石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (1): 68-82.doi: 10.11743/ogg20200107
刘嘉庆1,2(), 李忠1,2,*(), 颜梦珂1,2, PeterK.Swart3, 杨柳4, 卢朝进3,5
收稿日期:
2019-07-31
出版日期:
2020-02-01
发布日期:
2020-01-19
通讯作者:
李忠
E-mail:liujiaqing@mail.iggcas.ac.cn;lizhong@mail.iggcas.ac.cn
第一作者简介:
刘嘉庆(1984-),女,博士研究生、高级工程师,沉积学。E-mail:基金项目:
Jiaqing Liu1,2(), Zhong Li1,2,*(), Mengke Yan1,2, K.Swart Peter3, Liu Yang4, Chaojin Lu3,5
Received:
2019-07-31
Online:
2020-02-01
Published:
2020-01-19
Contact:
Zhong Li
E-mail:liujiaqing@mail.iggcas.ac.cn;lizhong@mail.iggcas.ac.cn
Supported by:
摘要:
基于碳酸根中13C-18O键的相对丰度与温度的关系,碳酸盐团簇同位素(Δ47)具有独特的温度指示特征,而且不受碳酸盐沉淀时流体的化学和同位素组成的影响,是成岩流体研究中很好的温度指标。应用该指标可以更好地解决与温度相关的成岩流体来源及演化的问题。论文主要针对塔里木盆地塔中地区下奥陶统鹰山组白云岩样品,在详细的岩矿观察基础上,选取了基质(孔隙发育处)、孔洞内充填物和裂缝内充填物进行了团簇同位素测试分析,解析了深层-超深层碳酸盐岩储层的流体性质、演化与其对储层发育的影响。测试结果表明,塔中地区下奥陶统鹰山组白云岩主要经历了3期成岩流体改造:第一期流体为浅-中埋藏,为粉晶-细晶结构,团簇同位素形成温度T(Δ47)分布范围为69~94℃,流体氧同位素值(δ18Ow,SMOW)分布范围为+1.81‰~+5.19‰,为奥陶系改造海水;第二期流体为晚期深埋藏卤水,多表现为细晶与中-粗晶结构,T(Δ47)为111~113℃,δ18Ow(SMOW)值为+8.46‰~+8.95‰,指示进一步增加的水-岩相互作用;第三期为热流体,T(Δ47)为130~147℃,δ18Ow(SMOW)值为+7.93‰~+9.42‰,矿物氧同位素较第二期明显偏负,且鞍状白云石发育。孔洞和裂缝内充填碳酸盐岩的碳、氧同位素分布范围较宽,δ18Ocarb(VPDB)值为-17.38 ‰~-5.84‰,δ13Ccarb(VPDB)值为-3.57‰~-1.33‰,也揭示了多期次流体活动的叠加改造。岩心和显微观测结果显示,白云岩具有很好的储集空间,埋藏溶蚀作用和断裂带附近的热流体活动叠加是鹰山组白云岩储层发育的主要建设性成岩作用。
中图分类号:
图3
塔中地区下奥陶统鹰山组白云岩宏观岩石学特征和团簇同位素测试分析位置 a.样品ZG9-2,细晶白云岩,针孔-蜂窝孔大量发育,埋深6 261.62 m;b.样品ZG512-5,粉晶、中-细晶云岩,孔隙优选发育在中-细晶云岩中,多组细裂缝发育,内方解石半充填,埋深5 587.94 m;c.样品ZG512-6,中-粗晶云岩,溶蚀孔洞发育,埋深5 588.51 m;d.样品ZG512-7,粉-细晶云岩,孔洞内白云石充填,埋深5 589.66 m;e.样品ZG512-8,粉-细晶云岩,孔隙发育,埋深5 589.77 m;f.样品TZ12-3,粉晶白云岩,细裂缝内白云石半充填,见沥青充注,埋深5 297.90 m(蓝色圆圈为团簇同位素测试分析点的位置。)"
图4
塔中地区下奥陶统鹰山组白云岩显微镜下微观特征 a.样品ZG9-2,中-粗晶白云岩,自形程度差,溶孔大量发育,内有烃类和沥青充注,埋深6 261.62 m;b.样品ZG9-8,左侧为中-细云岩,溶蚀孔隙发育,内见有机质,右侧为粉晶云岩,致密,两者中间缝合线发育,内有机质充注,埋深6 267.90 m;c.样品ZG512-5,粉晶、中-细晶云岩,缝洞内鞍状白云石发育,鞍状白云石后方解石充填,埋深5 587.94 m;d.图c中红色框区域的放大;e.样品ZG512-6,中-粗晶云岩,缝洞发育,内方解石充填,埋深5 588.51 m;f.样品ZG512-7,粉-细晶云岩,自形程度差,溶蚀孔洞发育,埋深5 589.66 m"
表1
塔中地区下奥陶统鹰山组白云岩团簇同位素分析结果"
井号 | 样品号 | 深度/m | 岩石类型 | 产状 | δ13C(VPDB)/‰ | δ18O(VPDB)/‰ | Δ47/‰ | δ18Ow(SMOW)/‰ | T/℃ |
ZG9 | ZG9-2 | 6 261.62 | 中-粗晶白云岩 | 基质白云石(孔隙发育) | 0.88 | -5.39 | 0.542 | 5.19 | 94 |
