Oil & Gas Geology ›› 2025, Vol. 46 ›› Issue (3): 759-776.doi: 10.11743/ogg20250305
• Petroleum Geology • Previous Articles Next Articles
Zhensheng SHI1,2(
), Tianqi ZHOU1,2(
), Pengfei WANG1,2
Received:2025-03-06
Revised:2025-04-29
Online:2025-06-30
Published:2025-06-26
Contact:
Tianqi ZHOU
E-mail:shizs69@petrochina.com.cn;zhoutianqi@petrochina.com.cn
CLC Number:
Zhensheng SHI, Tianqi ZHOU, Pengfei WANG. Types and distributions of endogenetic components in fine-grained sediments and their implications for the evaluation of shale oil and gas sweet spots[J]. Oil & Gas Geology, 2025, 46(3): 759-776.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Common types of exogenetic and endogenetic components in fine-grained sediment"
| 形成位置 | 物质来源 | 主要矿物类型 |
|---|---|---|
| 外源组分 | 陆源碎屑颗粒 | 黏土矿物(蒙脱石、伊/蒙混层、伊利石、绿泥石和高岭石) |
| 石英 | ||
| 长石[钾长石、斜长石(包括钠长石)] | ||
| 方解石 | ||
| 岩屑(碎屑岩、细晶变质岩、细晶火山岩、燧石、细粒石灰岩和白云岩等) | ||
| 火山碎屑物质 | 玻璃碎片和浮石等 | |
| 生物源物质 | 陆源有机质 | |
| 盆内化学沉积物 | 碳酸盐矿物、磷酸盐矿物、石膏和蛋白石 | |
| 内源组分 | 生物源物质 | 生源硅(硅藻、硅鞭藻、放射虫和硅质海绵骨针) |
| 生源碳酸盐矿物[有孔虫、腕足类、苔藓虫、钙藻、超微浮游生物(球虫病及相关)和有孔虫等] | ||
| 生源磷酸盐矿物(牙形刺、脊椎动物骨骼和牙齿) | ||
| 内源有机质(笔石、海藻孢子和无定形海相干酪根) | ||
| 盆内颗粒 | 絮凝颗粒、内碎屑、有机质-矿物集合体、粪球粒、生物席碎片和内碎屑 |
| 1 | JARVIE D M, HILL R J, POLLASTRO R M. Assessment of the gas potential and yields from shales: the Barnett Shale model[C]//CARDOTT B J. Unconventional Energy Resources in the Southern Midcontinent, 2004 Symposium: Oklahoma Geological Survey Circular 110. Norman: Oklahoma Geological Survey, 2005: 37-50. |
| 2 | 金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7): 821-835. |
| JIN Zhijun, WANG Guanping, LIU Guangxiang, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821-835. | |
| 3 | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. |
| ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. | |
| 4 | KRUMBEIN W C. The mechanical analysis of fine-grained sediments[J]. Journal of Sedimentary Research, 1932, 2(3): 140-149. |
| 5 | TUCKER M E. Sedimentary petrology[M]. 3rd ed. Oxford: Blackwell Science, 2001: 91-92. |
| 6 | MACQUAKER J H S, ADAMS A E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744. |
| 7 | APLIN A C, MACQUAKER J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059. |
| 8 | MILLIKEN K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199. |
| 9 | LAZAR O R, BOHACS K M, MACQUAKER J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246. |
| 10 | 姜在兴, 张建国, 孔祥鑫, 等. 中国陆相页岩油气沉积储层研究进展及发展方向[J]. 石油学报, 2023, 44(1): 45-71. |
| JIANG Zaixing, ZHANG Jianguo, KONG Xiangxin, et al. Research progress and development direction of continental shale oil and gas deposition and reservoirs in China[J]. Acta Petrolei Sinica, 2023, 44(1): 45-71. | |
| 11 | 施振生, 周天琪. 海相细粒沉积成因机制与有机质富集模式研究进展[J]. 石油与天然气地质, 2024, 45(4): 910-928. |
| SHI Zhensheng, ZHOU Tianqi. Advances and perspectives in the study of the genetic mechanism and organic matter enrichment models of marine fine-grained sediment[J]. Oil & Gas Geology, 2024, 45(4): 910-928. | |
| 12 | NOFFKE N, GERDES G, KLENKE T, et al. Microbially induced sedimentary structures: A new category within the classification of primary sedimentary structures[J]. Journal of Sedimentary Research, 2001, 71(5): 649-656. |
| 13 | KATZ B J, ARANGO I. Organic porosity: A geochemist’s view of the current state of understanding[J]. Organic Geochemistry, 2018, 123: 1-16. |
| 14 | YANG Jing, HATCHERIAN J, HACKLEY P C, et al. Nanoscale geochemical and geomechanical characterization of organic matter in shale[J]. Nature Communications, 2017, 8(1): 2179. |
| 15 | LIU Qing, SUN Mengdi, SUN Xianda, et al. Pore network characterization of shale reservoirs through state-of-the-art X-ray computed tomography: A review[J]. Gas Science and Engineering, 2023, 113: 204967. |
| 16 | 张水昌, 张斌, 王晓梅, 等. 松辽盆地古龙页岩油富集机制与常规—非常规油有序分布[J]. 石油勘探与开发, 2023, 50(5): 911-923. |
| ZHANG Shuichang, ZHANG Bin, WANG Xiaomei, et al. Gulong shale oil enrichment mechanism and orderly distribution of conventional-unconventional oils in the Cretaceous Qingshankou Formation, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2023, 50(5): 911-923. | |
| 17 | 王红岩, 施振生, 周天琪, 等. 海相黑色页岩甜点类型、特征及页岩气勘探意义——以四川盆地南部五峰组—龙马溪组为例[J]. 天然气工业, 2023, 43(10): 1-13. |
