石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (5): 1063-1077.doi: 10.11743/ogg20210505
周新平1,2(), 何青3,4, 刘江艳1,2, 李士祥1,2, 杨田3,4,*()
收稿日期:
2020-10-13
出版日期:
2021-10-28
发布日期:
2021-10-26
通讯作者:
杨田
E-mail:zhxp13_cq@petrochina.com.cn;yangtian9645@126.com; yangtian19@cdut.edu.cn
第一作者简介:
周新平(1984-), 男, 博士、高级工程师, 综合地质研究及石油勘探部署。E-mail: 基金项目:
Xinping Zhou1,2(), Qing He3,4, Jiangyan Liu1,2, Shixiang Li1,2, Tian Yang3,4,*()
Received:
2020-10-13
Online:
2021-10-28
Published:
2021-10-26
Contact:
Tian Yang
E-mail:zhxp13_cq@petrochina.com.cn;yangtian9645@126.com; yangtian19@cdut.edu.cn
摘要:
为了明确不同类型深水碎屑流沉积特征及其成因,以鄂尔多斯盆地三叠系延长组7段深水重力流沉积为研究对象,综合测录井资料、岩心观察分析、薄片分析和定量统计,分析碎屑流沉积特征、总结沉积序列和探讨成因机制。研究表明:研究区的深水碎屑流主要发育砂质碎屑流、泥质碎屑流和泥流3种类型。砂质碎屑流沉积以块状砂岩最为常见,漂浮状泥质碎屑发育,单层厚度分布在0.24~1.10 m,平均厚度为0.55 m。泥质碎屑流沉积包含孤立块状沉积和与下伏块状砂岩成对产出两种类型,前者内部大量发育漂浮状泥岩撕裂屑及软沉积物变形构造,后者富含漂浮状泥质碎屑与砂质团块,单层厚度分布在0.21~1.29 m,平均厚度为0.60 m。泥流沉积包含孤立块状沉积和与下伏块状砂岩成对产出两种类型,前者整体为泥质砂岩或砂质泥岩,后者内部可见漂浮状成层排列的毫米级泥质碎片,单层厚度分布在0.20~0.60 m,平均厚度为0.30 m。高浓度砂质沉积物或泥质沉积物搬运过程中环境水体卷入导致的流体转化是形成砂质碎屑流、孤立块状泥质碎屑流和泥流沉积的主要原因。与下部块状砂岩相伴生的泥质碎屑流沉积多为流体侵蚀成因或砂体液化成因;与下部块状砂岩相伴生的泥流沉积包含流体减速膨胀导致的流体转化和碎屑颗粒的差异沉降等成因。
中图分类号:
图2
鄂尔多斯盆地三叠系长7段砂质碎屑流沉积岩心照片 a.砂质碎屑流沉积整体块状,城96井,埋深2 028.50 m;b.砂质碎屑流沉积整体块状,顶部泥质碎屑富集,城96井,埋深2 001.06 m;c.砂质碎屑流沉积整体块状,顶部泥质碎屑富集,上部与泥岩突变接触,城96井,埋深1 972.97 m;d.砂质碎屑流沉积整体块状,中部漂浮具有撕裂茬的泥质碎屑,城96井,埋深2 029.90 m;e.砂质碎屑流沉积整体块状,中部漂浮发生旋转的泥质碎屑,城96井,埋深2 079.10 m;f.砂质碎屑流沉积整体块状,漂浮泥质碎屑在不同地方均有发育,正70井,埋深1 645.60 m;g.砂质碎屑流沉积整体块状,顶底突变接触,中部和上部偶见漂浮泥质碎屑,宁70井,埋深1 710.88 m"
图4
鄂尔多斯盆地三叠系长7段泥质碎屑流沉积与泥流沉积 a.泥质碎屑流沉积整体块状,白526井,埋深2 162.80 m;b.城96井,埋深1 987.16 m,泥质碎屑流沉积整体块状长,内含泥质碎屑与砂质团块;c.城96井,埋深2 029.40 m,双层结构重力流混合事件层上部泥质碎屑流沉积;d.泥流沉积,内部泥质碎片平行排列,城96井,埋深2 030.10 m;e.泥流沉积,内部泥质碎片平行排列,城96井,埋深2 032.30 m;f.双层结构重力流混合事件层上部泥流沉积,内含泥质碎片平行排列,城96井,埋深2 036.80 m;g.双层结构重力流混合事件层上部泥流沉积,内含泥质碎片平行排列与砂岩液化脉,城96井,埋深2 076.84 m;h.双层结构重力流混合事件层上部泥流沉积,内含漂浮泥质碎屑,正40井,埋深1 441.05 m;i.双层结构重力流混合事件层上部泥流沉积,内含砂质团块,正40井,埋深1 442.00 m;j.泥质碎屑流沉积泥质砂岩镜下特征,木138井,埋深2 328.30 m;k.泥流沉积砂质泥岩镜下特征,正40井,埋深1 441.05 m H1.混合事件层下部富砂段;H3.混合事件层上部富泥段(a-i为岩心照片;j,k为薄片粘片。)"
1 |
Talling P J , Paull C K , Piper D J W . How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows[J]. Earth-Science Reviews, 2013, 125, 244- 287.
