石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (6): 1162-1175.doi: 10.11743/ogg20200605
霍建峰1(), 高健2, 郭小文1,*(), 易积正3, 舒志国3, 包汉勇3, 杨锐1, 罗涛1, 何生1
收稿日期:
2018-06-27
出版日期:
2020-12-28
发布日期:
2020-12-09
通讯作者:
郭小文
E-mail:hhuojianfeng@126.com;guoxw@cug.edu.cn
第一作者简介:
霍剑锋(1994-),男,硕士研究生,页岩气研究。E-mail:基金项目:
Jianfeng Huo1(), Jian Gao2, Xiaowen Guo1,*(), Jizheng Yi3, Zhiguo Shu3, Hanyong Bao3, Rui Yang1, Tao Luo1, Sheng He1
Received:
2018-06-27
Online:
2020-12-28
Published:
2020-12-09
Contact:
Xiaowen Guo
E-mail:hhuojianfeng@126.com;guoxw@cug.edu.cn
摘要:
四川盆地川东地区是中国页岩气主要产区,目前发现的页岩气主要产自五峰-龙马溪组的富泥硅质页岩,而对富硅泥质和混合质页岩研究较少。为了确定川东地区龙马溪组富硅泥质和混合质页岩的孔隙发育特征,在对龙马溪组页岩岩相划分的基础之上,通过二氧化碳吸附,氮气吸附,高压压汞以及孔隙度测定,X-衍射,场发射扫描电子显微镜(FE-SEM)等实验手段,对比不同岩相页岩孔隙结构特征,研究不同岩相页岩孔隙结构的主控因素。研究结果表明:①川东地区富有机质页岩可划分为富硅泥质页岩相、硅/泥混合页岩相和富泥硅质页岩相,不同岩相页岩孔隙度范围在2.62%~5.65%;②页岩储层中孔隙体积以介孔为主,大约占总孔隙的50%~60%,其次是微孔和宏孔,大约占总孔隙的15%~20%,比表面积主要贡献来自微孔和介孔,分别占总比表面积的70%和30%;③龙马溪组页岩孔隙发育主要受有机质丰度的控制,粘土矿物含量不是控制页岩孔隙发育主要因素,高有机质丰度页岩可能由于骨架颗粒支撑较弱遭受更剧烈的压实作用使大部分孔隙消失;④高有机质丰度富泥质页岩和硅/泥混合页岩也具有较高的孔隙度,与大部分富泥硅质页岩具有相似的孔隙结构,表明富硅泥质页岩相和硅/泥混合页岩相页岩也能发育一定量的纳米级孔隙,可为页岩气赋存提供空间。
中图分类号:
表1
川东地区J1和J2井龙马溪组页岩孔隙参数"
井号 | 深度/m | 岩相 | TOC/% | 孔隙度/% | 二氧化碳吸附 | 氮气吸附 | |||||
微孔体积/(cc·g-1) | 微孔比表面积/(m2·g-1) | 介孔体积/(cc·g-1) | 介孔比表面积/(m2·g-1) | 宏孔体积/(cc·g-1) | 宏孔比表面积/(m2·g-1) | ||||||
J1 | 2 288.06 | M-2 | 1.64 | — | 0.003 7 | 11.49 | 0.0105 | 5.49 | 0.004 2 | 0.20 | |
J1 | 2 319.86 | CM-1 | 1.92 | 3.66 | 0.003 0 | 8.95 | 0.009 5 | 5.17 | 0.005 1 | 0.21 | |
J1 | 2 325.13 | M-2 | 3.13 | 4.05 | 0.005 5 | 17.12 | 0.013 8 | 7.79 | 0.006 1 | 0.23 | |
J1 | 2 334.95 | CM-1 | 3.16 | 5.54 | 0.005 6 | 17.75 | 0.013 3 | 7.74 | 0.004 9 | 0.18 | |
J1 | 2 338.55 | S-3 | 2.77 | 4.33 | 0.002 9 | 8.96 | 0.011 7 | 6.38 | 0.008 2 | 0.27 | |
J1 | 2 340.41 | CM-1 | 3.56 | 4.93 | 0.003 9 | 11.43 | 0.011 8 | 6.94 | 0.002 9 | 0.12 | |
J1 | 2 344.69 | S-3 | 3.81 | 4.15 | 0.005 5 | 17.08 | 0.012 7 | 7.64 | 0.004 9 | 0.18 | |
J1 | 2 349.17 | S-3 | 5.40 | 5.10 | 0.006 7 | 21.31 | 0.015 5 | 9.01 | 0.007 0 | 0.27 | |
J1 | 2 352.82 | S-3 | 4.78 | 5.65 | 0.007 2 | 22.98 | 0.015 7 | 8.97 | 0.005 5 | 0.19 | |
J1 | 2 357.04 | S-3 | 5.16 | — | 0.006 0 | 19.41 | 0.018 7 | 9.37 | 0.004 7 | 0.19 | |
J2 | 2 579.27 | S-3 | 2.56 | 3.43 | 0.004 2 | 12.86 | 0.010 8 | 5.80 | 0.007 8 | 0.29 | |
J2 | 2 585.50 | S-3 | 4.13 | 4.26 | 0.005 6 | 17.75 | 0.011 5 | 6.51 | 0.003 3 | 0.22 | |
J2 | 2 591.66 | CM-1 | 2.50 | 2.62 | 0.004 7 | 14.33 | 0.008 9 | 5.27 | 0.001 8 | 0.12 | |