| WANG Hongyan, SHI Zhensheng, ZHOU Tianqi, et al. Types and characteristics of sweet spots of marine black shale and significance for shale gas exploration: A case study of Wufeng-Longmaxi in southern Sichuan Basin[J]. Natural Gas Industry, 2023, 43(10): 1-13. | |
| 18 | 杨智, 侯连华, 陶士振, 等. 致密油与页岩油形成条件与 “甜点区” 评价[J]. 石油勘探与开发, 2015, 42(5): 555-565. |
| YANG Zhi, HOU Lianhua, TAO Shizhen, et al. Formation conditions and “sweet spot” evaluation of tight oil and shale oil[J]. Petroleum Exploration and Development, 2015, 42(5): 555-565. | |
| 19 | 操应长, 梁超, 韩豫, 等. 基于物质来源及成因的细粒沉积岩分类方案探讨[J]. 古地理学报, 2023, 25(4): 729-741. |
| CAO Yingchang, LIANG Chao, HAN Yu, et al. Discussions on classification scheme for fine-grained sedimentary rocks based on sediments sources and genesis[J]. Journal of Palaeogeography(Chinese Edition), 2023, 25(4): 729-741. | |
| 20 | 施振生, 武瑾, 董大忠, 等. 四川盆地五峰组—龙马溪组重点井含气页岩孔隙类型与孔径分布[J]. 地学前缘, 2021, 28(1): 249-260. |
| SHI Zhensheng, WU Jin, DONG Dazhong, et al. Pore types and pore size distribution of the typical Wufeng-Lungmachi shale wells in the Sichuan Basin, China[J]. Earth Science Frontiers, 2021, 28(1): 249-260. | |
| 21 | 施振生, 周天琪, 孙莎莎, 等. 川南地区海相细粒储层研究与页岩气勘探[M]. 北京: 石油工业出版社, 2024: 231. |
| SHI Zhensheng, ZHOU Tianqi, SUN Shasha, et al. Study on marine fine-grained reservoirs and shale gas exploration in southern Sichuan Basin[M]. Beijing: Petroleum Industry Press, 2024: 231. | |
| 22 | APLIN A C, FLEET A J, Macquaker J H S. Muds and mudstones: Physical and fluid-flow properties[J]. Geological Society, London, Special Publications, 1999, 158(1): 1-8. |
| 23 | 施振生, 周天琪, 郭伟, 等. 海相页岩定量古地理编图及深水陆棚沉积微相划分——以川南泸州地区五峰组—龙马溪组龙一11⁃4小层为例[J]. 沉积学报, 2022, 40(6): 1728-1744. |
| SHI Zhensheng, ZHOU Tianqi, GUO Wei, et al. Quantitative paleogeographic mapping and sedimentary microfacies division in a deep-water marine shale shelf: Case study of Wufeng Formation-Longmaxi Formation shale, southern Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1728-1744. | |
| 24 | WRIGHT L D, FRIEDRICHS C T, KIM S C, et al. Effects of ambient currents and waves on gravity-driven sediment transport on continental shelves[J]. Marine Geology, 2001, 175(1/4): 25-45. |
| 25 | SCHIEBER J, SHAO Xinhe. Detecting detrital carbonate in shale successions-relevance for evaluation of depositional setting and sequence stratigraphic interpretation[J]. Marine and Petroleum Geology, 2021, 130: 105130. |
| 26 | 郭佩, 柏淑英, 李长志, 等. 准噶尔盆地玛湖凹陷风城组页岩自生长英质矿物的成因机理及其储层改造意义[J]. 地质学报, 2023, 97(7): 2311-2331. |
| GUO Pei, BAI Shuying, LI Changzhi, et al. Formation of authigenic quartz and feldspars in the Fengcheng Formation of the Mahu Sag, Junggar Basin, and their reservoir modification significance[J]. Acta Geologica Sinica, 2023, 97(7): 2311-2331. | |
| 27 | BARUCH E T, KENNEDY M J, LÖHR S C, et al. Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation (McArthur Basin, Australia)[J]. AAPG Bulletin, 2015, 99(9): 1745-1770. |
| 28 | PLINT A G, MACQUAKER J H S, VARBAN B L. Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, western Canada Foreland Basin[J]. Journal of Sedimentary Research, 2012, 82(11): 801-822. |
| 29 | SCHIEBER J, SOUTHARD J B. Bedload transport of mud by floccule ripples—direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486. |
| 30 | SCHIEBER J. Mud re-distribution in epicontinental basins-exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133. |
| 31 | DOGAN A U, DOGAN M, ONAL M, et al. Baseline studies of the clay minerals society source clays: Specific surface area by the Brunauer Emmett Teller (BET) method[J]. Clays and Clay Minerals, 2006, 54(1): 62-66. |
| 32 | JOHNSTON C T. Probing the nanoscale architecture of clay minerals[J]. Clay Minerals, 2010, 45(3): 245-279. |
| 33 | RAGUENEAU O, TRÉGUER P, LEYNAERT A, et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global and Planetary Change, 2000, 26(4): 317-365. |
| 34 | SIMS P A. A revision of the genus Rattrayella De-Toni including a discussion on related genera[J]. Diatom Research, 2006, 21(1): 125-158. |
| 35 | 郝诒纯, 茅绍智. 微体古生物学教程[M]. 2版. 武汉: 中国地质大学出版社, 1993: 330. |
| HAO Yichun, MAO Shaozhi. Tutorial on microfacies paleontology[M]. 2nd ed. Wuhan: China University of Geosciences Press, 1993: 330. | |
