石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (1): 55-74.doi: 10.11743/ogg20230105
钱一雄1(), 武恒志2, 周凌方1, 董少峰3, 王琼仙4, 宋晓波4, 邓美洲4, 李勇4
收稿日期:
2022-05-11
修回日期:
2022-08-15
出版日期:
2023-01-14
发布日期:
2023-01-13
第一作者简介:
钱一雄(1962—),男,博士、教授级高级工程师,碳酸盐岩沉积与储层。E-mail: 基金项目:
Yixiong QIAN1(), Hengzhi WU2, Lingfang ZHOU1, Shaofeng DONG3, Qiongxian WANG4, Xiaobo SONG4, Meizhou DENG4, Yong LI4
Received:
2022-05-11
Revised:
2022-08-15
Online:
2023-01-14
Published:
2023-01-13
摘要:
四川盆地西部(简称川西)中三叠统雷口坡组白云岩是埋深超过5 000 m的油气勘探目的层之一。通过对10余口钻井以及多条实测露头剖面的研究,采用了包括薄片、铸体片、阴极发光、环境扫描电镜及能谱分析(SEM-EDS)、流体包裹体、微区碳-氧同位素、碳酸盐岩△47团簇同位素温度计、方解石U-Pb定年以及FIB-CT等技术方法,探讨了深埋条件下微生物碳酸盐岩成岩流体与孔隙演化的机理。研究表明,研究区存在开放、封闭和半开放等3种早期成岩体系,分别对应于潮湿气候条件下的潮间带-潮下浅水带的藻(灰)云岩中的强大气淡水作用(带),干旱条件下的潮上-潮间带膏盐岩-含藻纹层泥晶云岩的弱大气淡水作用以及早期表生-浅埋藏下的细菌微生物-灰泥相互作用。大规模白云岩化作用,以及埋藏-构造期的去云化作用分别发生于晚三叠世的卡尼阶(226.50 Ma ± 9.68 Ma)与诺利阶(211.50 Ma ± 1.50 Ma),地层温度分别为43 ~ 54 ℃和50 ℃。在白云石(δ18O水=-0.83 ‰ ~ 9.70 ‰)与方解石(δ18O水=-1.16 ‰ ~ 12.94 ‰)的胶结过程中,随着胶结物晶体增大,δ18O水总体逐渐降低,指示了温度升高与盐度升降变化。统计结果表明,微生物碳酸盐岩的主要孔隙类型包括格架孔(占比32.38 %)、扩溶缝洞(占比43.69 %)和微孔隙。微孔隙连通性好,富有机酸的孔隙流体抑止了规模性的胶结作用,导致部分孔隙得以保存。向上变浅的浅水潮下带-潮间带 “米氏(级)微生物岩沉积旋回”,以及开放-半开放早期成岩体系是孔隙发育的基础。埋藏成岩流体迭加改造作用导致了储层孔隙度在一定程度上减少。
中图分类号:
图2
川西中三叠统雷口坡组微生物碳酸盐岩中主要成岩作用特征显微照片a. 含膏粉晶云岩,膏溶孔中天青石(Cel)、硬石膏(Anh)共生,样品TS1-020,埋深5 843.20 m, T2l4(2); b.藻纹层-泡沫绵层状泥-粉晶云岩,格架孔(GF)、窗格孔洞(Fen),纤状(AC)+泥-微晶(D0)及粉晶白云石(DⅠ)胶结,YS1井,埋深5 793.95 m,T2l4(3); c.有孔虫(Fora)藻黏结灰云岩,微生物钻孔、分支状钙质藻细管(蓝藻)等微生物矿化作用(BCM),样品SYS1-177,埋深6 214.36 m, T2l4(3); d.藻球粒-团粒泥-微晶灰岩,泥晶套, AC、RFC胶结,BCM,样品SYS1-164,埋深6 208.72 m; e.藻球粒泥-微晶云岩,溶孔洞(Vug)中杆状、树枝状微生物细菌及藻迹(BCM),样品SYS1-173, 埋深6 213.92 m,T2l4(3); f.白云石化生屑泥晶灰岩,板状钠长石(Na-pl,陆屑)中次生溶孔,样品XS1-006,埋深6 136.30 m, T2l3; g.粉-细晶云岩,丝状黏土有机质,样品XQS1-078,埋深5 717.60 m, T2l4(3); h. 含腕足的藻球粒-藻黏结灰岩,丝状体、粒状复合体黏土(Si、Al)、有机质(C)、黄铁矿(Py)及盐岩(Hal),样品YS1-070,埋深5 776.67 m,T2l4(3); i:泥-粉晶白云岩,晶间孔(BC)中的有机质、草莓状黄铁矿,样品XQS1-025, 埋深5 737.50 m,T2l4(3); j,k.去云化的藻球粒粉晶云岩,DⅠ 为中等紫红,沿窗格去云化(粒状方解石CⅡ不发光),萤石Flu(蓝光CL),样品SYS1-099, 埋深6 194.03 m; l. 斑状去云化粉晶云岩,DⅠ、粉-细晶(DⅡ)为半自形或他形,去云化CⅡ呈蝇翅状,样品SYS1,埋深6 186.80 m,T2l4(3); m.叠层石泥-微晶云岩,半球形(SH)、明暗纹层(暗色富有机质泥晶白云石D00/微-亮晶泥-粉晶白云石D01),沿“渗流带”的去云化作用(DⅠ或DⅡ→CⅡ),呈不规则蝇翅状、粒状或分枝状,向低位(下游)增强,SYS1井,埋深6 189.32 m,T2l4(3); n.核形石、凝块石云岩,去云化(CⅡ)沿核形石边缘或裂隙发育,样品SYS1-076, 埋深6 188.56 m,T2l4(3); o.灰质藻球粒粉晶云岩,二期去云化,早期类似于d,后期沿扩溶裂隙(DFR)发育,中-粗晶白云石(DⅢ-Ⅳ)→中-粗晶方解石(CⅣ),SYS1井,埋深6 168.53 m,T2l4(3); p.白云石化藻球粒灰岩,纹层状-马尾状缝合线,晚于窗格溶孔(粒状微粉晶方解石C0/D0),SYS1井,埋深6 182.37 m, T2l4(3);q.不等晶云岩,三期白云石化,分别为藻球粒(暗核(D0-DⅠ)、环带菱形晶体(DⅡ)和次生加大-镶嵌状连晶(DⅢ),PZ103井,埋深6 043.47 m,T2l4(3); r.藻球粒粉晶云岩,DⅠ为中暗紫红色,DⅡ发中亮紫红色,Vug(DⅠ)呈暗紫红至不发光;样品YS1-108,埋深5 788.08 m,T2l4(3); s.藻球粒-藻纹层-凝块石云岩,DⅠ发中等至暗紫红色-暗橙红,DⅢ发暗-中等紫红或橙紫红,他形CⅢ发亮艳橙黄红色;样品YS1-113,埋深5 789.12 m,T2l4(3); t.含膏的藻球粒纹层泥晶云岩,硬石膏(Anh)不发光,D00呈暗紫红色;去膏化→去云化CⅡ(不发光),少量萤石(Flu),样品LS1-065,埋深5 985.20 m,T2l4(2); u.含膏团块藻纹层泥晶云岩,孔洞中-粗晶白云石DⅢ,中-亮橙红,斑状沥青(Brt),样品LS1-100,埋深5 971.40 m,T2l4(2); v.藻黏结微粉晶云岩,Fen、Vug、BC,大气淡水再溶蚀(去云化CⅡ→液相烃oil→沥青Brt),PZ103井,埋深6 040.88 m,T2l4(3); w.凝块石-核形石云岩,燧石Q,放射环带状,热水或大气淡水,样品DSY1-516,埋深5 891.80 m,T2l4(3); x.藻纹层-球粒泥-粉晶云岩,溶孔洞中鞍形白云石DⅣ,串珠状、雨点状液相及气液两相流体包裹体,样品YS1-134-03,埋深5 793.52 m, T2l4(3)"
