石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (6): 1389-1400.doi: 10.11743/ogg20210613
白龙辉1(), 柳波1,*(), 迟亚奥1, 李士超2, 闻迅1
收稿日期:
2021-07-30
出版日期:
2021-12-28
发布日期:
2021-12-16
通讯作者:
柳波
E-mail:bailonghui0302@163.com;liubo@nepu.edu.cn
第一作者简介:
白龙辉(1994-), 男, 博士研究生, 非常规油气地质。E-mail: 基金项目:
Longhui Bai1(), Bo Liu1,*(), Yaao Chi1, Shichao Li2, Xun Wen1
Received:
2021-07-30
Online:
2021-12-28
Published:
2021-12-16
Contact:
Bo Liu
E-mail:bailonghui0302@163.com;liubo@nepu.edu.cn
摘要:
页岩中已被证明含有大量可供开采的油气资源,厘清页岩中异相流体含量及赋存态对页岩油的开发至关重要。二维核磁共振技术能够对页岩中含氕(1H)化合物进行无损、快速、定量检测。对松辽盆地青山口组一段页岩样品进行抽提前后、自发渗吸以及加热过程中的核磁共振检测,定量评价青一段页岩异相流体含量、赋存状态以及页岩放置时的流体散失。结果表明,在核磁二维谱图上,类固体有机质和轻质烃类主要分布于T1大于10 ms的上方区域,两者间基本以T2=0.1 ms为界,分别与有机碳含量TOC及S1(游离烃)具有良好的线性关系。松辽盆地南部青一段页岩油主要以游离及吸附态赋存,页岩粘土含量越高,吸附态页岩油含量越高,游离态越少。页岩自发渗吸过程中的核磁共振检测结果表明了粘土矿物吸水膨胀作用。在页岩抽真空加热过程中,轻质烃挥发损失的同时水也大量地损失。利用密闭取心样品,结合二维核磁共振技术,可恢复其原始含油饱和度和含水饱和度。
中图分类号:
表1
松辽盆地青山口组一段泥页岩样品有机地化参数以及矿物组分"
样品编号 | 深度/ m | TOC/ % | Tmax/ ℃ | S1/(mg·g-1) | S2/(mg·g-1) | PI | DCM | 矿物组分含量/% | |||||
石英 | 长石 | 方解石 | 白云石 | 黄铁矿+ 菱铁矿 | 粘土 | ||||||||
1 | 1 480.28 | 2.49 | 450 | 1.20 | 21.10 | 0.05 | 0.50 | 31.0 | 18.7 | 0.9 | 3.6 | 8.8 | 37.0 |
2 | 1 486.94 | 2.68 | 449 | 1.50 | 19.20 | 0.07 | 0.72 | 30.2 | 20.2 | 1.5 | 0 | 10.1 | 38.0 |
3 | 1 492.70 | 2.40 | 448 | 1.20 | 17.20 | 0.07 | 0.63 | 31.9 | 16.4 | 0 | 0 | 10.4 | 41.3 |
4 | 1 498.13 | 2.84 | 447 | 2.00 | 20.60 | 0.09 | 0.84 | 33.6 | 23.5 | 1.7 | 0 | 8.0 | 33.2 |
5 | 1 506.95 | 3.49 | 448 | 1.50 | 26.90 | 0.05 | 0.66 | 29.6 | 18.5 | 5.8 | 2.3 | 9.7 | 34.1 |
6 | 1 510.72 | 2.27 | 449 | 1.00 | 22.40 | 0.04 | 0.47 | 32.6 | 17.2 | 0 | 0 | 8.5 | 41.7 |
7 | 1 512.78 | 3.39 | 451 | 1.10 | 30.10 | 0.03 | 0.61 | 63.9 | 10.1 | 0 | 2.1 | 2.9 | 52.6 |
8 | 1 524.64 | 1.81 | 447 | 2.20 | 14.90 | 0.13 | 0.88 | 31.4 | 10.5 | 1.3 | 4.8 | 21.2 | 30.9 |
9 | 1 527.86 | 3.41 | 449 | 1.80 | 25.70 | 0.07 | 0.77 | 39.2 | 10.7 | 0 | 0 | 6.9 | 43.1 |
10 | 2 046.55 | 4.10 | 445 | 4.63 | 25.28 | 0.15 | — | 35.8 | 9.0 | 3.4 | 12.1 | 2.0 | 37.7 |
11 | 2 055.80 | 2.56 | 438 | 2.56 | 16.68 | 0.13 | — | 32.2 | 10.1 | 0 | 2.0 | 9.0 | 46.7 |
表2
2D NMR划分异相1H化合物结果"
样品编号 | 抽提前 | 抽提后 | |||||||||||
样品质量/g | 总化合物量/μL | 类固体有机质含量/(μL·g-1) | 轻质烃含量/(μL·g-1) | 羟基化合物/(μL·g-1) | 水含量/(μL·g-1) | 样品质量/ g | 总化合物量/μL | 类固体含量有机质/(μL·g-1) | 轻质烃含量/(μL·g-1) | 羟基化合物含量/(μL·g-1) | 水含量/(μL·g-1) | ||
1 | 20.62 | 863 | 6.2 | 1.7 | 15.3 | 18.6 | 19.4 | 645 | 4.0 | 1.6 | 20.3 | 7.4 | |
2 | 20.79 | 853 | 5.9 | 2.3 | 15.5 | 17.3 | 19.9 | 653 | 3.3 | 1.3 | 24.5 | 3.7 | |
3 | 20.68 | 987 | 5.0 | 2.2 | 22.4 | 18.1 | 20.0 | 696 | 3.4 | 1.5 | 24.9 | 5.0 | |