| 36 | TRÉGUER P J, DE LA ROCHA C L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5: 477-501. |
| 37 | RAGUENEAU O, GALLINARI M, CORRIN L, et al. The benthic silica cycle in the Northeast Atlantic: annual mass balance, seasonality, and importance of non-steady-state processes for the early diagenesis of biogenic opal in deep-sea sediments[J]. Progress in Oceanography, 2001, 50(1/4): 171-200. |
| 38 | BERGER W H. Radiolarian skeletons: Solution at depths[J]. Science, 1968, 159(3820): 1237-1239. |
| 39 | 颜佳新, 孟琦, 王夏, 等. 碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J]. 古地理学报, 2019, 21(2): 232-253. |
| YAN Jiaxin, MENG Qi, WANG Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(2): 232-253. | |
| 40 | KENNEDY M, DROSER M, MAYER L M, et al. Late Precambrian oxygenation; inception of the clay mineral factory[J]. Science, 2006, 311(5766): 1446-1449. |
| 41 | REIJMER J J G. Marine carbonate factories: Review and update[J]. Sedimentology, 2021, 68(5): 1729-1796. |
| 42 | RONG Jiayu, HARPER D A T, HUANG Bing, et al. The latest Ordovician Hirnantian brachiopod faunas: New global insights[J]. Earth-Science Reviews, 2020, 208: 103280. |
| 43 | TALLING P J, MASSON D G, SUMNER E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003. |
| 44 | SCHIEBER J, SOUTHARD J, THAISEN K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763. |
| 45 | MACQUAKER J H S, KELLER M A, DAVIES S J. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of Sedimentary Research, 2010, 80(11): 934-942. |
| 46 | HATTIN D E. Petrology and origin of fecal pellets in Upper Cretaceous strata of Kansas and Saskatchewan[J]. Journal of Sedimentary Research, 1975, 45(3): 686-696. |
| 47 | SCHIEBER J. Possible indicators of microbial mat deposits in shales and sandstones: Examples from the Mid-Proterozoic Belt Supergroup, Montana, U.S.A.[J]. Sedimentary Geology, 1998, 120(1/4): 105-124. |
| 48 | ARTHUR M A, DEAN W E, STOW D A V. Models for the deposition of Mesozoic-Cenozoic fine-grained organic-carbon-rich sediment in the deep sea[J]. Geological Society, London, Special Publications, 1984, 15(1): 527-560. |
| 49 | LOUCKS R G, RUPPEL S C. Mississippian Barnett shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. |
| 50 | 施振生, 邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报, 2021, 39(1): 181-196. |
| SHI Zhensheng, QIU Zhen. Main bedding types of marine Fine-Grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica, 2021, 39(1): 181-196. | |
| 51 | WIGNALL P B. Model for transgressive black shales?[J]. Geology, 1991, 19(2): 167-170. |
| 52 | WIGNALL P B, NEWTON R. Black shales on the basin margin: A model based on examples from the Upper Jurassic of the Boulonnais, northern France[J]. Sedimentary Geology, 2001, 144(3/4): 335-356. |
| 53 | LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. |
| 54 | DALRYMPLE R W, ZAITLIN B A, BOYD R. Estuarine facies models; conceptual basis and stratigraphic implications[J]. Journal of Sedimentary Research, 1992, 62(6): 1130-1146. |
| 55 | STEVENSON C J, JACKSON C A L, HODGSON D M, et al. Deep-water sediment bypass[J]. Journal of Sedimentary Research, 2015, 85(9): 1058-1081. |
| 56 | TYSON R V. Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modelling study[J]. Organic Geochemistry, 2001, 32(2): 333-339. |
| 57 | BOHACS K M, NORTON I O, NEAL J E, et al. Chapter 25-The accumulation of organic—matter-rich rocks within an earth system’s framework: The integrated roles of plate tectonics, atmosphere, ocean, and biota through the Phanerozoic[M]//SCARSELLI N, ADAM J, CHIARELLA D, et al.Regional Geology and Tectonics: Volume 1: Principles of Geologic Analysis. 2nd ed. Amsterdam: Elsevier, 2020: 721-744. |
| 58 | LASH G G, BLOOD D R. Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennsylvania, Appalachian Basin[J]. Marine and Petroleum Geology, 2014, 57: 244-263. |
| 59 | 王红岩, 施振生, 孙莎莎, 等. 陆表海页岩沉积微相类型及微相分布模式——以川南地区五峰组—龙马溪组为例[J]. 石油勘探与开发, 2023, 50(1): 51-64. |
| WANG Hongyan, SHI Zhensheng, SUN Shasha, et al. Microfacies types and distribution of epicontinental shale: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2023, 50(1): 51-64. | |
| 60 | 施振生, 周天琪, 王红岩, 等. 晚奥陶世—早志留世之交细粒沉积类型及演化——以川南地区五峰组为例[J]. 天然气地球科学, 2023, 34(9): 1565-1580. |