表1
川西中三叠统雷口坡组微生物碳酸盐岩及缝洞多期多种胶结物(方解石、白云石和石英)特征"
胶结物/阴极发光 | 样品 数量/个 | δ18CCarb(PDB)/‰ | 样品数量/个 | 均一温度Th/℃ | δ18Ocarb δ18Ocement-Water(PDB)/‰ | 样品数 量/个 | 盐度Wt NaClequ % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 最大值 | 最小值 | 平均值 | 最小值 | 最大值 | 平均值 | 最大值 | 最小值 | 平均值(及范围) | ||||
D0/Anh/暗紫-浅紫红[ | 42 | 1.95 | 3.10 | 0.30 | — | — | — | — | -1.67 | -1.10 | -6.60 | — | — |
D0/中橙紫红-浅紫红[ | 21 | 2.08 | 2.80 | 0.40 | — | — | — | — | -2.28 | -1.00 | -5.80 | — | — |
D0- DⅠ/中橙红-橙紫红[ | 24 | 2.46 | 2.90 | 1.90 | — | — | — | — | -4.00 | -2.70 | -6.80 | — | — |
CAC/RFC /暗紫/不发光/橙黄红[ | 14 | 2.12 | 2.69 | 1.70 | — | — | — | — | -3.22 | 1.20 | -6.63 | — | — |
CⅠ/灰紫-浅黄粉红-橙黄粉红 | 15 | -4.75 | -3.46 | -6.68 | 10 | 61.8 | 50.2 | 68.0 | -2.32 | -1.16 | -3.70 | 8 | 21.9(19.21 ~ 22.78) |
CⅡ-1/暗紫-不发光 | 26 | -8.13 | -6.20 | -10.60 | 48 | 78.9 | 66.0 | 91.0 | -5.25 | -3.31 | -7.65 | 21 | 1.7(0.71 ~ 5.56) |
CⅡ-2/不发光 | -6.62 | -4.30 | -11.70 | — | — | — | — | — | — | — | |||
CⅢ-1/暗紫-橙黄红-亮粉红 | 18 | -7.70 | -6.80 | -12.29 | 347 | 111.1 | 86.5 | 129.8 | -6.21 | -4.73 | -10.52 | 65 | 15.2(8.58 ~ 23.50) |
CⅢ-2/暗紫-橙黄红-亮粉红 | -7.70 | -6.80 | -12.29 | 176 | 116.6 | 76.0 | 165.9 | -6.34 | -4.24 | -11.21 | 130 | 11.3(6.45 ~ 23.18) | |
CⅣ-1/浅紫红-不发光 | 11 | -9.75 | -7.20 | -13.30 | 91 | 118.8 | 91.3 | 161.2 | -8.08 | -5.21 | -12.06 | 77 | 2.2(0.35 ~ 5.71) |
CⅣ-2/浅紫红-不发光 | 8 | -11.40 | -9.40 | -14.18 | 167 | 140.5 | 121.8 | 166.2 | -10.00 | -7.87 | -12.94 | 58 | 12.4(6.74 ~ 19.29) |
CDAC/RFC /暗紫-紫(橙)红 | 27 | 2.11 | 2.98 | 1.90 | — | — | — | — | -3.17 | 0.84 | -5.84 | — | — |
DⅠ/中亮粉红、中粉紫红 | 12 | -4.51 | -3.94 | -5.91 | 1 | 43.0 | — | — | -0.83 | — | — | — | — |
DⅡ/暗紫红-粉红/玫瑰-紫红 | 11 | -6.02 | -4.41 | -7.22 | 75 | 100.7 | 62.3 | 124.7 | -4.46 | -1.98 | -5.96 | 13 | 5.0(0.35 ~ 9.73) |
DⅢ/玫瑰红-紫红/亮橙红 | 4 | -5.97 | -5.69 | -6.77 | 156 | 115.6 | 92.5 | 143.1 | -4.77 | -3.98 | -5.87 | 30 | 13.8(10.01 ~ 18.63) |
DⅢ-Ⅳ/玫瑰红-亮橙红 | 2 | — | — | — | 36 | 116.4 | 78.0 | 149.0 | — | — | — | 36 | 11.6(1.40 ~ 23.18) |
DⅣ-1/浅紫红-玫瑰红/亮橙红 | 4 | -8.55 | -7.44 | -10.45 | 94 | 138.9 | 124.6 | 164.2 | -7.34 | -6.14 | -9.39 | 15 | 9.2(1.40 ~ 10.73) |
DⅣ-2/浅紫红-玫瑰红/亮橙红 | 4 | -8.55 | -7.44 | -10.45 | 138 | 148.4 | 125.7 | 192.5 | -7.49 | -6.16 | -9.70 | 25 | 16.9(11.22 ~ 21.68) |