J2 | 2 595.74 | M-2 | 3.13 | 4.82 | 0.005 7 | 17.59 | 0.011 2 | 5.73 | 0.003 5 | 0.19 | |
J2 | 2 598.44 | CM-1 | 3.77 | 4.26 | 0.005 9 | 18.45 | 0.011 8 | 7.18 | 0.006 6 | 0.17 | |
J2 | 2 604.45 | CM-1 | 4.00 | 4.74 | 0.005 9 | 17.97 | 0.011 3 | 6.43 | 0.004 4 | 0.23 | |
J2 | 2 606.65 | S-3 | 4.07 | — | 0.005 8 | 18.30 | 0.012 5 | 7.34 | 0.005 3 | 0.21 | |
J2 | 2 611.20 | S-3 | 4.97 | — | 0.006 5 | 19.90 | 0.013 8 | 7.79 | 0.003 0 | 0.14 | |
J2 | 2 552.10 | M-2 | 2.24 | — | 0.005 6 | 16.87 | 0.011 0 | 6.26 | 0.004 9 | 0.21 |
1 | 董大忠, 王玉满, 李新景, 等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业, 2016, 36 (1): 19- 32. |
Dong Dazhong , Wang Yuman , Li Xinjing , et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36 (1): 19- 32. | |
2 | 钟太贤. 中国南方海相页岩孔隙结构特征[J]. 天然气工业, 2012, 32 (9): 8- 11. |
Zhong Taixian . Characteristics of pore structure of marine shales in South China[J]. Natural Gas Industry, 2012, 32 (9): 8- 11. | |
3 | 张廷山, 杨洋, 龚其森, 等. 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素[J]. 地质学报, 2014, 88 (9): 1728- 1740. |
Zhang Tingshan , Yang yang , Gong Qishen , et al. Characteritics and mechanisms of micro-pors in the Early Palaeozoic marine shale, Southern Sichuan Basin[J]. Acta Geologica Sinica, 2014, 88 (9): 1728- 1740. | |
4 | 何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018, 39 (3): 472- 484. |
He Chencheng , He Sheng , Guo Xusheng , et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation's first Member, Jiaoshiba Block, Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (3): 472- 484. | |
5 | 曹涛涛, 刘光祥, 曹清古, 等. 有机显微组成对泥页岩有机孔发育的影响——以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39 (1): 40- 53. |
Cao Taotao , Liu Guangxiang , Cao Qinggu , et al. Influence of maceral composition on organic pore development in shale:A case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (1): 40- 53. | |
6 | 蔡振家, 雷裕红, 罗晓容, 等. 鄂尔多斯盆地东南部延长组7段页岩有机孔发育特征及其影响因素[J]. 石油与天然气地质, 2020, 41 (2): 367- 379. |
Cai Zhenjia , Lei Yuhong , Luo Xiaorong , et al. Characteristics and controlling factors of organic pores in the 7th member of Yanchang Formation shale in the Southeastern Ordos Basin[J]. Oil & Gas Geology, 2020, 41 (2): 367- 379. | |
7 |
Ross D J K , Bustin R M . Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada Sedimentary Basin:application of an integrated formation evaluation[J]. AAPG Bulletin, 2008, 92 (1): 87- 125.