0.77 | -5.59 | 0.581 | 1.81 | 71 | |||||
0.83 | -5.49 | 0.562 | 3.50 | 83 | |||||
ZG512 | ZG512-5 | 5 587.94 | 粉晶中-细晶云岩 | 基质白云石(孔隙发育) | -2.10 | -3.73 | 0.516 | 8.95 | 111 |
裂缝内充填方解石 | -3.20 | -9.10 | 0.488 | 9.42 | 133 | ||||
ZG512 | ZG512-6 | 5 588.51 | 中-粗晶云岩 | 基质白云石(孔隙发育) | -1.39 | -9.28 | 0.527 | 2.39 | 104 |
孔洞内充填方解石 | -2.31 | -12.01 | 0.472 | 7.93 | 147 | ||||
ZG512 | ZG512-7 | 5 589.66 | 粉-细晶云岩 | 孔洞内充填白云石 | -1.69 | -3.93 | 0.515 | 8.80 | 112 |
ZG512 | ZG512-8 | 5 589.77 | 粉-细晶云岩 | 基质白云石(孔隙发育) | -1.07 | -4.44 | 0.513 | 8.46 | 113 |
孔洞内充填白云石 | -1.91 | -3.32 | 0.573 | 4.79 | 75 | ||||
ZG503 | ZG503-1 | 6 060.40 | 灰质云岩 | 裂缝内充填方解石 | -2.04 | -9.03 | 0.492 | 9.13 | 130 |
TZ12 | TZ12-3 | 5 297.90 | 粉晶白云岩 | 裂缝内充填方解石 | -1.35 | -3.13 | 0.585 | 4.04 | 69 |
表2
塔中地区下奥陶统鹰山组白云岩碳、氧同位素测试结果"
井号 | 深度/m | 岩石类型 | 产状 | δ13C(VPDB)/% | δ18O(VPDB)/% |
ZG442H | 5 555.86 | 粉-细晶云岩 | 孔洞内充填方解石 | -2.19 | -6.12 |
TZ12 | 5 299.00 | 细晶白云岩 | 基质白云石(孔隙发育) | -0.91 | -5.55 |
TZ12 | 5 299.00 | 泥-粉晶云岩 | 基质白云石(致密) | -1.74 | -3.50 |
TZ12 | 5 248.02 | 泥-粉晶云岩 | 基质白云石(致密) | -1.42 | -4.74 |
TZ12 | 5 248.02 | 粉晶白云岩 | 孔洞内充填方解石 | -1.51 | -11.13 |
TZ12 | 5 241.65 | 细晶白云岩 | 基质白云石(孔隙发育) | -1.00 | -8.37 |
TZ12 | 5 237.40 | 粗晶白云岩 | 孔洞内充填白云石 | -1.33 | -17.38 |
TZ12 | 5 232.20 | 粉晶白云岩 | 孔洞内充填方解石 | -1.78 | -14.21 |
TZ3 | 3 770.03 | 白云岩 | 裂缝内充填方解石 | -2.62 | -9.55 |
TZ3 | 3 761.97 | 白云岩 | 裂缝内充填方解石 | -3.35 | -6.62 |
TZ3 | 3 761.97 | 白云岩 | 裂缝内充填方解石 | -1.46 | -6.54 |
TZ3 | 3 761.74 | 白云岩 | 孔洞内充填方解石 | -2.77 | -10.98 |
TZ3 | 3 761.74 | 白云岩 | 孔洞内充填方解石 | -2.60 | -11.38 |
TZ3 | 4 222.08 | 白云岩 | 裂缝内充填方解石 | -2.93 | -11.89 |
TZ3 | 4 222.08 | 白云岩 | 裂缝内充填方解石 | -2.08 | -13.07 |
TZ3 | 4 205.65 | 白云岩 | 裂缝内充填方解石 | -2.93 | -8.77 |
TZ3 | 4 200.00 | 白云岩 | 裂缝内充填方解石 | -2.42 | -7.56 |
TZ3 | 4 192.92 | 白云岩 | 裂缝内充填方解石 | -2.18 | -11.36 |
TZ3 | 4 069.40 | 细晶白云岩 | 基质白云石(孔隙发育) | -2.04 | -4.51 |
TZ3 | 4 069.40 | 泥晶白云岩 | 泥晶白云石 | -1.93 | -3.86 |
TZ3 | 4 066.40 | 白云岩 | 裂缝内充填方解石 | -3.14 | -9.75 |
TZ3 | 4 021.70 | 白云岩 | 孔洞内充填方解石 | -3.01 | -8.26 |
TZ3 | 3 966.33 | 白云岩 | 裂缝内充填方解石 | -2.24 | -6.14 |
TZ3 | 3 966.33 | 白云岩 | 裂缝内充填方解石 | -3.18 | -12.05 |