4 | 20.98 | 730 | 6.5 | 3.1 | 12.5 | 12.7 | 20.0 | 564 | 1.7 | 1.3 | 20.4 | 4.7 | |
5 | 20.96 | 803 | 7.8 | 2.4 | 13.2 | 14.9 | 20.0 | 602 | 3.1 | 1.3 | 23.7 | 2.2 | |
6 | 20.86 | 871 | 7.4 | 1.9 | 18.5 | 14.1 | 20.0 | 780 | 6.7 | 1.1 | 27.8 | 3.5 | |
7 | 20.50 | 1 006 | 9.1 | 2.2 | 23.1 | 14.7 | 19.7 | 814 | 7.5 | 2.1 | 28.3 | 3.4 | |
8 | 20.41 | 869 | 4.5 | 3.9 | 19.1 | 15.1 | 19.0 | 798 | 1.4 | 2.2 | 33.8 | 4.6 | |
9 | 20.96 | 961 | 7.6 | 3.3 | 17.7 | 17.3 | 19.5 | 723 | 4.3 | 1.4 | 27.9 | 3.4 |
1 | 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40 (1): 14- 27. |
Zou Caineng , Yang Zhi , Cui Jingwei , et al. Formation mechanism, geological characteristic and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40 (1): 14- 27. | |
2 | 姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35 (1): 184- 197. |
Jiang Zaixing , Zhang Wenzhao , Liang Chao , et al. Characteristic and evaluation elements of shale oil reservoir[J]. Acta Petroleum Since, 2014, 35 (1): 184- 197. | |
3 | 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48 (03): 453- 463. |
Sun Longde , Liu He , He Wenyuan , et al. An analysis of major scientific problems and research paths of Gulong shale oil in Da-qing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48 (03): 453- 463. | |
4 | 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48 (03): 437- 452. |
Jia Chengzao , Pang Xiongqi , Song Yan . The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48 (03): 437- 452. | |
5 | 柳波, 何佳, 吕延防, 等. 页岩油资源评价指标与方法--以松辽盆地北部青山口组页岩油为例[J]. 中南大学学报, 2014, 45 (11): 3846- 3853. |
Liu Bo , He jia , Lu Yanfang , et al. Parameters and method for shale oil assessment: Taking Qinshankou Formation shale oil of Northern Songliao Basin[J]. Journal of Central south University (Since and Technology), 2014, 45 (11): 3849- 3853. | |
6 | 周磊, 王永诗, 于雯泉, 等. 基于物性上、下限计算的致密砂岩储层分级评价-以苏北盆地高邮凹陷阜宁组一段致密砂岩为例[J]. 石油与天然气地质, 2019, 40 (6): 1308- 1316, 1323. |
Zhou Lei , Wang Yongshi , Yu Wenquan , et al. Classification assessment of tight sandstone reservoir based on calculation of lower and upper limits of physical properties-A case study of the tight sandstone reservoir in the 1st member of Funing Formation in Gaoyou Sag, North Jiangsu Basin[J]. Oil & Gas Geology, 2019, 40 (6): 1308- 1316, 1323. | |
7 | 牛小兵, 冯胜斌, 刘飞, 等. 低渗透致密砂岩储层中石油微观赋存状态与油源关系--以鄂尔多斯盆地三叠系延长组为例[J]. 石油与天然气地质, 2013, 34 (03): 288- 293. |
Niu Xiaobing , Feng Shengbin , Liu Fei , et al. Microscopic occurrence of oil in tight sandstones and its relation with oil sources-a case study from the Upper Triassic Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2013, 34 (03): 288- 293. | |