Q/不发光 | 8 | — | — | — | — | 156.8 | 140.0 | 168.0 | — | — | — | — | 11.9(9.60 ~ 15.76) |
表2
川西中上三叠统马鞍塘组-雷口坡组碳酸盐岩(流体)碳、氧同位素、△47和T-△47值"
样号 | 埋深/m | 层位 | 对象/CL发光 | δ13Ccarb(PDB)/‰ | δ18Ocarb(PDB)/‰ | △47 (ARF) | △47(STF) | δ13Ccarb(PDB)平均值/‰ | δ18Ocarb(PDB)平均值/‰ | △47 平均值 | T-△47(℃) | δ18O水(PDB)/ ‰[ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
XS1-21101 | 5 520.20 | T3m | 粗枝藻-有孔虫凝块石灰岩/ 橙黄红-C0b | 2.01 | -4.81 | 0.4802 | 0.470 | 2.02 | -4.93 | 0.451 | 172 | -4.53 |
2.03 | -5.05 | 0.4200 | 0.432 | |||||||||
XS1-21104 | 5 525.62 | T3m | 去云化的泥粉晶云岩/ 紫红/-D0-DⅠ | 2.05 | -4.95 | 0.4570 | 0.447 | 2.02 | -5.28 | 0.477 | 145 | -4.60 |
2.07 | -5.29 | 0.4790 | 0.493 | |||||||||
1.93 | -5.60 | 0.4770 | 0.490 | |||||||||
XS1-21201 | 5 547.36 | T2l4 | 藻纹层灰质粉晶云岩/暗紫红/DⅠ | 2.56 | -1.22 | 0.5648 | 0.553 | 2.61 | -1.28 | 0.535 | 99 | -0.94 |
2.67 | -1.33 | 0.5020 | 0.517 | |||||||||
XQS1-21101 | 5 702.72 | T3m | 弱白云石化生屑凝块石灰岩/ 暗橙红/DC0T | 1.77 | -6.87 | 0.4093 | 0.399 | 1.73 | -6.95 | 0.404 | 239 | -6.68 |
1.69 | -7.02 | 0.3970 | 0.409 | |||||||||
XQS1-21201 | 5 706.50 | T3m | 含生屑藻纹层泥晶云岩/ 橘红色/D0bS | 2.51 | -2.55 | 0.4618 | 0.451 | 2.48 | -2.68 | 0.449 | 175 | -2.45 |
2.45 | -2.82 | 0.4340 | 0.446 | |||||||||
YX1-206 | 5 714.76 | T2l4 | 去云化泥粉晶云岩/橙红/ C(D0-DⅠ) | 1.40 | -2.84 | 0.5162 | 0.505 | 1.42 | -2.91 | 0.489 | 134 | -2.47 |
1.45 | -2.99 | 0.4600 | 0.473 | |||||||||
YX1-207 | 5 714.90 | T2l4 | 去云化泥粉晶云岩/中橙红/ C(D0-DⅠ) | 0.87 | -2.38 | 0.5412 | 0.530 | 1.09 | -2.13 | 0.524 | 106 | -1.63 |
1.32 | -1.88 | 0.5040 | 0.519 | |||||||||
YX1-214 | 5 716.78 | T2l4 | 泥粉晶云岩/中等橙红/D0-DⅠ | 0.91 | -2.82 | 0.5578 | 0.546 | 0.93 | -2.92 | 0.543 | 94 | -2.06 |
0.94 | -3.03 | 0.5240 | 0.539 | |||||||||
DYS1-010 | 5 874.23 | T2l4(3下) | 泥粉晶云岩、弱重结晶/中橙红/D0-DⅠ | 2.45 | -0.95 | 0.5211 | 0.510 | 2.38 | -1.27 | 0.540 | 95 | -0.91 |
2.35 | -1.32 | 0.5370 | 0.552 | |||||||||
2.33 | -1.53 | 0.5430 | 0.558 | |||||||||
MJ1-002 | 6 148.20 | T2l4(3上) | 去云化藻球粒粉晶云 岩/中橙红/ CDⅠP | 2.39 | -4.56 | 0.4976 | 0.487 | 2.44 | -4.50 | 0.502 | 123 | -3.69 |
2.50 | -4.44 | 0.5040 | 0.518 | |||||||||
MJ1-003 | 6 148.32 | T2l4(3上) | 藻纹层-球粒泥粉晶云岩 (橙红) DⅠPS | 2.53 | -4.24 | 0.4955 | 0.485 | 2.41 | -4.54 | 0.476 | 146 | -3.96 |
2.29 | -4.84 | 0.4530 | 0.466 | |||||||||
SYS1-029 | 6 177.41 | T2l4 | 弱云化含生屑藻球粒灰岩/ 中暗紫/DC0bp | 1.09 | -5.94 | 0.4414 | 0.431 | 1.07 | -6.11 | 0.423 | 209 | -5.78 |
1.05 | -6.28 | 0.4030 | 0.414 | |||||||||
SYS1-046 | 6 180.10 | T2l4 | 弱云化藻球粒灰岩/中等紫/DC0p | 2.45 | -2.34 | 0.5781 | 0.567 | 2.44 | -2.44 | 0.557 | 85 | -1.68 |
2.43 | -2.55 | 0.5320 | 0.547 | |||||||||
XSXQ-17076 | T2l2 | 藻纹层泥晶云岩/暗紫/D0S | 2.71 | -1.50 | 0.6317 | 0.620 | 2.65 | -1.83 | 0.641 | 43 | -0.34 | |