ZG46-3H | 5 584.50 | 粉-细晶白云岩 | 孔洞内充填方解石 | -3.57 | -5.84 |
ZG46-3H | 5 589.27 | 球粒白云岩 | 孔洞内充填方解石 | -2.87 | -11.06 |
ZG46-3H | 5 582.53 | 粉-细晶白云岩 | 基质白云石(孔隙发育) | -1.83 | -7.22 |
ZG9 | 6 267.90 | 中-细晶白云岩 | 基质白云石(孔隙发育) | 0.40 | -6.10 |
ZG9 | 6 267.90 | 中-细晶白云岩 | 基质白云石(致密) | 0.89 | -5.80 |
1 | Eiler J M . Paleoclimate reconstruction using carbonate clumped isotope thermometry[J]. Quaternary Science Reviews, 2011, 30 (25): 3575- 3588. |
2 | Eiler J M . 'Clumped'isotope geochemistry[J]. Geochimicaet Cosmochimica Acta, 2006, 70 (18S): A156. |
3 |
Ghosh P , Adkins J , Affek H , et al. 13C-18O bonds in carbonate minerals:A new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70 (6): 1439- 1456.
doi: 10.1016/j.gca.2005.11.014 |
4 |
Schauble E A , Ghosh P , Eiler J M . Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics[J]. Geochimica et Cosmochimica Acta, 2006, 70 (10): 2510- 2529.
doi: 10.1016/j.gca.2006.02.011 |
5 | Eiler J M . "Clumped-isotope" geochemistry-The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth&Planetary Science Letters, 2007, 262 (3-4): 309- 327. |
6 |
Affek H P , Bar-Matthews M , Ayalon A , et al. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by'clumped isotope'thermometry[J]. Geochimica et Cos-mochimica Acta, 2008, 72 (22): 5351- 5360.
doi: 10.1016/j.gca.2008.06.031 |
7 | Meckler A N , Adkins J F , Eiler J M , et al. Constraints from clumped isotope analyses of a stalagmite on maximum tropical temperature change through the Late Pleistocene[J]. Geochimica et Cosmochimica Acta, 2009, 73 (13S): A863. |
8 | Dennis K J , Cochran J K , Landman N H , et al. The climate of the Late Cretaceous:New insights from the application of the carbonate clumped isotope thermometer to Western Interior Seaway macrofossil[J]. Earth&Planetary Science Letters, 2013, 362, 51- 65. |
9 |
Wang X , Cui L , Zhai J , et al. Stable and clumped isotopes in shell carbonates of land snailsCathaica sp.and Bradybaena sp.in North China and implications for ecophysiological characteristics and paleoclimate studies[J]. Geochemistry, Geophysics, Geosystems, 2016, 17 (1): 219- 231.