doi: 10.1306/09040707048 |
8 |
Ross D J K , Bustin R M . The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine Petroleum Geology, 2009, 26, 916- 927.
doi: 10.1016/j.marpetgeo.2008.06.004 |
9 | Chalmers G R L , Ross D J K , Bustin R M . Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2012, 103 (23): 120- 131. |
10 | Clarkson C R , Jensen J L , Pedersen P K , et al. Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir[J]. AAPG Bulletin, 2012, 96 (2): 355- 374. |
11 | 崔景伟, 邹才能, 朱如凯, 等. 页岩孔隙研究新进展[J]. 地球科学进展, 2012, 27 (12): 1319- 1325. |
Cui Jingwei , Zou Caineng , Zhu Rukai , et al. New advances in shale porosity research[J]. Advances in Earth Science, 2012, 27 (12): 1319- 1325. | |
12 |
Mastalerz M , Schimmelmann A , Drobniak A , et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97 (10): 1621- 1643.
doi: 10.1306/04011312194 |
13 |
Milliken K L , Rudnicki M , Awwiller D N , et al. Organic matter-hosted pore system, Marcellus formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97 (2): 177- 200.
doi: 10.1306/07231212048 |
14 |
Tian H , Pan L , Zhang T W , et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China[J]. Marine Petroleum Geology, 2015, 62, 28- 43.
doi: 10.1016/j.marpetgeo.2015.01.004 |
15 |
Furmann A , Mastalerz M , Schimmelmann A , et al. Relationships between porosity, organic matter, and mineral matter in mature organic-rich marine mudstones of the Belle Fourche and Second White Specks formations in Alberta, Canada[J]. Marine Petroleum Geology, 2014, 54, 65- 81.
doi: 10.1016/j.marpetgeo.2014.02.020 |
16 | Abouelresh M O , Slatt R M . Lithofacies and sequence stratigraphy of the barnett shale in east-central Fort Worth basin, Texas[J]. AAPG Bulletin, 2012, 96 (1): 1- 22. |
17 | Jiang Z X , Guo L , Liang C . Lithofacies and sedimentary characteristics of the Silurian Longmaxi shale in the southeastern Sichuan Basin, China[J]. Journal of Palaeogeography, 2013, 2 (3): 238- 251. |
18 |
Chen L , Jiang Z X , Liu K Y , et al. Effect of lithofacies on gas storage capacity of marine and continental shales in the Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 36, 773- 785.
doi: 10.1016/j.jngse.2016.11.024 |
19 |
Du X B , Zhang M Q , Lu Y C , et al. Lithofacies and depositional ch-aracteristics of gas shales in the western area of the Lower Yangtze, China[J]. Geological Journal, 2015, 50 (5): 683- 701.
doi: 10.1002/gj.2587 |
20 |
Han C , Jiang Z X , Han M , Wu M H , et al. The lithofacies and reservoir characteristics of the upper Ordovician and lower Silurian black shale in the southern Sichuan Basin and its periphery, China[J]. Marine Petroleum Geology, 2016, 75, 181- 191.