8 | Birdwell J E. , Washburn K E . Multivariate analysis relating oil shale geochemical properties to NMR relaxometry[J]. Energy & Fuels, 2015, 29 (4): 2234- 2243. |
9 | 顾兆斌, 刘卫, 孙佃庆, 等. 基于核磁共振二维谱技术识别储层流体类型[J]. 西安石油大学学报(自然科学版), 2010, 32 (005): 83- 86. |
Gu Zhaobin , Liu Wei , Sun Dianqing , et al. Identify reservoir fluid types with two dimensional NMR techniques[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32 (5): 83- 87. | |
10 |
Liu B , Bai L , Chi Y , et al. Geochemical characterization and quantitative evaluation of shale oil reservoir by two-dimensional nuclear magnetic resonance and quantitative grain fluorescence on extract: A case study from the Qingshankou Formation in Southern Songliao Basin, northeast[J]. Marine and Petroleum Geology, 2019, 109, 561- 573.
doi: 10.1016/j.marpetgeo.2019.06.046 |
11 | Liu B , Sun J , Zhang Y , et al. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48 (2): 1- 16. |
12 |
Li J , Jiang C , Wang M , et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: A new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116, 104311.
doi: 10.1016/j.marpetgeo.2020.104311 |
13 | Khatibi S. , Ostadhassan M. , Xie Z H. , et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2018, 235 (1): 167- 177. |
14 |
Rueslåtten H , Eidsemo T , Lehne K A , et al. The use of NMR spectroscopy to validate NMR logs from deeply buried reservoir sandstones[J]. Journal of Petroleum Science and Engineering, 1998, 19, 33- 43.
doi: 10.1016/S0920-4105(97)00033-8 |
15 |
Howard J J. , Kenyon W E. , Straley C . Proton magnetic resonance and pore size variations in reservoir sandstones[J]. SPE Formation Evaluation, 1993, 8 (03): 194- 200.
doi: 10.2118/20600-PA |
16 |
Gao Z , Hu Q . Wettability of Mississippian Barnett Shale samples at different depths: Investigations from directional spontaneous imbibition[J]. AAPG Bulletin, 2016, 100 (1): 101- 114.
doi: 10.1306/09141514095 |
17 | Wei Y , Qwab C , Yan S , et al. New scaling model of the spontaneous imbibition behavior of tuffaceous shale: Constraints from the tuff-hosted and organic matter-covered pore system[J]. Journal of Natural Gas Science and Engineering, 2020, 81103389. |
18 |
Bechtel A , Jia J , Strobl S , et al. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis[J]. Organic Geochemistry, 2012, 46, 76- 95.
doi: 10.1016/j.orggeochem.2012.02.003 |
19 |
Liu B , Wang H , Fu X , et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northe-rn Songliao Basin, northeast China[J]. AAPG Bulletin, 2019, 103 (2): 405- 432.