| SHI Zhensheng, ZHOU Tianqi, WANG Hongyan, et al. Shallow-water fine-grained sediments evolution and control of marine black shale in the Late Ordovician-Early Silurian: Case study of the Wufeng Formation in southern Sichuan Basin, China[J]. Natural Gas Geoscience, 2023, 34(9): 1565-1580. | |
| 61 | SHI Zhensheng, ZHAO Shengxian, ZHOU Tianqi, et al. Mineralogy and geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi shale on the Yangtze Platform, south China: Implications for provenance analysis and shale gas sweet-spot interval[J]. Minerals, 2022, 12(10): 1190. |
| 62 | 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236. |
| LU Longfei, QIN Jianzhong, SHEN Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236. | |
| 63 | 周晓峰, 李熙喆, 郭伟, 等. 四川盆地五峰组—龙马溪组页岩储层中碳酸盐矿物特征、形成机制及对储层物性影响[J]. 天然气地球科学, 2022, 33(5): 775-788. |
| ZHOU Xiaofeng, LI Xizhe, GUO Wei, et al. Characteristics, formation mechanism and influence on physical properties of carbonate minerals in shale reservoir of Wufeng-Longmaxi formations, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(5): 775-788. | |
| 64 | NIE Haikuan, JIN Zhijun, SUN Chuanxiang, et al. Organic matter types of the Wufeng and Longmaxi formations in the Sichuan Basin, South China: Implications for the formation of organic matter pores[J]. Energy & Fuels, 2019, 33(9): 8076-8100. |
| 65 | 管全中, 董大忠, 张华玲, 等. 富有机质页岩生物成因石英的类型及其耦合成储机制——以四川盆地上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油勘探与开发, 2021, 48(4): 700-709. |
| GUAN Quanzhong, DONG Dazhong, ZHANG Hualing, et al. Types of biogenic quartz and its coupling storage mechanism in organic-rich shales: A case study of the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(4): 700-709. | |
| 66 | VAIL P R. Seismic stratigraphy and global changes of sea level[J]. AAPG Memoir, 1977, 26: 49-212. |
| 67 | POSARNENTIER H W, ALLEN G P. Siliciclastic sequence stratigraphy—concepts and applications[M]. Tulsa: SEPM Society for Sedimentary Geology, 1999: 1-35. |
| 68 | LOUTIT T S, HARDENBOL J, VAIL P R, et al. Condensed sections: The key to age determination and correlation of continental margin sequences[M]//WILGUS C K, HASTINGS B S, POSAMENTIER H, et al. Sea-Level Changes: An Integrated Approach. Tulsa: Society of Economic Paleontologists and Mineralogists, 1988: 183-213. |
| 69 | ARTHUR M A, SAGEMAN B B. Marine black shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 499-551. |
| 70 | DEMAISON G J, MOORE G T. Anoxic environments and oil source bed genesis[J]. AAPG Bulletin, 1980, 64(8): 1179-1209. |
| 71 | HAQ B U, SCHUTTER S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68. |
| 72 | TRIBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation—Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324/325: 46-58. |
| 73 | 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. |
| ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. | |
| 74 | JIANG Shaoyong, YANG Jinghong, LING Hongfei, et al. Extreme enrichment of polymetallic Ni–Mo–PGE–Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 217-228. |
| 75 | MUTTI E, LUCCHI F R. Turbidites of the northern Apennines: Introduction to facies analysis[J]. International Geology Review, 1978, 20(2): 125-166. |
| 76 | STOW D A V, PIPER D J W. Deep-water fine-grained sediments: Facies models[J]. Geological Society, London, Special Publications, 1984, 15(1): 611-646. |
| 77 | HARRIS N B, FREEMAN K H, PANCOST R D, et al. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, West Africa[J]. AAPG Bulletin, 2004, 88(8): 1163-1184. |
| 78 | KATZ B J. Controlling factors on source rock development—A review of productivity, preservation, and sedimentation rate[M]//HARRIS N B. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Tulsa: SEPM Society for Sedimentary Geology, 2005: 7-16. |
| 79 | SARMIENTO J L, GRUBER N. Ocean biogeochemical dynamics[M]. Princeton, N.J.: Princeton University Press, 2006: 1-501. |
| 80 | CHAVEZ F P, MESSIÉ M. A comparison of eastern boundary upwelling ecosystems[J]. Progress in Oceanography, 2009, 83(1/4): 80-96. |
| 81 | RAISWELL R, BERNER R A. Pyrite formation in euxinic and semi-euxinic sediments[J]. American Journal of Science, 1985, 285(8): 710-724. |