2.61 | -2.02 | 0.6480 | 0.667 | |||||||||
2.63 | -1.97 | 0.6190 | 0.637 | |||||||||
XSXQ-070 | T2l2 | 含膏泥晶云岩/中等紫/D0 | 1.96 | -0.18 | 0.5965 | 0.576 | 1.96 | -0.18 | 0.594 | 64.7 | -0.08 | |
0.6116 | 0.612 | |||||||||||
YL-128 | T2l2 | 含膏泥晶云岩/中等紫/D0 | -0.29 | -8.07 | 0.6337 | 0.610 | 0.02 | -0.33 | 0.610 | 56.5 | -3.03 | |
-0.28 | -8.14 | 0.5875 | 0.593 | |||||||||
-0.28 | -8.13 | 0.6225 | 0.628 |
图9
川西中三叠统雷口坡组微生物碳酸盐岩中的主要孔隙类型a.叠层石微粉晶云岩,穹隆状(SH),格架礁,格架孔(GF),宽缓纹层中(LLH)不发育,SYS1井,埋深6 220.39 m,T2l4(3);b.凝块石-藻球粒的黏结云灰岩, “平底晶洞”(SS)、窗格孔(Fen),晶洞上部为纤状-纤柱状(AC-RFC)或粒状微粉晶方解石(CⅠ)胶结,下为暗色微晶方解石胶结,YS1井,埋深5 779.93 m, T2l4(3);c.含生屑的藻砂屑-凝块石云岩,GF、黏土有机质OM(有机孔)、晶间孔(BC)及MP(微孔隙),样品YS1-036,埋深5 762.60m, T2l4(3);d. 藻鲕、骨屑、凝块石、粗枝藻灰云岩,格架礁,大量BP(粒间孔)、Oo(鲕模孔)、WP(粒内孔)、BC、OM等,样品XQS1-073,埋深5 718.30 m,T2l4(3); e.藻(骨)屑、凝块石灰云岩,格架礁,溶蚀孔洞(vug)、BP、WP、BC等,样品SYS1-145,埋深6 203.10 m,T2l4(3); f.有孔虫藻球粒-团粒泥微晶云岩,去云化、MO(铸模孔)、Po(溶孔)、BP、WP,样品MJ1-127,埋深6 212.65 m, T2l43;g.弱白云石化藻球粒灰岩,Fen、MO、BP、WP、 OM和MP,样品XQS1-071,埋深5 718.70 m, T2l4(3);h.藻球粒-凝块石灰岩,DFR(扩溶孔)、BP、Po,样品SYS1-139,埋深6 201.08 m, T2l4(3); i. 含膏质的藻球泥晶云岩,板状石膏中的膏模孔(Po-Anh),样品HL1-001,埋深4 694.20 m,T2l4(2);j. 含膏质的藻球粒泥晶云岩,二组裂隙石膏脉(Gyp/Anh)一组再溶蚀,另一组被粒状方解石充填(CⅡ),DFR,Vug,样品TS1-003,埋深5 849.50 m,T2l4(2); k. 藻纹层-凝块石泥微晶云岩,沿共轭“X”裂隙的扩溶(DFR)、网状开启裂隙Fre、Po、OM,样品SYS1-242,埋深6 227.50 m, T2l4(3); l.藻砂屑粉晶云岩,Vugs、Po,边部溶孔洞边缘近圆形, DⅢ、QⅡ部分充填,埋藏溶蚀与胶结,样品SYS1-200,埋深6 218.92 m,T2l4(3); m.藻球粒-凝块石灰岩, DFR、MP、缝合线(St),样品DS1-008,埋深6 177.80 m, T2l4(3); n.弱白云石化藻球粒-鲕粒灰岩,发育BP、WP、Po、Oo等,样品XQS1-076,埋深5 717.80 m, T2l4(3);o.粗枝藻、凝块石、微球粒灰岩,AC-RFC胶结,泥晶套,Po-Vug、WP、OM、MP等;,YS1井,埋深5 780.18 m,T2l4(3);p.藻纹层灰质泥粉晶云岩,DFR,早期沥青Brt充填、后期开启,晚于早期的溶孔洞Po(CⅡ),样品LS1-100, 埋深5971.40 m, T2l4(3) ."
1 | 曾德铭, 王兴志, 康保平. 川西北雷口坡组储层原生孔隙内胶结物研究[J]. 天然气地球科学, 2006, 17(4): 459-462. |
ZENG Deming, WANG Xingzhi, KANG Baoping. A study on cement in primary pore of the Leikoupo Formation reservoir in the northwest of Sichuan Basin[J]. Natural Gas Geoscience, 2006, 17(4): 459-462. | |
2 | 曾德铭, 王兴志, 张帆, 等. 四川盆地西北部中三叠统雷口坡组储层研究[J]. 古地理学报, 2007, 9(3): 253-266. |
ZENG Deming, WANG Xingzhi, ZHANG Fan, et al. Study on reservoir of the Leikoupo Formation of Middle Triassic in northwestern Sichuan Basin[J]. Journal of Palaeogeography, 2007, 9(3): 253-266. | |
3 | 刘树根, 宋金民, 罗平, 等. 四川盆地深层微生物碳酸盐岩储层特征及其油气勘探前景[J]. 成都理工大学学报(自然科学版), 2016, 43(2): 129-152. |
LIU Shugen, SONG Jinmin, LUO Ping, et al. Characteristics of microbial carbonate reservoir and its hydrocarbon exploring outlook in the Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2016, 43(2): 129-152. | |
4 | 李宏涛, 胡向阳, 史云清, 等. 四川盆地川西坳陷龙门山前雷口坡组四段气藏层序划分及储层发育控制因素[J]. 石油与天然气地质, 2017, 38(4): 753-763. |