doi: 10.1016/j.earscirev.2013.07.005 |
2 | 操应长, 杨田, 王艳忠, 等. 深水碎屑流与浊流混合事件层类型及成因机制[J]. 地学前缘(中国地质大学(北京): 北京大学), 2017, 24 (3): 234- 248. |
Cao Yingchang , Yang Tian , Wang Yanzhong , et al. Types and genesis of deep-wate hybrid event beds comprising debris flow and turbidity current[J]. Earth Science Frontiers(China University of Geosciences(Beijing): Peking University), 2017, 24 (3): 234- 248. | |
3 | 鲜本忠, 安思奇, 施文华. 水下碎屑流沉积: 深水沉积研究热点与进展[J]. 地质论评, 2014, 60 (1): 39- 51. |
Xian Benzhong , An Siqi , Shi Wenhua . Subaqueous debris flow: Hotspots and advances of deep-water sedimention[J]. Geological Review, 2014, 60 (1): 39- 51. | |
4 | 金杰华, 操应长, 王健, 等. 深水砂质碎屑流沉积: 概念、沉积过程与沉积特征[J]. 地质论评, 2019, 65 (3): 689- 702. |
Jin Jiehua , Cao Yingchang , Wang Jian , et al. Deep-water sandy debris flow deposits: Concepts sedimentary processes and characteristics[J]. Geological Review, 2019, 65 (3): 689- 702. | |
5 | 杨田, 操应长, 田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报, 2021, 39 (1): 88- 111. |
Yang Tian , Cao Yingchang , Tian Jingchun . Discussion on research of deep-water gravity flow deposition in lacustrine basin[J]. Acta Sedimentologica Sinica, 2021, 39 (1): 88- 111. | |
6 |
李洪楠. 断陷湖盆陡坡带重力流沉积特征及模式[J]. 石油地质与工程, 2020, 34 (4): 12- 18.
doi: 10.3969/j.issn.1673-8217.2020.05.003 |
Li Hongnan . Sedimentary characteristics and models of gravity flow in steep slope zone of faulted lacustrineBasin[J]. Petroleum Geology & Engineering, 2020, 34 (5): 12- 18.
doi: 10.3969/j.issn.1673-8217.2020.05.003 |
|
7 |
Shanmugam G . New perspectives on deep-water sandstones: Implications[J]. Petroleum Exploration and Development, 2013, 40 (3): 316- 324.
doi: 10.1016/S1876-3804(13)60038-5 |
8 | 邹才能, 赵政璋, 杨华, 等. 陆相湖盆深水砂质碎屑流成因机制与分布特征——以鄂尔多斯盆地为例[J]. 沉积学报, 2009, 27 (6): 1065- 1075. |
Zou Caineng , Zhao Zhengzhang , Yang Hua , et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J]. Acta Sedimentologica Sinica, 2009, 27 (6): 1065- 1075. | |
9 |
李相博, 刘化清, 完颜容, 等. 鄂尔多斯盆地三叠系延长组砂质碎屑流储集体的首次发现[J]. 岩性油气藏, 2009, 21 (4): 19- 21.
doi: 10.3969/j.issn.1673-8926.2009.04.003 |
Li Xiangbo , Liu Huaqing , Wanyan Rong , et al. First discovery of the sandy debris flow from the Triassic Yanchang Formation, Ordos Basin[J]. Lithologic Reservoirs, 2009, 21 (4): 19- 21.