| 82 | TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. |
| 83 | YAN D, WANG Hua, FU Qilong, et al. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for organic matter accumulation[J]. Marine and Petroleum Geology, 2015, 65: 290-301. |
| 84 | SLATT R M, RODRIGUEZ N D. Comparative sequence stratigraphy and organic geochemistry of gas shales: Commonality or coincidence?[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 68-84. |
| 85 | MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298. |
| 86 | ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318. |
| 87 | SAGEMAN B B, MURPHY A E, WERNE J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/4): 229-273. |
| 88 | MILLIKEN K L, ESCH W L, REED R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(8): 1553-1578. |
| 89 | KENNEDY M J, WAGNER T. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(24): 9776-9781. |
| 90 | MARSHALL M, BELIAEV A, FREDRICKSON J. Microbial transformations of radionuclides in the subsurface[J]. Journal of Bacteriology, 2008, 190(16): 5512-5516. |
| 91 | SCHIMEL J P, WEINTRAUB M N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model[J]. Soil Biology and Biochemistry, 2003, 35(4): 549-563. |
| 92 | PASSEY Q R, BOHACS K M, ESCH W L, et al. From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale-gas reservoirs[C]//International Oil and Gas Conference and Exhibition in China, Beijing, 2010. Richardson: Society of Petroleum Engineers, 2010: SPE-131350-MS. |
| 93 | CHALMERS G R L, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1/3): 223-239. |
| 94 | KEIL R G, MAYER L M. 12.12-Mineral matrices and organic matter[M]//HOLLAND H D, TUREKIAN K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 337-359. |
| 95 | HORSFIELD B, CURRY D J, BOHACS K, et al. Organic geochemistry of freshwater and alkaline lacustrine sediments in the Green River Formation of the Washakie Basin, Wyoming, U.S.A[J]. Organic Geochemistry, 1994, 22(3/5): 415-440. |
| 96 | PIPER D Z, PERKINS R B. A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3/4): 177-197. |
| 97 | LIU Jingshou, DING Wenlong, WANG Ruyue, et al. Quartz types in shale and their effect on geomechanical properties: An example from the lower Cambrian Niutitang Formation in the Cen’gong block, South China[J]. Applied Clay Science, 2018, 163: 100-107. |
| 98 | 丁江辉, 张金川, 杨超, 等. 页岩有机孔成因演化及影响因素探讨[J]. 西南石油大学学报(自然科学版), 2019, 41(2): 33-44. |
| DING Jianghui, ZHANG Jinchuan, YANG Chao, et al. Formation evolution and influencing factors of organic pores in shale[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(2): 33-44. | |
| 99 | LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. |
| 100 | MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. |
| 101 | SLATT R M, O’BRIEN N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030. |
| 102 | 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30. |
| MA Zhongliang, ZHENG Lunju, XU Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30. | |
| 103 | 赵建华, 金之钧, 金振奎, 等. 岩石学方法区分页岩中有机质类型[J]. 石油实验地质, 2016, 38(4): 514-520, 527. |
| ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Petrographic methods to distinguish organic matter type in shale[J]. Petroleum Geology and Experiment, 2016, 38(4): 514-520, 527. | |
| 104 | CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4): 665-677. |
| 105 | 郝芳, 邹华耀, 方勇, 等. 超压环境有机质热演化和生烃作用机理[J]. 石油学报, 2006, 27(5): 9-18. |
| HAO Fang, ZOU Huayao, FANG Yong, et al. Kinetics of organic matter maturation and hydrocarbon generation in overpressure environment[J]. Acta Petrolei Sinica, 2006, 27(5): 9-18. | |
| 106 | ROSS D J K, MARC BUSTIN R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927. |
| 107 | GASPARIK M, GHANIZADEH A, BERTIER P, et al. High-pressure methane sorption isotherms of black shales from the Netherlands[J]. Energy & Fuels, 2012, 26(8): 4995-5004. |
| 108 | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. |
| 109 | XIONG Jian, LIU Xiangjun, LIANG Lixi, et al. Adsorption of methane in organic-rich shale nanopores: An experimental and molecular simulation study[J]. Fuel, 2017, 200: 299-315. |
| 110 | 马存飞, 董春梅, 栾国强, 等. 苏北盆地古近系泥页岩有机质孔发育特征及影响因素[J]. 中国石油大学学报(自然科学版), 2017, 41(3): 1-13. |