doi: 10.1306/08031817416 |
20 | 柳波, 刘阳, 刘岩, 等. 低熟页岩电加热原位改质油气资源潜力数值模拟--以松辽盆地南部中央坳陷区嫩江组一, 二段为例[J]. 石油实验地质, 2020, (4): 533- 544. |
Liu Bo , Liu Yang , Liu Yan , et al. Prediction of low-maturity shale oil produced by in situ conversion: a case study of the first and second members of Nenjiang Formation[J]. Petroleum Geology & Experiment, 2020, (4): 533- 544. | |
21 | Espitalie , Deroo G , Marquis F . Rock-Eval pyrolysis and its applications (Part One)[J]. Revue del'Institut Français du Pétrole, 1985, 40 (5): 563- 579. |
22 | Langford F F , Blanc-Valleron M M . Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs[J]. AAPG Bulletin, 1990, 74 (6): 799- 804. |
23 | Dahl B , Bojesen-Koefoed J , Holm A , et al. A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment[J]. Organic Geochemistry, 2004, 35 (11): 1461- 1477. |
24 |
Fleury M , Romero-Sarmiento M . Characterization of shales using T1-T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137, 55- 62.
doi: 10.1016/j.petrol.2015.11.006 |
25 |
Gong L , Wang J , Gao S , et al. Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 203, 108655.
doi: 10.1016/j.petrol.2021.108655 |
26 |
Liu B , Yang Y , Li J , et al. Stress sensitivity of tight reservoirs and its effect on oil saturation: A case study of Lower Cretaceous tight clastic reservoirs in the Hailar Basin, Northeast China[J]. Journal of Petroleum Science and Engineering, 2020, 184, 106484.
doi: 10.1016/j.petrol.2019.106484 |
27 | 赵清民, 伦增珉, 章晓庆, 等. 页岩油注CO2动用机理[J]. 石油与天然气地质, 2019, 40 (6): 1333- 1338. |
Zhao Qingmin , Lun Zengmin , Zhang Xiaoqing , et al. Mechanism of shale oil mobilization under CO2 injection[J]. Oil &Gas Geology, 2019, 40 (6): 1333- 1338. | |
28 | 郎东江, 伦增珉, 吕成远, 等. 页岩油注二氧化碳提高采收率影响因素核磁共振实验[J]. 石油勘探与开发, 2021, 48 (03): 603- 612. |
Lang Dongjiang , Lun Zengmin , Lv Chengyuan , et al. Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery[J]. Petroleum Exploration and Development, 2021, 48 (03): 603- 612. | |
29 |
张炜, 李义连, 郑艳, 等. 二氧化碳地质封存中的储存容量评估: 问题和研究进展[J]. 地球科学进展, 2008, (10): 1061- 1069.
doi: 10.3321/j.issn:1001-8166.2008.10.008 |
Zhang Wei , Li Yilian , Zheng Yan , et al. CO2 storage capacity estimation in geological sequestration: issus and Research Progress[J]. Advances in Earth Science, 2008, (10): 1061- 1069.
doi: 10.3321/j.issn:1001-8166.2008.10.008 |
|
30 |
Li C , Shen Y , Ge H , et al. Analysis of capillary rise in asymmetric branch-like capillary[J]. Fractals, 2016, 24 (2): 1650024.
doi: 10.1142/S0218348X16500249 |
31 |
Mmab C , Hg C , Ys C , et al. The effect of clay-swelling induced cracks on imbibition behavior of marine shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2020, 83, 103525.
doi: 10.1016/j.jngse.2020.103525 |
32 | 李进步, 卢双舫, 陈国辉, 等. 热解参数S1的轻烃与重烃校正及其意义-以渤海湾盆地大民屯凹陷E2 s4(2)段为例[J]. 石油与天然气地质, 2016, 37 (4): 538- 545. |
Li Jinbu , Lu Shuangfang , Chen guohui , et al. Correction of light and heavy hydrocarbon loss for residual hydrocarbon S1 andits significance to assessing resource potential of E2s4(2) member in Damintun Sag, Bohai Bay Basin[J]. Oil &Gas Geology, 2016, 37 (4): 538- 545. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李宁, 李瑞磊, 苗贺, 曹开芳, 田军. 松辽盆地深层中-基性火山岩有利相带及储层“甜点”逐级识别[J]. 石油与天然气地质, 2024, 45(3): 801-815. |
[5] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[6] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[7] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[8] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[9] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[10] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[11] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[12] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[13] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[14] | 侯读杰, 吴克强, 尤丽, 张自鸣, 李雅君, 熊小峰, 徐敏, 严夏泽, 陈威合, 程熊. 琼东南盆地陆源海相烃源岩有机质富集机理[J]. 石油与天然气地质, 2024, 45(1): 31-43. |
[15] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||