doi: 10.1002/2015GC006182 |
10 |
Henkes G A , Passey B H , Grossman E L , et al. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry[J]. Earth and Planetary Science Letters, 2018, 490, 40- 50.
doi: 10.1016/j.epsl.2018.02.001 |
11 | Huntington K W , Wernicke B P , Eiler J M . Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry[J]. Tectonics, 2010, 29 (3): 1- 19. |
12 | Lechler A R , Niemi N A , Hren M T , et al. Paleoelevation estimates for the northern and central proto-basin and range from carbonate clumped isotope thermometry[J]. Tectonics, 2013, 32 (3): 295- 316. |
13 |
Quade J , Eiler J , Daëron M , et al. The clumped isotope geothermometer in soil and paleosol carbonate[J]. Geochimica et Cosmochimica Acta, 2013, 105, 92- 107.
doi: 10.1016/j.gca.2012.11.031 |
14 | 熊中玉, 丁林, 谢静. 碳酸盐耦合同位素(Δ47)温度计及其在古高度重建中的应用[J]. 科学通报, 2019, 64 (16): 1722- 1737. |
Xiong Zhongyu , Ding Lin , Xie Jing . Carbonate clumped isotope (Δ47) thermometry and its application in paleoelevation reconstruction (in Chinese)[J]. Chinese Science Bulletin, 2019, 64 (16): 1722- 1737. | |
15 |
Bristow T F , Bonifacie M , Derkowski A , et al. Hydrothermal origin for isotopically anomalous cap dolostone cements from South China[J]. Nature, 2011, 474 (7349): 68- 71.
doi: 10.1038/nature10096 |
16 |
Huntington K W , Budd D A , Wernicke B P , et al. Use ofclumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite[J]. Journal of Sedimentary Research, 2011, 81 (9): 656- 669.
doi: 10.2110/jsr.2011.51 |
17 |
Ferry J M , Passey B H , Vasconcelos C , et al. Formation of dolomite at 40-80℃ in the Latemar carbonate buildup, dolomites, Italy, from clumped isotope thermometry[J]. Geology, 2011, 39 (6): 571- 574.
doi: 10.1130/G31845.1 |
18 |
Loyd S J , Dickson J A D , Boles J R , et al. Clumped-isotope constraints on cement paragenesis in septarian concretions[J]. Journal of Sedimentary Research, 2014, 84 (12): 1170- 1184.
doi: 10.2110/jsr.2014.91 |
19 |
Sena C M , John C M , Jourdan A L , et al. Dolomitization of Lower Cretaceousperitidal carbonates by modified seawater:Constraints from clumped isotopic paleothermometry, elemental chemistry, and strontium isotopes[J]. Journal of Sedimentary Research, 2014, 84 (7): 552- 566.
doi: 10.2110/jsr.2014.45 |
20 |
Swart P K . The geochemistry of carbonate diagenesis:The past, present and future[J]. Sedimentology, 2015, 62 (5): 1233- 1304.
doi: 10.1111/sed.12205 |
21 |
Bergmann K D , Finnegan S , Creel R , et al. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition[J]. Geochim Cosmochim Acta, 2018, 224, 18- 41.
doi: 10.1016/j.gca.2017.11.015 |
22 |
Stolper D A , Sessions A L , Ferreira A A , et al. Combined 13C-D and D-D clumping in methane:Methods and preliminary results[J]. Geochimica et Cosmochimica Acta, 2014, 126, 169- 191.
doi: 10.1016/j.gca.2013.10.045 |
23 | Stolper D A , Eiler J M . The kinetics of solid-state isotope-exchange reactions for clumped-isotopes:A study of inorganic calcites and apatites from natural and experimental samples[J]. AmericanJournal of Science, 2015, 315 (5): 363- 411. |
24 | Swart P K , Cantrell D L , Arienzo M M , et al. Evidence for high temperature and 18O-enriched fluids in the Arab-D of the Ghawar Field, Saudi Arabia[J]. Sedimentology, 2016, 63 (6): 1- 14. |
25 |
Gallagher T M , Sheldon N D , Mauk J L , et al. Constraining the thermal history of the North American Midcontinent Rift System using carbonate clumped isotopes and organic thermal maturity indices[J]. Precambrian Research, 2017, 294, 53- 66.