| MA Cunfei, DONG Chunmei, LUAN Guoqiang, et al. Characteristics and influencing factors of organic-matter pores in Paleogene shale, Subei Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(3): 1-13. | |
| 111 | 王晓蕾, 司树杰, 阿窦. 页岩有机质纳米力学性质研究进展[J]. 科技导报, 2020, 38(12): 115-128. |
| WANG Xiaolei, SI Shujie, Dou A. Progress in characterization of nanoscale mechanical properties of organic matter in shale[J]. Science & Technology Review, 2020, 38(12): 115-128. | |
| 112 | 刘世明, 唐书恒, 马长政, 等. 鱼卡凹陷石门沟组上段泥页岩地球化学及储层特征[J]. 煤炭学报, 2020, 45(3): 1125-1136. |
| LIU Shiming, TANG Shuheng, MA Changzheng, et al. Geochemistry and reservoir characteristics of shale in the upper member of Shimengou Formation, Yuka sag[J]. Journal of China Coal Society, 2020, 45(3): 1125-1136. | |
| 113 | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27(2): 377-386. |
| ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386. | |
| 114 | YE Yapei, TANG Shuheng, XI Zhaodong, et al. The effects of quartz content, particle size and distribution mode on the mechanical properties and fracturing of shale[J]. Natural Resources Research, 2024, 33(1): 239-262. |
| 115 | 栾国强, 董春梅, 马存飞, 等. 基于热模拟实验的富有机质泥页岩成岩作用及演化特征[J]. 沉积学报, 2016, 34(6): 1208-1216. |
| LUAN Guoqiang, DONG Chunmei, MA Cunfei, et al. Pyrolysis simulation experiment study on diagenesis and evolution of organic-rich shale[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1208-1216. | |
| 116 | 卢龙飞, 刘伟新, 俞凌杰, 等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 2020, 42(3): 363-370. |
| LU Longfei, LIU Weixin, YU Lingjie, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology and Experiment, 2020, 42(3): 363-370. | |
| 117 | 杨恒林, 乔磊, 田中兰. 页岩气储层工程地质力学一体化技术进展与探讨[J]. 石油钻探技术, 2017, 45(2): 25-31. |
| YANG Henglin, QIAO Lei, TIAN Zhonglan. Advances in shale gas reservoir engineering and geomechanics integration technology and relevant discussions[J]. Petroleum Drilling Techniques, 2017, 45(2): 25-31. | |
| 118 | XU Yajun, DU Yuansheng, CAWOOD P A, et al. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: Response to orogenesis in South China[J]. Sedimentary Geology, 2012, 267/268: 63-72. |
| 119 | 施振生, 袁渊, 赵群, 等. 川南地区五峰组—龙马溪组沉积期古地貌及含气页岩特征[J]. 天然气地球科学, 2022, 33(12): 1969-1985. |
| SHI Zhensheng, YUAN Yuan, ZHAO Qun, et al. Paleogeomorphology and oil-bearing shale characteristics of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Natural Gas Geoscience, 2022, 33(12): 1969-1985. | |
| 120 | 施振生, 赵圣贤, 周天琪, 等. 海相含气页岩水平层理类型、成因及其页岩气意义——以川南地区古生界五峰组-龙马溪组为例[J]. 石油与天然气地质, 2023, 44(6): 1499-1514. |
| SHI Zhensheng, ZHAO Shengxian, ZHOU Tianqi, et al. Types and genesis of horizontal bedding of marine gas-bearing shale and its significance for shale gas: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Oil & Gas Geology, 2023, 44(6): 1499-1514. | |
| 121 | 王拔秀, 张鹏辉, 梁杰, 等. 生物成因微晶石英特征及其对海相页岩储层孔隙发育的影响[J]. 沉积学报, 2024, 42(5): 1738-1752. |
| WANG Baxiu, ZHANG Penghui, LIANG Jie, et al. Characteristics of biogenic microcrystalline quartz and its influence on pore development in marine shale reservoirs[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1738-1752. | |
| 122 | 梅俊芳, 梁超, 操应长, 等. 页岩中的石英类型、成因及意义[J]. 古地理学报, 2024, 26(2): 487-501. |
| MEI Junfang, LIANG Chao, CAO Yingchang, et al. Types, genesis and significance of quartz in shales[J]. Journal of Palaeogeography (Chinese Edition), 2024, 26(2): 487-501. | |
| 123 | SHI Zhensheng, ZHOU Tianqi, QI Ling. The Lower Silurian Longmaxi rapid-transgressive black shale and organic matter distribution on the Upper Yangtze Platform, China[J]. Interpretation, 2024, 12(1): T87-T104. |
| 124 | 王鹏威, 刘光祥, 刘忠宝, 等. 川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩气富集条件及主控因素[J]. 天然气地球科学, 2022, 33(3): 431-440. |
| WANG Pengwei, LIU Guangxiang, LIU Zhongbao, et al. Shale gas enrichment conditions and controlling factors of Upper Permian Longtan Formation transitional shale in southeast Sichuan to northwest Guizhou[J]. Natural Gas Geoscience, 2022, 33(3): 431-440. | |
| 125 | 郭涛, 金晓波, 武迪迪, 等. 川东南南川区块龙潭组深部煤层气成藏特征及勘探前景[J]. 煤田地质与勘探, 2024, 52(4): 60-67. |
| GUO Tao, JIN Xiaobo, WU Didi, et al. Accumulation characteristics and exploration prospects of deep coalbed methane in the Longtan Formation of the Nanchuan block on the southeastern margin of the Sichuan Basin[J]. Coal Geology & Exploration, 2024, 52(4): 60-67. | |