doi: 10.3969/j.issn.1673-8926.2009.04.003 |
|
10 | 李相博, 刘化清, 潘树新, 等. 中国湖相沉积物重力流研究的过去、现在与未来[J]. 沉积学报, 2019, 37 (5): 904- 921. |
Li Xiangbo , Liu Huaqing , Pan Shuxin , et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China[J]. Acta Sedimentologica Sinica, 2019, 37 (5): 904- 921. | |
11 | Hampton M A . The role of subaqueous debris flow in generating turbidity currents[J]. Sedimentary Petrology, 1972, 42 (4): 775- 793. |
12 |
Shanmugam G . High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66 (1): 2- 10.
doi: 10.1306/D426828E-2B26-11D7-8648000102C1865D |
13 |
Shanmugam G . The bouma sequence and the turbidite mind set[J]. Earth-Science Reviews, 1997, 42, 201- 229.
doi: 10.1016/S0012-8252(97)81858-2 |
14 |
Talling P J , Masson D G , Sumner E J , et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59, 1937- 2003.
doi: 10.1111/j.1365-3091.2012.01353.x |
15 |
付金华, 李士祥, 侯雨庭, 等. 鄂尔多斯盆地延长组7段Ⅱ类页岩油风险勘探突破及其意义[J]. 中国石油勘探, 2020, 25 (1): 78- 92.
doi: 10.3969/j.issn.1672-7703.2020.01.008 |
Fu Jinhua , Li Shixiang , Hou Yuting , et al. Breakthrough of risk exploration of Class Ⅱ shale oil in Chang 7 Member of Yanchang Formation in the Ordos Basin and its significance[J]. China Petroleum Exploration, 2020, 25 (1): 78- 92.
doi: 10.3969/j.issn.1672-7703.2020.01.008 |
|
16 | 杨仁超, 何治亮, 邱桂强, 等. 鄂尔多斯盆地南部晚三叠世重力流沉积体系[J]. 石油勘探与开发, 2014, 41 (6): 661- 670. |
Yang Renchao , He Zhiliang , Qiu Guiqiang , et al. Late Triassic gravity flow depositional systems in the southern Ordos Basin[J]. Petroleum Exploration and Development, 2014, 41 (6): 661- 670. | |
17 | 廖纪佳, 朱筱敏, 邓秀芹, 等. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式[J]. 地学前缘, 2013, 20 (2): 29- 39. |
Liao Jijia , Zhu Xiaomin , Deng Xiuqing , et al. Sedimentary characteri-stics and model of gravity flow in Triassic Yanchang Formation of Longdong area in Ordos Basin[J]. Earth Science Frontiers, 2013, 20 (2): 29- 39. | |
18 |
付金华, 牛小兵, 淡卫东, 等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探, 2019, 24 (5): 601- 614.
doi: 10.3969/j.issn.1672-7703.2019.05.007 |
Fu Jinhua , Niu Xiaobing , Dan Weidong , et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24 (5): 601- 614.
doi: 10.3969/j.issn.1672-7703.2019.05.007 |
|
19 | 付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段源内油藏地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47 (5): 1- 14. |
Fu Jinhua1 , Li Shixiang , Niu Xiaobing , et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47 (5): 1- 14. | |
20 |
Jutzeler M , Manga M , White J D L , et al. Submarine deposits from pumiceous pyroclastic density currents traveling over water: An outstanding example from offshore Montserrat(IODP 340)[J]. GSA Bulletin, 2017, 129 (3-4): 392- 414.
doi: 10.1130/B31448.1 |
21 |
Haughton P , Davis C , McCaffrey W , et al. Hybrid sediment gravity flow deposits-Classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26 (10): 1900- 1918.
doi: 10.1016/j.marpetgeo.2009.02.012 |
22 |
Coussot P , Meunier M . Recognition, classification and mechanical description of debris flows[J]. Earth-Science Reviews, 1996, 40 (3-4): 209- 227.