doi: 10.1016/j.marpetgeo.2016.04.014 |
21 | 王超, 张柏桥, 舒志国, 等. 四川盆地涪陵地区五峰组-龙马溪组海相页岩岩相类型及储层特征[J]. 石油与天然气地质, 2018, 39 (3): 485- 497. |
Wang Chao , Zhang Boqiao , Shu Zhiguo , et al. Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling area, the Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (3): 485- 497. | |
22 |
Yang R , He S , Yi J , et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin:Investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine and Petroleum Geology, 2016, 70, 27- 45.
doi: 10.1016/j.marpetgeo.2015.11.019 |
23 | 田华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012, 33 (3): 419- 427. |
Tian Hua , Zhang Shuichang , Liu Shaobo , et al. Determination of organic-rich shale por fratures by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica, 2012, 33 (3): 419- 427. | |
24 | 陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37 (3): 438- 444. |
Chen Shangbin , Zhu Yanming , Wang Hongyan , et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of Coal Science & Engineering(China), 2012, 37 (3): 438- 444. | |
25 | 刘超, 陆亚秋, 梁榜, 等. 涪陵焦石坝地区五峰组-龙马溪组含气页岩岩相划分——以JY11-4井为例[J]. 江汉石油职工大学学报, 2015, 28 (5): 1- 5. |
Liu Chao , Lu Yaqiu , Liang Bang , et al. Lithofacies classification of gas bearing shale in Wufeng-Longmaxi Formation:a case study of JY11-4 Well[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2015, 28 (5): 1- 5. | |
26 | Guo T L , Zhang H R . Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration & Development, 2014, 41 (1): 31- 40. |
27 | 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41 (1): 28- 36. |
Guo Tonglou , Zhang Hanrong . Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41 (1): 31- 40. | |
28 | 庹秀松, 陈孔全, 罗顺社, 等. 渝东大焦石坝地区差异构造变形[J]. 石油与天然气地质, 2019, 40 (5): 1074- 1083. |
Tuo Xiusong , Chen Kongquan , Luo Shunshe , et al. Differential structural deformation of the Dajiaoshiba area, East Chongqing[J]. Oil & Gas Geology, 2019, 40 (5): 1074- 1083. | |
29 | 田鹤, 曾联波, 徐翔, 等. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质, 2020, 41 (3): 474- 483. |
Tian He , Zeng Lianbo , Xu Xiang , et al. Characteristics of natural fractures in marine shale in Fuling area, Sichuan Basin, and their in-fluence on shale gas[J]. Oil & Gas Geology, 2020, 41 (3): 474- 483. | |
30 | 刘江涛, 李永杰, 张元春, 等. 焦石坝五峰组-龙马溪组页岩硅质生物成因的证据及其地质意义[J]. 中国石油大学学报(自然科学版), 2017, 41 (1): 34- 41. |
Liu Jiangtao , Li Yongjie , Zhang Yuanchun , et al. Evidences of bioge-nic silica of Wufeng-Longmaxi Formation shale in Jiaoshiba area and its geological significance[J]. Journal of China University of Petro-leum(Edition of Natural Science), 2017, 41 (1): 34- 41. | |
31 |
Dong T , Harris N B , Ayranci K , et al. Porosity characteristics of the Devonian Horn River shale, Canada:insights from lithofacies classification and shale composition[J]. International Journal of Coal Geology, 2015, 141-142, 74- 90.
doi: 10.1016/j.coal.2015.03.001 |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[3] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[4] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[5] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[6] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[7] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[8] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[9] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[10] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[11] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[12] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[13] | 施振生, 赵圣贤, 周天琪, 孙莎莎, 袁渊, 张成林, 李博, 祁灵. 海相含气页岩水平层理类型、成因及其页岩气意义[J]. 石油与天然气地质, 2023, 44(6): 1499-1514. |
[14] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[15] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||