doi: 10.1016/j.precamres.2017.03.022 |
26 | Mangenot X , DeçoninckJ F , Bonifacie M , et al. Thermal and exhumation histories of the northern subalpine chains (Bauges and Bornes-France):Evidence from forward thermal modeling coupling clay mineral diagenesis, organic maturity and carbonate clumped isotope (Δ47) data[J]. Basin Research, 2018, 31 (2): 1- 19. |
27 | 马秀峰, 张兆峰, 严爽, 等. 耦合同位素简介[J]. 地球环境学报, 2012, 13 (4): 950- 959. |
Ma Xiufeng , Zhang Zhaofeng , Yan Shuang , et al. An introduction to clumped isotope[J]. Jounarl of Earth Environment, 2012, 13 (4): 950- 959. | |
28 | 李平平, 马倩倩, 邹华耀, 等. 团簇同位素的基本原理与地质应用[J]. 古地理学报, 2017, 19 (4): 713- 728. |
Li Pingping , Ma Qianqian , Zou Huayao , et al. Basic principle of clumped isotopes and geological applications[J]. Jounarl of Palaeogeography, 2017, 19 (4): 713- 728. | |
29 | 胡安平, 沈安江, 潘立银, 等. 二元同位素在碳酸盐岩储层研究中的作用[J]. 天然气地球科学, 2018, 29 (1): 17- 27. |
Hu Anping , Shen Anjiang , Pan Liyin , et al. Theimplication and significance of clumped isotope in carbonate reservoirs[J]. Natural Gas Geoscience, 2018, 29 (1): 17- 27. | |
30 |
Cui L , Wang X . Determination of clumped isotopes in carbonate using isotope ratio mass spectrometer:Effects of extraction potential and long-term stability[J]. International Journal of Mass Spectrometry, 2014, 372, 46- 50.
doi: 10.1016/j.ijms.2014.08.006 |
31 | Cao X , Liu Y . Theoretical estimation of the equilibrium distribution of clumped isotopes in nature[J]. Geochimica et Cosmochimica Acta, 2012, 77, 0- 303. |
32 |
Liu Q , Liu Y . Clumped-isotope signatures at equilibrium of CH4, NH3, H2O, H2S and SO2[J]. Geochimica et Cosmochimica Acta, 2016, 175, 252- 270.
doi: 10.1016/j.gca.2015.11.040 |
33 |
郑剑锋, 李晋, 季汉成, 等. 二元同位素测温技术及其在白云岩储层成因研究中的应用——以塔里木盆地中下寒武统为例[J]. 海相油气地质, 2017, 22 (2): 1- 7.
doi: 10.3969/j.issn.1672-9854.2017.02.001 |
Zheng Jianfeng , Li Jin , Ji Hancheng , et al. Clumped isotope thermometry and its application in dolomite reservoir:A case study of the Middle-Lower Cambrian in Traim Basin[J]. Marine Origin Petroleum Geology, 2017, 22 (2): 1- 7.
doi: 10.3969/j.issn.1672-9854.2017.02.001 |
|
34 | 徐秋晨, 邱楠生, 刘雯, 等. 利用团簇同位素恢复沉积盆地热历史的探索[J]. 科学通报, 2019, 64 (S1): 566- 578. |
Xu Qiucheng , Qiu Nansheng , Liu Wen , et al. Reconstructing the basin thermal history with clumped isotope (in Chinese)[J]. Chinese Science Bulletin, 2019, 64 (S1): 566- 578. | |
35 | 贾承造. 中国塔里木盆地构造特征与油气[M]. 北京: 石油工业出版社, 1997: 1- 295. |
Jia Chengzao . Tectonic characteristic and petroleum in Tarim Basin[M]. Beijing: Petroleum Industry Press, 1997: 1- 295. | |
36 | 王清晨, 李忠. 库车-天山盆山系统与油气[M]. 北京: 科学出版社, 2007: 1- 200. |
Wang Qingchen , Li Zhong . Basin-mountain system and oil and gas in Kuche-Tianshan[M]. Beijing: Science Press, 2007: 1- 200. | |
37 |
Lin Changsong , Yang Haijum , Liu Jingyan , et al. Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China:Significance for the evolution of paleo-uplifts and tectonic geography during deformation[J]. Journal of Asian Earth Sciences, 2012, 46, 1- 19.