doi: 10.1016/0012-8252(95)00065-8 |
23 | Hampton M A . Competence of fine-grained debris flows[J]. Journal of Sedimentary Petrology, 1975, 45 (4): 834- 844. |
24 | 李相博, 王菁, 廖建波, 等. 陆相盆地深水沉积中的块体搬运作用与搬运机理研究——以鄂尔多斯盆地延长组为例[J]. 天然气地球科学, 2015, 26 (4): 625- 633. |
Li Xiangbo , Wang Jingle , Liao jianbo , et al. The mechanism of transport process of deep-water sedimentation in Lacustrine Basin: A case study of deep-water sandtone in Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2015, 26 (4): 625- 633. | |
25 | Johnson A M . Physical Processes in Geology[M]. San Francisco: Freeman, 1970. |
26 | Haughton P D W , Barker S P , Mccaffrey W D , et al. 'Linked' debrites in sand-rich turbidite systems-origin and signi cance[J]. Sedi-mentology, 2003, 50, 459- 482. |
27 | 杨田, 操应长, 王艳忠, 等. 深水重力流类型、沉积特征及成因机制——以济阳坳陷沙河街组三段中亚段为例[J]. 石油学报, 2015, 36 (9): 1- 12. |
Yang Tian , Cao Yingchang , Wang Yanzhong , et al. Types sedimentary characteristics and genetic mechanism of deep-water gravity flows: A case study of the middle submember in Member 3 of Shahejie Formation in Jiyang Depression[J]. Acta Petrolei Sinica, 2015, 36 (9): 1- 12. | |
28 |
Iverson R M . The physics of debris flows[J]. Reviews of Geophysics, 1997, 35 (3): 245- 296.
doi: 10.1029/97RG00426 |
29 |
Major J J , Iverson R M . Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins[J]. GSA Bulletin, 1999, 111 (10): 1424- 1434.
doi: 10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2 |
30 | 谈明轩, 朱筱敏, 耿名扬, 等. 沉积物重力流流体转化沉积-混合事件层[J]. 沉积学报, 2016, 34 (6): 1108- 1119. |
Tan Mingxuan , Zhu Xiaomin , Geng Mingyang , et al. The Flow Transforming Deposits of Sedimentary Gravity Flow-Hybrid Event Bed[J]. Acta Sedimentologica Sinica, 2016, 34 (6): 1108- 1119. | |
31 | 杨仁超, 金之钧, 孙冬胜, 等. 鄂尔多斯晚三叠世湖盆异重流沉积新发现[J]. 沉积学报, 2015, 33 (1): 10- 21. |
Yang Renchao , Jin Zhijun , Sun Dongsheng , et al. Discovery of hyperpycnal flow deposits in the Late Triassic Lacustrine Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33 (1): 10- 21. | |
32 | 刘芬, 朱筱敏, 李洋, 等. 鄂尔多斯盆地西南部延长组重力流沉积特征及相模式[J]. 石油勘探与开发, 2015, 42 (5): 577- 588. |
Liu Fen , Zhu Xiaomin , Li Yang , et al. Sedimentary characteristics and facies model of gravity flow deposits of Late Triassic Yanchang Formation in southwestern Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42 (5): 577- 588. | |
33 |
Girard F , Ghienne J F , Rubino J L . Occurrence of hyperpycnal flows and hybrid event beds related to glacial outburst events in a Late Ordovician Proglacial Delta(Murzuq Basin, SW Libya)[J]. Journal of Sedimentary Research, 2012, 82, 688- 708.
doi: 10.2110/jsr.2012.61 |
34 |
Zavala C , Arcuri M . Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics[J]. Sedimentary Geology, 2016, 337, 36- 54.
doi: 10.1016/j.sedgeo.2016.03.008 |
35 | 栾国强, 董春梅, 林承焰, 等. 异重流发育条件、演化过程及沉积特征[J]. 石油与天然气地质, 2018, 39 (3): 438- 453. |
Luan Guoqiang , Dong Chunmei , Lin Chengyan , et al. Development conditions, evolution process and depositional features of hyperpycnal flow[J]. Oil & Gas Geology, 2018, 9 (3): 438- 453. | |
36 | 秦雁群, 万仑坤, 计智锋, 等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质, 2018, 39 (1): 140- 152. |
Qin Yanqun , Wan Lunkun , Ji Zhifeng , et al. Progress of research on deep-water mass-transport deposits[J]. Oil & Gas Geology, 2018, 39 (1): 140- 152. | |
37 | Yang T , Cao Y , Friis H , et al. Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island, Eastern China[J]. Australian Journal of Earth Sciences, 2018, 64 (4): 517- 534. |
38 |
Li S L , Li S L , Shan X , et al. Classification, formation, and transport mechanisms of mud clasts[J]. International Geology Review, 2017, 59, 1609- 1620.