LI Hongtao, HU Xiangyang, SHI Yunqing, et al. Sequence division and controlling factors of reservoir development of the 4th Member of Leikoupo Formation in foreland of Longmen Mountains in the Western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2017, 38(4): 753-763. | |
5 | 刘树根, 孙玮, 宋金民, 等. 四川盆地中三叠统雷口坡组天然气勘探的关键地质问题[J]. 天然气地球科学, 2019, 30(2): 151-167. |
LIU Shugen, SUN Wei, SONG Jinmin, et al. The key geological problems of natural gas exploration in the Middle Triassic Leikoupo Formation in Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(2): 151-167. | |
6 | 钱一雄, 武恒志, 周凌方, 等. 川西中三叠统雷口坡组三段-四段白云岩特征与成因——来自于岩相学及地球化学的约束[J]. 岩石学报, 2019, 35(4): 1161-1180. |
QIAN Yixiong, WU Hengzhi, ZHOU Lingfang, et al. Characteristic and origin of dolomites in the third and fourth members of Leikoupo Formation of the Middle Triassic in NW Sichuan Basin: Constraints in mineralogical, petrographic and geochemical data[J]. Acta Petrologica Sinica, 2019, 35(4): 1161-1180. | |
7 | 周凌方, 钱一雄, 宋晓波, 等. 四川盆地西部彭州气田中三叠统雷口坡组四段上亚段白云岩孔隙表征、分布及成因[J]. 石油与天然气地质, 2020, 41(1): 177-188. |
ZHOU Lingfang, QIAN Yixiong, SONG Xiaobo, et al. Characteristics, distribution and origin of dolomite reservoir in the upper Lei 4 member of the Middle Triassic, Pengzhou Gas Field, western Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(1): 177-188. | |
8 | 李宸, 郎兴海, 邓煜霖, 等. 四川盆地峨眉山雷口坡组底部黏土岩(绿豆岩)的年代学及地球化学特征[J]. 矿物岩石地球化学通报, 2020, 39(4): 810-825. |
LI Chen, LANG Xinghai, DENG Yulin, et al. Geochronological and geochemical characteristics of the claystone (mung bean rock) at the bottom of the Leikoupo Formation in the Emeishan area, Sichuan Basin, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(4): 810-825. | |
9 | 李国蓉, 刘正中, 谢子潇, 等. 四川盆地西部雷口坡组非热液成因鞍形白云石的发现及意义[J]. 石油与天然气地质, 2020, 41(1): 164-176. |
LI Guorong, LIU Zhengzhong, XIE Zixiao, et al. Discovery of non-hydrothermal saddle-shaped dolomite in Leikoupo Formation, western Sichuan Basin and its significance[J]. Oil & Gas Geology, 2020, 41(1): 164-176. | |
10 | 段金宝, 金民东, 范志伟, 等. 四川盆地东北部中三叠统雷口坡组四段优质储层发育特征及勘探方向[J]. 石油与天然气地质, 2021, 42(4): 898-908. |
DUAN Jinbao, JIN Mindong, FAN Zhiwei, et al. Characteristics and favorable plays for high-quality reservoirs in the Middle Triassic Lei 4 Member, Yuanba area, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 898-908. | |
11 | 孙豪飞, 罗冰, 文龙, 等. 四川盆地雷口坡组富有机质页岩的发现及盐下勘探新领域[J]. 天然气地球科学, 2021, 32(2): 233-247. |
SUN Haofei, LUO Bing, WEN Long, et al. The first discovery of organic-rich shale in Leikoupo Formation and new areas of sub-salt exploration, Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(2): 233-247. | |
12 | 杨威, 刘满仓, 魏国齐, 等. 四川盆地中三叠统雷口坡组岩相古地理与规模储集体特征[J]. 天然气地球科学, 2021, 32(6): 781-793. |