doi: 10.1016/j.jseaes.2011.10.004 |
38 |
Li C , Wang X , Li B , et al. Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2013, 39 (1): 48- 58.
doi: 10.1016/j.marpetgeo.2012.09.010 |
39 |
Yu J , Li Z , Yang L . Fault system impact on paleokarst distribution in the Ordovician Yingshan Formation in the central TarimBasin, northwest China[J]. Marine and Petroleum Geology, 2016, 71, 105- 118.
doi: 10.1016/j.marpetgeo.2015.12.016 |
40 |
李忠, 李佳蔚, 张平童, 等. 深层碳酸盐岩关键构造-流体演变与成岩-成储——以塔中奥陶系鹰山组为例[J]. 矿物岩石地球化学通报, 2016, 35 (5): 827- 838.
doi: 10.3969/j.issn.1007-2802.2016.05.003 |
Li Zhong , Li Jiawei , Zhang Pingtong , et al. Keystructural-fluid evolution and reservoir diagenesis of deep-buried carbonates:An example from the Ordovician Yingshan Formation in Tazhong, Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35 (5): 827- 838.
doi: 10.3969/j.issn.1007-2802.2016.05.003 |
|
41 |
Gao Z , Fan T . Intra-platform tectono-sedimentary response to geodynamic transition along the margin of the Tarim Basin, NW China[J]. Journal of Asian Earth Sciences, 2014, 96, 178- 193.
doi: 10.1016/j.jseaes.2014.08.023 |
42 | 王清龙, 韩剑发, 李浩, 等. 塔里木盆地西北缘露头区中-下奥陶统碳酸盐岩层序结构、沉积演化及海平面变化[J]. 石油与天然气地质, 2019, 40 (4): 835- 850. |
Wang Qinglong , Han Jianfa , Li Hao , et al. Carbonate sequence architecture, sedimentary evolution and sea level fluctuation of the Middle and Lower Ordovician on outcrops at the northwestern margin of Tarim Basin[J]. Science & Technology, 2019, 40 (4): 835- 850. | |
43 | 何治亮, 张军涛, 丁茜, 等. 深层-超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质, 2017, 38 (4): 633- 644. |
He Zhiliang , Zhang Juntao , Ding Qian , et al. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Science & Technology, 2017, 38 (4): 633- 644. | |
44 | 焦存礼, 何治亮, 邢秀娟, 等. 塔里木盆地构造热液白云岩及其储层意义[J]. 岩石学报, 2010, 27 (1): 277- 284. |
Jiao Cunli , He Zhiliang , Xing Xiujuan , et al. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27 (1): 277- 284. | |
45 | 乔占峰, 沈安江, 郑剑锋, 等. 塔里木盆地下奥陶统白云岩类型及其成因[J]. 古地理学报, 2012, 14 (1): 21- 32. |
Qiao Zhanfeng , Shen Anjiang , Zheng Jianfeng , et al. Classification and origin of the Lower Ordovician dolostone in Tarim Basin[J]. Journal of Palaeogeography, 2012, 14 (1): 21- 32. | |
46 | 杜洋, 樊太亮, 高志前, 等. 塔里木盆地中-下奥陶统鹰山组层序地层格架中的成岩作用——以塔河地区和柯坪巴楚露头区为例[J]. 石油与天然气地质, 2017, 38 (4): 677- 692. |
Du Yang , Fan Tailiang , Gao Zhiqian , et al. Diagenesis in sequence stratigraphic framework of the Lower-Middle Ordovician Yingshan Formation, Tarim Basin:A case study from Tahe area and Keping-Bachu outcrop[J]. Science & Technology, 2017, 38 (4): 677- 692. | |
47 | 吴仕强, 钱一雄, 李慧莉, 等. 塔里木盆地卡塔克隆起中下奥陶统鹰山组白云岩储集层特征及主控因素[J]. 古地理学报, 2012, 14 (2): 209- 218. |
Wu Shiqiang , Qian Yixiong , Li Huili , et al. Characteristics and main controlling factors of dolostone reservoir of the Middle-Lower Ordovician Yingshan Formation in Katak Uplift of Tarim Basin[J]. Jounarl of Palaeogeography, 2012, 14 (2): 209- 218. | |
48 | 杨海军, 李开开, 潘文庆, 等. 塔中地区奥陶系埋藏热液溶蚀流体活动及其对深部储层的改造作用[J]. 岩石学报, 2012, 28 (3): 783- 792. |