doi: 10.1080/00206814.2017.1287014 |
39 | Higgs R . Comments on 'Hybrid sediment gravity flows-classification, origin and significance' from Haughton, Davis, McCaffrey and Barker(Marine and Petroleum Geology, 2009, 26, 1900-1918)[J]. Marine and Petroleum Geology, 2010, (27): 2062- 2065. |
40 | 刘玉瑞. 苏北盆地戴南组泥屑流扇沉积[J]. 石油与天然气地质, 2017, 38 (3): 419- 429. |
Liu Yurui . Mud debris flow fan deposits in Dainan Formation of the Subei Basin[J]. Oil & Gas Geology, 2017, 38 (3): 419- 429. | |
41 |
Waltham D . Flow transformations in particulate gravity currents[J]. Journal of Sedimentary Research, 2004, 74, 129- 134.
doi: 10.1306/062303740129 |
42 |
Talling P J . Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9 (3): 460- 488.
doi: 10.1130/GES00793.1 |
43 |
Sumner E J , Talling P J , Amy L A . Deposits of flows transitional between turbidity current and debris flow[J]. Geology, 2009, 37 (11): 991- 994.
doi: 10.1130/G30059A.1 |
44 | 岳绍飞, 张辉, 覃利娟, 等. 莺歌海盆地东方区黄流组一段砂质碎屑流沉积模式[J]. 大庆石油地质与开发, 2020, 39 (4): 9- 18. |
Yue Shaofei , Zhang Hui , Qin Lijuan , et al. Sandy debris-flow sedimentary mode in Member 1 of Huangliu Formation in Dongfang area of Yinggehai Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39 (4): 9- 18. | |
45 | 吕鹏佶. 湖相砂质碎屑流与底流改造砂沉积特征对比[J]. 断块油气田, 2019, 26 (2): 153- 157. |
Lyu Pengji . Deposition characteristics comparison between sandy debris flow and bottom current rework sand in lacustrine basin[J]. Fault-Block Oil and Gas Field, 2019, 26 (2): 153- 157. |
[1] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[2] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[3] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[4] | 陈昌, 邱楠生, 高荣锦, 周晓龙, 孙永河, 杨琳琳, 付健. 渤海湾盆地辽河坳陷西部冷家—雷家地区中-深层超压成因及其对油气成藏的影响[J]. 石油与天然气地质, 2024, 45(1): 130-141. |
[5] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[6] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[7] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[8] | 王冠民, 庞小军, 黄晓波, 张雪芳, 潘凯. 渤海海域辽中凹陷南部古近系东营组三段重力流砂岩优质储层特征及成因[J]. 石油与天然气地质, 2024, 45(1): 81-95. |
[9] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[10] | 刘成林, 丁振刚, 陈践发, 范立勇, 康锐, 王海东, 洪思婕, 田安琦, 陈学勇. 鄂尔多斯盆地氦源岩特征及生氦潜力[J]. 石油与天然气地质, 2023, 44(6): 1546-1554. |
[11] | 李勇, 朱治同, 吴鹏, 申陈州, 高计县. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
[12] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[13] | 梁岳立, 赵晓明, 张喜, 李树新, 葛家旺, 聂志宏, 张廷山, 祝海华. 轨道周期约束下海-陆过渡相页岩层系高精度层序界面识别及其地质意义[J]. 石油与天然气地质, 2023, 44(5): 1231-1242. |
[14] | 李涵, 付金华, 季汉成, 张雷, 佘钰蔚, 官伟, 井向辉, 王红伟, 曹茜, 刘刚, 魏嘉怡. 鄂尔多斯盆地西南部上古生界风化壳型铝土岩系发育过程及优势储层分布规律[J]. 石油与天然气地质, 2023, 44(5): 1243-1255. |
[15] | 李晓, 郭鹏, 胡彦智, 李士祥, 杨伟伟. 陆相页岩压裂试验与数值模拟[J]. 石油与天然气地质, 2023, 44(4): 1009-1019. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||