YANG Wei, LIU Mancang, WEI Guoqi, et al. Sedimentary characteristics and sequence lithofacies paleogeography of the semi-closed carbonate platform of the Leikoupo Formation in Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(6): 781-793. | |
13 | 熊中玉, 丁林, 谢静. 碳酸盐耦合同位素(Δ47)温度计及其在古高度重建中的应用[J]. 科学通报, 2019, 64(16): 1722-1737. |
XIONG Zhongyu, DING Lin, XIE Jing. Carbonate clumped isotope (Δ47) thermometry and its application in paleoelevation reconstruction[J]. Chinese Science Bulletin, 2019, 64(16): 1722-1737. | |
14 | 陈家旭, 王斌, 郭小文, 等. 应用方解石激光原位U-Pb同位素定年确定多旋回叠合盆地油气成藏绝对时间——以塔里木盆地塔河油田为例[J]. 石油与天然气地质, 2021, 42(6): 1365-1375. |
CHEN Jiaxu, WANG Bin, GUO Xiaowen, et al. Application of laser in-situ U-Pb dating of calcite to determination of the absolute time of hydrocarbon accumulation in polycyclic superimposed basins: A case study on Tahe Oilfield, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(6): 1365-1375. | |
15 | WINKELSTERN I Z, LOHMANN K C. Shallow burial alteration of dolomite and limestone clumped isotope geochemistry[J]. Geology, 2016, 44(6): 467-470. |
16 | WINKELSTERN I Z, KACZMAREK S E, LOHMANN K C, et al. Calibration of dolomite clumped isotope thermometry[J]. Chemical Geology, 2016, 443: 32-38. |
17 | BONIFACIE M, CALMELS D, EILER J M, et al. Calibration of the dolomite clumped isotope thermometer from 25 to 350 ℃, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates[J]. Geochimica et Cosmochimica Acta, 2017, 200: 255-279. |
18 | CAME R E, AZMY K, TRIPATI A, et al. Comparison of clumped isotope signatures of dolomite cements to fluid inclusion thermometry in the temperature range of 73-176 ℃[J]. Geochimica et Cosmochimica Acta, 2017, 199: 31-47. |
19 | MANGENOT X, GASPARRINI M, ROUCHON V, et al. Basin-scale thermal and fluid flow histories revealed by carbonate clumped isotopes (Δ47)-Middle Jurassic carbonates of the Paris Basin depocentre[J]. Sedimentology, 2018, 65(1): 123-150. |
20 | HONLET R, GASPARRINI M, MUCHEZ P, et al. A new approach to geobarometry by combining fluid inclusion and clumped isotope thermometry in hydrothermal carbonates[J]. Terra Nova, 2018, 30(3): 199-206. |
21 | LUKOCZKI G, HAAS J, GREGG J M, et al. Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine-peritidal carbonates from the Mecsek Mts. (SW Hungary), as inferred from petrography, carbon, oxygen, strontium and clumped isotope data[J]. Marine and Petroleum Geology, 2019, 101: 440-458. |
22 | KIM S T, O’NEIL J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61(16): 3461-3475. |
23 | HORITA J. Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures[J]. Geochimica et Cosmochimica Acta, 2014, 129: 111-124. |