| 126 | 徐田武, 张洪安, 李令喜, 等.不同沉积环境下陆相页岩储集特征差异性对比——以中原油田三大探区为例[J]. 断块油气田, 2023, 30(6): 895-904. |
| XU Tianwu, ZHANG Hongan, LI Lingxi, et al. Comparative study on the differences in reservoir characteristics of continental shale under different sedimentary environments: taking the three major exploration areas of Zhongyuan Oilfield as an example[J]. Fault-Block Oil & Gas Field, 2023, 30(6): 895-904. | |
| 127 | 朱筱敏, 王晓琳, 张美洲, 等. 中国典型陆相盆地细粒沉积环境和岩相特征[J]. 石油与天然气地质, 2024, 45(4): 873-892. |
| ZHU Xiaomin, WAN Xiaolin, ZHANG Meizhou, et al. Sedimentary environments and lithofacies characteristics of fine-grained sediments in typical continental basins in China. Oil & Gas Geology[J], 2024, 45(4): 873-892. | |
| 128 | 李振明, 熊伟, 王斌, 等. 准噶尔盆地哈山地区二叠系风城组细粒沉积特征与演化模式[J]. 石油实验地质, 2023, 45(4): 693-704. |
| LI Zhenming, XIONG Wei, WANG Bin, et al. Fine-grained sedimentary characteristics and evolution model of Permian Fengcheng Formation in Hashan area, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(4): 693-704. | |
| 129 | 王威, 刘珠江, 魏富彬, 等. 川东北地区二叠系大隆组页岩储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1355-1367. |
| WANG Wei, LIU Zhujiang, WEI Fubin, et al. Characteristics and determinants of shale reservoir development in the Permian Dalong Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2024, 45(5): 1355-1367. | |
| 130 | 王秀平, 牟传龙, 肖朝晖, 等. 湖北鹤峰地区二叠系大隆组黑色岩系特征及成因初探[J]. 天然气地球科学, 2018, 29(3): 382-396. |
| WANG Xiuping, MOU Chuanlong, XIAO Zhaohui, et al. Characteristics and preliminary study on genesis of black rock series of Upper Permian Dalong Formation in Hefeng area, Hubei Province[J]. Natural Gas Geoscience, 2018, 29(3): 382-396. | |
| 131 | 叶玥豪, 陈伟, 汪华, 等. 四川盆地上二叠统大隆组页岩储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 979-991. |
| YE Yuehao, CHEN Wei, WANG Hua, et al. Characteristics and determinants of shale reservoirs in the Upper Permian Dalong Formation, Sichuan Basin[J]. Oil & Gas Geology, 2024, 45(4): 979-991. | |
| 132 | 杨华, 牛小兵, 徐黎明, 等. 鄂尔多斯盆地三叠系长7段页岩油勘探潜力[J]. 石油勘探与开发, 2016, 43(4): 511-520. |
| YANG Hua, NIU Xiaobing, XU Liming, et al. Exploration potential of shale oil in Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 511-520. | |
| 133 | 张文正, 杨华, 杨奕华, 等. 鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境[J]. 地球化学, 2008, 37(1): 59-64. |
| ZHANG Wenzheng, YANG Hua, YANG Yihua, et al. Petrology and element geochemistry and development environment of Yanchang Formation Chang-7 high quality source rocks in Ordos Basin[J]. Geochimica, 2008, 37(1): 59-64. | |
| 134 | 李相博, 朱如凯, 惠潇, 等. 晚三叠世卡尼期梅雨事件(CPE)在陆相盆地中的沉积学响应——以鄂尔多斯盆地延长组为例[J]. 沉积学报, 2023, 41(2): 511-526. |
| LI Xiangbo, ZHU Rukai, HUI Xiao, et al. Sedimentological response of a lacustrine basin to the late Triassic Carnian pluvial episode (CPE): Case study from the Yanchang Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 511-526. | |
| 135 | 王香增, 刘国恒, 黄志龙, 等. 鄂尔多斯盆地东南部延长组长7段泥页岩储层特征[J]. 天然气地球科学, 2015, 26(7): 1385-1394. |
| WANG Xiangzeng, LIU Guoheng, HUANG Zhilong, et al. The characteristics of shale reservoir of the No.7 members in Yanchang Formation of southeast Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1385-1394. | |
| 136 | ZHOU Qianshan, LIU Jiangyan, MA Bo, et al. Pyrite characteristics in lacustrine shale and implications for organic matter enrichment and shale oil: A case study from the Triassic Yanchang Formation in the Ordos Basin, NW China[J]. ACS Omega, 2024, 9(14): 16519-16535. |
| 137 | 胡宗全, 刘忠宝, 李倩文, 等. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
| HU Zongquan, LIU Zhongbao, LI Qianwen, et al. Exploring source rock-reservoir coupling mechanisms in lacustrine shales based on varying-scale lithofacies assemblages: A case study of the Jurassic shale intervals in the Sichuan Basin. Oil & Gas Geology[J]. 2024, 45(4): 893-909. | |
| 138 | LIANG Chao, WANG Junran, CAO Yingchang, et al. Authigenic calcite in shales: Implications for tracing burial processes and diagenetic fluid evolution in sedimentary basins[J]. Earth-Science Reviews, 2024, 258: 104935. |
| 139 | 赵建华, 金之钧. 泥岩成岩作用研究进展与展望[J]. 沉积学报, 2021, 39(1): 58-72. |