Yang Haijun , Li Kaikai , Pan Wenqin , et al. Burial hydrothermal dissolution fluid activity and its transforming effect on the reservoirs in Ordovician in Central Tarim[J]. Acta Petrologica Sinica, 2012, 28 (3): 783- 792. | |
49 | 郑剑锋, 沈安江, 乔占峰, 等. 塔里木盆地下奥陶统蓬莱坝组白云岩成因及储层主控因素分析——以巴楚大班塔格剖面为例[J]. 岩石学报, 2013, 29 (9): 3223- 3232. |
Zheng Jianfeng , Shen Anjiang , Qiao Zhanfeng , et al. Genesis of dolomite and main controlling factors of reservoir in Penglaiba Formation of Lower Ordovician, Tarim Basin:A case study of Dabantage outcrop in Bachu area[J]. Acta Petrologica Sinica, 2013, 29 (9): 3223- 3232. | |
50 | 赵文智, 沈安江, 郑剑锋, 等. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学:地球科学, 2014, 44 (9): 1925- 1939. |
Zhao Wenzhi , Shen Anjiang , Zheng Jianfeng , et al. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos basins and its implication to reservoir prediction[J]. Science China:Earth Sciences, 2014, 44 (9): 1925- 1939. | |
51 | 贾连奇, 蔡春芳, 李红霞, 等. 塔中地区热化学硫酸盐还原作用对深埋白云岩储层的改造[J]. 沉积学报, 2016, 34 (6): 1057- 1067. |
Jia Lianqi , Cai Chunfang , Li Hongxia , et al. Thermochemical sulfate reduction-related mesogenetic dissolution of deeply buried dolostone reservoirs in the Tazhong area[J]. Acta Sedimentologica Sinica, 2016, 34 (6): 1057- 1067. | |
52 | 张学丰, 李晓锋, 李宗杰, 等. 白云岩的残余结构及其沉积相的意义——以塔中地区中-下奥陶统为例[J]. 石油与天然气地质, 2017, 38 (4): 722- 728. |
Zhang Xuefeng , Li Xiaofeng , Li Zongjie , et al. Relict texture of dolostones and its significance to sedimentary facies:A case study from the Middle-Lower Ordovician in Tazhong area, Tarim Basin[J]. Science & Technology, 2017, 38 (4): 722- 728. | |
53 | 刘红光, 刘波, 曹鉴华, 等. 塔里木盆地玉北地区中-下奥陶统储层发育特征及控制因素[J]. 石油与天然气地质, 2018, 39 (1): 107- 118. |
Liu Hongguang , Liu Bo , Cao Jianhua , et al. Characteristics and controlling factors of Lower-Middle Ordovician reservoirs in Yubei area, Tarim Basin[J]. Science & Technology, 2018, 39 (1): 107- 118. | |
54 | 丁茜, 何治亮, 沃玉进, 等. 高温高压条件下碳酸盐岩溶蚀过程控制因素[J]. 石油与天然气地质, 2017, 38 (4): 784- 791. |
Ding Qian , He Zhiliang , Wo Yujin , et al. Factors controlling carbonate rock dissolution under high temperature and pressure[J]. Science & Technology, 2017, 38 (4): 784- 791. | |
55 |
Murray S T , Arienzo M M , Swart P K . Determining the Δ47 acid fractionation in dolomites[J]. Geochimica et Cosmochimica Acta, 2016, 174, 42- 53.
doi: 10.1016/j.gca.2015.10.029 |
56 |
Meckler A N , Ziegler M , Millán M I , et al. Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements[J]. Rapid Communications in Mass Spectro-metry, 2014, 28 (15): 1705- 1715.
doi: 10.1002/rcm.6949 |
57 |
Kele S , Breitenbach S F M , Capezzuoli E , et al. Temperature depen-dence of oxygen-and clumped isotope fractionation in carbonates:A study of travertines and tufas in the 6-95℃ temperature range[J]. Geochimica et Cosmochimica Acta, 2015, 168, 172- 192.
doi: 10.1016/j.gca.2015.06.032 |
58 |
Müller I A , Violay M E S , Storck J C , et al. Clumped isotope fractionation during phosphoric acid digestion of carbonates at 70℃[J]. Chemical Geology, 2017, 449, 1- 14.