24 | MOORBATH S, TAYLOR P N, ORPEN J L, et al. First direct radiometric dating of Archaean stromatolitic limestone[J]. Nature, 1987, 326(6116): 865-867. |
25 | WINTER B L, JOHNSON C M. U-Pb dating of a carbonate subaerial exposure event[J]. Earth and Planetary Science Letters, 1995, 131(3/4): 177-187. |
26 | WOODHEAD J, PICKERING R. Beyond 500 ka: Progress and prospects in the U-Pb chronology of speleothems, and their application to studies in palaeoclimate, human evolution, biodiversity and tectonics[J]. Chemical Geology, 2012, 322-323: 290-299. |
27 | LI Q, PARRISH R R, HORSTWOOD M S A, et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376: 76-83. |
28 | LAWSON M, SHENTON B J, STOLPER D A, et al. Deciphering the diagenetic history of the El Abra Formation of eastern Mexico using reordered clumped isotope temperatures and U-Pb dating[J]. GSA Bulletin, 2018, 130(3/4): 617-629. |
29 | HANSMAN R J, ALBERT R, GERDES A, et al. Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite[J]. Geology, 2018, 46(3): 207-210. |
30 | GODEAU N, DESCHAMPS P, GUIHOU A, et al. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France[J]. Geology, 2018, 46(3): 247-250. |
31 | SHEN Jiangng, HU Anping, CHENG Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1127-1140. |
32 | ENGEL J, MAAS R, WOODHEAD J, et al. A single-column extraction chemistry for isotope dilution U-Pb dating of carbonate[J]. Chemical Geology, 2020, 531: 119311. |
33 | 张杰, 寿建峰, 文应初, 等. 去白云石化作用机理及其对储集层的改造[J]. 古地理学报, 2012, 14(1): 69-84. |
ZHANG Jie, SHOU Jianfeng, WEN Yingchu, et al. Mechanism of dedolomitization and its rebuilding to reservoir[J]. Journal of Palaeogeography, 2012, 14(1): 69-84. | |
34 | FLÜGEL E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer, 2004: 369-396. |
35 | GERDES G. What are microbial mats?[M]//SECKBACH J, OREN A, ed. Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems. Dordrecht: Springer, 2010: 3-25. |
36 | PLANAVSKY N, GINSBURG R N. Taphonomy of modern marine Bahamian microbialites[J]. Palaios, 2009, 24(1): 5-17. |
37 | PLANAVSKY N, REID R P, LYONS T W, et al. Formation and diagenesis of modern marine calcified cyanobacteria[J]. Geobiology, 2009, 7(5): 566-576. |
38 | WARTHMANN R, VAN LITH Y, VASCONCELOS C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1091-1094. |
39 | DUPRAZ C, REID R P, BRAISSANT O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162. |
40 | 朱光有, 张水昌, 梁英波, 等. TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 2006, 22(8): 2182-2194. |