| ZHAO Jianhua, JIN Zhijun. Mudstone diagenesis: Research advances and prospects[J]. Acta Sedimentologica Sinica, 2021, 39(1): 58-72. |
| [1] | Xiaomin ZHU, Xiaolin WANG, Xin HU, Xiang WANG, Zijie GAO. Frontiers and future prospects of international sedimentological research: Review on the 37th International Meeting of Sedimentology [J]. Oil & Gas Geology, 2025, 46(3): 685-704. |
| [2] | Anping HU, Feng LIANG, Xianying LUO, Yongsheng WANG, Zhanfeng QIAO, Xunyun HE, Anjiang SHEN. Development and applications of new techniques for tests of trace elements and rare earth elements in carbonate minerals [J]. Oil & Gas Geology, 2025, 46(2): 365-376. |
| [3] | Wenquan XIE, Jingqiang TAN, Jianliang JIA, Taotao CAO, Yong WANG. Coupling mechanism between climate aridification and shale oil shale mineralization during the the Middle Jurassic in the Qaidam Basin [J]. Oil & Gas Geology, 2025, 46(2): 510-529. |
| [4] | Xusheng GUO, Baojian SHEN, Pengwei WANG, Longfei LU, Qianwen LI, Guanping WANG, Jiaqi CHANG, Weixin LIU, Chuxiong LI, Jinyi HE. A new approach to the evaluation and optimal selection of shale oil and gas sweet-spot intervals based on source rock-reservoir units [J]. Oil & Gas Geology, 2025, 46(1): 1-14. |
| [5] | Qianqian JIANG, Juan WU, Heng WANG, Longwei KUANG, Zhipeng ZHOU, Yuran YANG, Yanyou LI, Chao LUO, Bin DENG, Kun JIAO. Thermal evolution of organic matter in the Lower Silurian Longmaxi Formation, southern Sichuan Basin and its main controlling factors [J]. Oil & Gas Geology, 2024, 45(5): 1321-1336. |
| [6] | Xinhui Xie, Hucheng Deng, Lanxiao Hu, Yong Li, Jinxin Mao, Jiajie Liu, Xin Zhang, Boyang Li. Micromechanical characteristics and classification of the grains of lacustrine fine-grained sedimentary rocks: A case study of shales in the 7th member of the Upper Triassic Yanchang Formation, Ordos Basin [J]. Oil & Gas Geology, 2024, 45(4): 1079-1088. |
| [7] | Xiaomin ZHU, Xiaolin WANG, Meizhou ZHANG, Xingyue LIN, Qin ZHANG. Sedimentary environments and lithofacies characteristics of fine-grained sediments in typical continental basins in China [J]. Oil & Gas Geology, 2024, 45(4): 873-892. |
| [8] | Zongquan HU, Zhongbao LIU, Qianwen LI, Zhoufan WU. Exploring source rock-reservoir coupling mechanisms in lacustrine shales based on varying-scale lithofacies assemblages: A case study of the Jurassic shale intervals in the Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(4): 893-909. |
| [9] | Zhensheng SHI, Tianqi ZHOU. Advances and perspectives in the study of the genetic mechanism and organic matter enrichment models of marine fine-grained sediment [J]. Oil & Gas Geology, 2024, 45(4): 910-928. |
| [10] | Xiaojiao PANG, Guiwen WANG, Dali YUE, Dong LI, Hongbin LI, Chongyang WANG, Lichun KUANG, Jin LAI. Advances in well log-based assessments of fine-grained sedimentary rocks [J]. Oil & Gas Geology, 2024, 45(4): 954-978. |
| [11] | Xiugang PU, Jiangchang DONG, Gongquan CHAI, Shunyao SONG, Zhannan SHI, Wenzhong HAN, Wei ZHANG, Delu XIE. Enrichment model of high-abundance organic matter in shales in the 2nd member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2024, 45(3): 696-709. |
| [12] | Changbo ZHAI, Liangbiao LIN, Donghua YOU, Fengbin LIU, Siyu LIU. Sedimentary microfacies characteristics and organic matter enrichment pattern of the 1st member of the Middle Permian Maokou Formation, southwestern Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 440-456. |
| [13] | Dujie HOU, Keqiang WU, Li YOU, Ziming ZHANG, Yajun LI, Xiaofeng XIONG, Min XU, Xiazhe YAN, Weihe CHEN, Xiong CHENG. Organic matter enrichment mechanisms of terrigenous marine source rocks in the Qiongdongnan Basin [J]. Oil & Gas Geology, 2024, 45(1): 31-43. |
| [14] | Qian ZHANG, Zhijun JIN, Rukai ZHU, Quanyou LIU, Rui ZHANG, Guanping WANG, Wanli CHEN, Ralf Littke. Remarkable issues of Rock-Eval pyrolysis in the assessment of shale oil/gas [J]. Oil & Gas Geology, 2023, 44(4): 1020-1032. |
| [15] | Rui ZHANG, Zhijun JIN, Rukai ZHU, Mingsong LI, Xiao HUI, Ren WEI, Xiangwu HE, Qian ZHANG. Investigation of deposition rate of terrestrial organic-rich shales in China and its implications for shale oil exploration [J]. Oil & Gas Geology, 2023, 44(4): 829-845. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||