, 24(3): 214-224. | |
72 | GAJANAYAKE S M, GAMAGE R P, LI Xiaosen, et al. Natural gas hydrates-Insights into a paradigm-shifting energy resource[J]. Energy Reviews, 2023, 2(1): 100013. |
73 | ANDERSON B, BOSWELL R, COLLETT T S, et al. Review of the findings of the Iġnik Sikumi CO2-CH4 gashydrate exchange field trial[C]//Proceedings of the 8th International Conference on Gas Hydrates (ICG H8-2014), Beijing, 2014. Pittsburgh: National Energy Technology Laboratory, 2014: 1-17. |
74 | SCHODERBEK D, MARTIN K L, HOWARD J, et al. North slope hydrate fieldtrial: CO2/CH4 exchange[C]//OTC Arctic Technology Conference, Houston, 2012. Red Hook: Curran Associates, Inc., 2012: OTC-23725-MS. |
75 | BOSWELL R, SCHODERBEK D, COLLETT T S, et al. The Iġnik Sikumi field experiment, Alaska north slope: Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs[J]. Energy & Fuels, 2016, 31(1): 140-153. |
76 | LEE H, SEO Y, SEO Y T, et al. Recovering methane from solid methane hydrate with carbon dioxide[J]. Angewandte Chemie International Edition, 2003, 42(41): 5048-5051. |
[1] | 孙焕泉, 杨勇, 方吉超, 凡哲元, 吴光焕, 元福卿, 杨元亮, 吴永超. 提高油气田采收率技术协同方法与应用[J]. 石油与天然气地质, 2024, 45(3): 600-608. |
[2] | 计秉玉, 郑松青, 顾浩. 缝洞型碳酸盐岩油藏开发技术的认识与思考[J]. 石油与天然气地质, 2022, 43(6): 1459-1465. |
[3] | 张莉. 中国石化东部老油田提高采收率技术进展及攻关方向[J]. 石油与天然气地质, 2022, 43(3): 717-723. |
[4] | 陈国辉, 蒋恕, 李醇, 李思思, 彭鹏, 莫兰, 张钰莹, 张鲁川, 张天宇. 加热过程中页岩储层改质效果研究进展[J]. 石油与天然气地质, 2022, 43(2): 286-296. |
[5] | 计秉玉, 王友启, 张莉. 基于地质储量结构变化的采收率演变趋势[J]. 石油与天然气地质, 2020, 41(6): 1257-1262. |
[6] | 孙焕泉. 薄储层超稠油热化学复合采油方法与技术[J]. 石油与天然气地质, 2020, 41(5): 1100-1106. |
[7] | 范东稳, 卢振权, 李广之, 肖睿. 南祁连盆地木里坳陷石炭系-侏罗系天然气水合物气源岩有机地球化学特征[J]. 石油与天然气地质, 2020, 41(2): 348-358. |
[8] | 康志江, 李阳, 计秉玉, 张允. 碳酸盐岩缝洞型油藏提高采收率关键技术[J]. 石油与天然气地质, 2020, 41(2): 434-441. |
[9] | 杨金秀, 宋朋霖, 何巍巍, 王红亮, 王民, 肖佃师. 尼日尔三角洲前缘挤压带的古今BSRs分布特征[J]. 石油与天然气地质, 2019, 40(6): 1295-1307. |
[10] | 赵清民, 伦增珉, 章晓庆, 郎东江, 王海涛. 页岩油注CO2动用机理[J]. 石油与天然气地质, 2019, 40(6): 1333-1338. |
[11] | 胡渤. 高温高盐油藏化学驱数值模拟技术进展[J]. 石油与天然气地质, 2018, 39(6): 1305-1310. |
[12] | 吴忠维, 崔传智, 杨勇, 黄迎松, 刘志宏. 高含水期大孔道渗流特征及定量描述方法[J]. 石油与天然气地质, 2018, 39(4): 839-844. |
[13] | 王勃, 姚红星, 王红娜, 赵洋, 李梦溪, 胡秋嘉, 樊梅荣, 杨春莉. 沁水盆地成庄区块煤层气成藏优势及富集高产主控地质因素[J]. 石油与天然气地质, 2018, 39(2): 366-372. |
[14] | 贝科奇, 许天福, 商松华, 魏铭聪, 金光荣, 曹玉清, 田海龙. 甲烷渗漏背景下硫酸盐还原对含铁自生矿物生成的影响[J]. 石油与天然气地质, 2018, 39(1): 183-191. |
[15] | 张淑霞, 刘帆, 沐宝泉. 蒸汽驱及化学辅助蒸汽驱提高稠油采收率实验[J]. 石油与天然气地质, 2017, 38(5): 1000-1004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||