ZHU Guangyou, ZHANG Shuichang, LIANG Yingbo, et al. Dissolution and alteration of the deep carbonate reservoirs by TSR: An important type of deep-buried high-quality carbonate reservoirs in Sichuan Basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2182-2194. | |
41 | MOSHIER S O. Microporosity in micritic limestones: A review[J]. Sedimentary Geology, 1989, 63(3/4): 191-213. |
42 | LUCIA F J. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization[J]. AAPG Bulletin, 1995, 79(9): 1275-1300. |
43 | EHRENBERG S N, WALDERHAUG O, BJØRLYKKE K. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-233. |
44 | CHAFETZ H S. Porosity in bacterially induced carbonates: Focus on micropores[J]. AAPG Bulletin, 2013, 97(11): 2103-2111. |
45 | LOUCKS R G, LUCIA F J, WAITE L E. Origin and description of the micropore network within the Lower Cretaceous Stuart City trend tight-gas limestone reservoir in pawnee field in South Texas[J]. GCAGS Journal, 2013, 2: 29-41. |
46 | EHRENBERG S N, WALDERHAUG O. Preferential calcite cementation of macropores in microporous limestones[J]. Journal of Sedimentary Research, 2015, 85(7): 780-793. |
[1] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[2] | 韩月卿, 张军涛, 何治亮, 金振奎, 韩文彪, 高平, 郝运轻, 孙炜, 武重阳. 川西中二叠统栖霞组白云岩特征与成因[J]. 石油与天然气地质, 2023, 44(1): 75-88. |
[3] | 沈安江, 胡安平, 张杰, 王小芳, 王慧. 微生物碳酸盐岩“三因素”控储地质认识和分布规律[J]. 石油与天然气地质, 2022, 43(3): 582-596. |
[4] | 陈国辉, 蒋恕, 李醇, 李思思, 彭鹏, 莫兰, 张钰莹, 张鲁川, 张天宇. 加热过程中页岩储层改质效果研究进展[J]. 石油与天然气地质, 2022, 43(2): 286-296. |
[5] | 徐亮, 杨威, 姜振学, 陈冬霞, 王耀华, 鲁健康, 赵明珠, 李兰. 四川盆地川西坳陷三叠系须家河组页岩有机孔演化及成因[J]. 石油与天然气地质, 2022, 43(2): 325-340. |
[6] | 苏成鹏, 何莹, 宋晓波, 董波, 吴小奇. 四川盆地川西气田中三叠统雷口坡组气藏气源再认识[J]. 石油与天然气地质, 2022, 43(2): 341-352. |
[7] | 吴小奇, 陈迎宾, 翟常博, 周凌方, 周小进, 杨俊, 王彦青, 宋晓波. 川西坳陷中三叠统雷口坡组沥青地球化学特征及气源示踪[J]. 石油与天然气地质, 2022, 43(2): 407-418. |
[8] | 刘诗琦, 陈森然, 刘波, 石开波, 刘钰洋, 郑浩夫, 罗清清. 基于原位溶蚀模拟实验的四川盆地二叠系栖霞组-茅口组白云岩孔隙演化[J]. 石油与天然气地质, 2021, 42(3): 702-716. |
[9] | 邓宾, 何宇, 黄家强, 罗强, 杨荣军, 于豪, 张静, 刘树根. 前陆盆地形成与演化砂箱物理模拟启示——以四川盆地西部龙门山为例[J]. 石油与天然气地质, 2021, 42(2): 401-415. |
[10] | 邓模, 段新国, 翟常博, 龙胜祥, 杨振恒, 郑伦举, 李章畅, 曹涛涛. 页岩热模拟过程中液态烃含量变化及对物性的影响[J]. 石油与天然气地质, 2020, 41(6): 1310-1320. |
[11] | 郭龙龙, 陈洪德, 黄晓波, 王峻, 冯冲. 富长石粗碎屑砂岩孔隙演化定量分析——以渤海湾盆地辽东凸起北段沙河街组二段为例[J]. 石油与天然气地质, 2020, 41(4): 874-883. |
[12] | 孔强夫, 杨才, 李浩, 耿超, 邓健. 基于图论聚类和最小临近算法的岩性识别方法——以四川盆地西部雷口坡组碳酸盐岩储层为例[J]. 石油与天然气地质, 2020, 41(4): 884-890. |
[13] | 郝哲敏, 许国明, 陈洪德, 王琼仙, 隆轲, 王文楷, 王强. 川西坳陷马井地区中三叠统雷四3亚段储层孔隙类型与面孔率定量研究[J]. 石油与天然气地质, 2020, 41(2): 380-392, 422. |
[14] | 胡安平, 沈安江, 梁峰, 赵建新, 罗宪婴, 俸月星, 程婷. 激光铀铅同位素定年技术在塔里木盆地肖尔布拉克组储层孔隙演化研究中的应用[J]. 石油与天然气地质, 2020, 41(1): 37-49. |
[15] | 刘嘉庆, 李忠, 颜梦珂, PeterK.Swart, 杨柳, 卢朝进. 塔里木盆地塔中地区下奥陶统白云岩的成岩流体演化:来自团簇同位素的证据[J]. 石油与天然气地质, 2020, 41(1): 68-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||