doi: 10.1016/j.chemgeo.2016.11.030 |
59 |
Dennis K J , Affek H P , Passey B H , et al. Defining an absolute reference frame for'clumped'isotope studies of CO2[J]. Geochimica et Cosmochimica Acta, 2011, 75 (22): 7117- 7131.
doi: 10.1016/j.gca.2011.09.025 |
60 |
Murray S T , Swart P K . Evaluating formation fluid models and calibrations using clumped isotope paleothermometry on Bahamian dolomites[J]. Geochimica Et Cosmochimica Acta, 2017, 206, 73- 93.
doi: 10.1016/j.gca.2017.02.021 |
61 |
Staudigel P T , Murray S , Dunham D P , et al. Cryogenic brines as diagenetic fluids:Reconstructing the diagenetic history of the Victoria Land Basin using clumped isotopes[J]. Geochimica et Cosmochimica Acta, 2018, 224, 154- 170.
doi: 10.1016/j.gca.2018.01.002 |
62 |
Horita J . Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures[J]. Geochimica et Cosmochimica Acta, 2014, 129, 111- 124.
doi: 10.1016/j.gca.2013.12.027 |
63 |
Dennis K J , Schrag D P . Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration[J]. Geochimica et Cosmochimica Acta, 2010, 74 (14): 4110- 4122.
doi: 10.1016/j.gca.2010.04.005 |
64 |
Henkes G A , Passey B H , Wanamaker A D , et al. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells[J]. Geochimica et Cosmochimica Acta, 2013, 106, 307- 325.
doi: 10.1016/j.gca.2012.12.020 |
65 | Bonifacie M , Calmels D , Eiler J M . Clumped isotope thermometry of marble as an indicator of the closure temperatures of calcite and dolomite with respect to solid-state reordering of C-O bonds[J]. Mine-ralogical Magazine, 2013, 77 (5): 735- 735. |
66 | Veizer J , Ala D , Azmy K , et al. 87Sr/86Sr, δ13C, and δ18OVSMOW evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161 (1): 59- 88. |
67 |
Kim S T , O'Neil J R . Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61 (16): 3461- 3475.
doi: 10.1016/S0016-7037(97)00169-5 |
68 |
Banner J L , Hanson G N . Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis[J]. Geochimica et Cosmochimica Acta, 1990, 54 (11): 3123- 3137.
doi: 10.1016/0016-7037(90)90128-8 |
69 |
Cai Chunfang , Hu Guoyi , Li Hongxia , et al. Origins and fates of H2S in the Cambrian and Ordovician in Tazhong area:Evidence from sulfur isotopes, fluid inclusions and production data[J]. Marine and Petroleum Geology, 2015, 67, 408- 418.
doi: 10.1016/j.marpetgeo.2015.05.007 |
70 | Machel H G , Lonnee J . Hydrothermal dolomite-A product of poor definition and imagination[J]. Sedimentary Geology, 2002, 152 (3/4): 163- 171. |
71 | Warren J . Dolomite:Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52 (1): 1- 81. |
72 |
Davies G R , Smith L B . Structurally controlled hydrothermal dolomite reservoir facies:An overview[J]. AAPG Bulletin, 2006, 90 (11): 1641- 1690.
doi: 10.1306/05220605164 |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 李宁, 李瑞磊, 苗贺, 曹开芳, 田军. 松辽盆地深层中-基性火山岩有利相带及储层“甜点”逐级识别[J]. 石油与天然气地质, 2024, 45(3): 801-815. |
[4] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[5] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[6] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[7] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[8] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[9] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[10] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[11] | 黎瑞, 杨娇, 柴愈坤, 王华, 戴建文, 邓永辉, 孙爽, 马肖琳, 田腾飞. 大角度波浪控制下的浪成砂坝新模式[J]. 石油与天然气地质, 2024, 45(2): 530-541. |
[12] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[13] | 曾联波, 巩磊, 宿晓岑, 毛哲. 深层-超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1): 1-14. |
[14] | 雷文智, 陈冬霞, 王永诗, 巩建强, 邱贻博, 王翘楚, 成铭, 蔡晨阳. 渤海湾盆地济阳坳陷东部深层砂砾岩多类型油气藏成藏机理及模式[J]. 石油与天然气地质, 2024, 45(1): 113-129. |
[15] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||