石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (1): 37-49.doi: 10.11743/ogg20200104
胡安平1,2(), 沈安江1,2,*(), 梁峰1,2, 赵建新3, 罗宪婴1,2, 俸月星3, 程婷3,4
收稿日期:
2019-07-28
出版日期:
2020-02-01
发布日期:
2020-01-19
通讯作者:
沈安江
E-mail:huap_hz@petrochina.com.cn;shenaj_hz@petrochina.com.cn
第一作者简介:
胡安平(1982-),女,博士,高级工程师,碳酸盐岩储层研究与地球化学实验技术研发。E-mail:基金项目:
Anping Hu1,2(), Anjiang Shen1,2,*(), Feng Liang1,2, Jianxin Zhao3, Xianying Luo1,2, Yuexing Feng3, Ting Cheng3,4
Received:
2019-07-28
Online:
2020-02-01
Published:
2020-01-19
Contact:
Anjiang Shen
E-mail:huap_hz@petrochina.com.cn;shenaj_hz@petrochina.com.cn
Supported by:
摘要:
古老海相碳酸盐岩铀和铅含量普遍较低、且成岩组构直径小,很难取得足够的粉末样品,常规的溶液法铀铅同位素定年在古老海相碳酸盐岩中难以推广应用。针对以上问题,中国石油集团碳酸盐岩储层重点实验室和昆士兰大学(UQ)地球科学院放射性同位素实验室两家共同开发激光原位U-Pb同位素定年技术,并应用于塔里木盆地寒武系肖尔布拉克组储层成岩-孔隙演化研究。通过充填孔洞、孔隙和裂缝中不同期次白云石和方解石胶结物的测年,指出寒武系肖尔布拉克组白云岩储层的埋藏成岩过程是孔隙和孔洞逐渐被充填的过程。孔洞的充填作用主要发生在早加里东期,孔隙的充填作用主要发生在中加里东期和印支期,加里东和印支期断裂作为热液运移的通道,为充填孔洞和孔隙的胶结物提供了物源,未被白云石、方解石和硅质胶结物充填的残留孔洞、孔隙和裂缝构成了主要储集空间,建立了肖尔布拉克组白云岩储层的成岩-孔隙演化史。这些认识与该地区的构造-埋藏史、盆地热史具有很高的吻合度,结合下古生界烃源生烃史,为古老海相胶结物形成时间确定、成岩-孔隙演化研究和油气运移前有效孔隙评价提供了利器。
中图分类号:
表1
塔里木盆地阿克苏地区下寒武统肖尔布拉克组定年检测样品"
样品编号 | 样品来源 | 层位 | 样品产状 | 检测目的 |
X-30-① | 肖尔布拉克西沟剖面 | 肖下2段 | 微生物白云岩围岩 | 地层年龄或白云石化时间 |
X-56-① | 肖尔布拉克西沟剖面 | 肖上1段 | 微生物白云岩围岩 | |
X-17-② | 肖尔布拉克西沟剖面 | 肖下1段 | 充填孔洞白云石 | 孔洞形成时间和孔洞充填的时间、期次 |
X-13-① | 肖尔布拉克西沟剖面 | 肖下1段 | 充填孔洞方解石 | |
ST2-20-② | 舒探1井,埋深1 886 m | 肖上1段 | 充填藻架孔白云石 | 孔隙形成时间和孔隙充填的时间、期次 |
X-56-② | 肖尔布拉克西沟剖面 | 肖上1段 | 充填藻架孔白云石 | |
X-55-② | 肖尔布拉克西沟剖面 | 肖上1段 | 充填藻架孔白云石 | |
X-30-③ | 肖尔布拉克西沟剖面 | 肖下2段 | 充填裂缝方解石 | 裂缝形成时间及期次 |
X-28-② | 肖尔布拉克西沟剖面 | 肖下2段 | 充填裂缝方解石 | |
D1-49-② | 肖尔布拉克东1沟剖面 | 肖上1段 | 充填裂缝白云石 | |
X-35-② | 肖尔布拉克西沟剖面 | 肖下3段 | 充填裂缝白云石 | |
X-35-③ | 肖尔布拉克西沟剖面 | 肖下3段 | 充填裂缝白云石 |
图3
塔里木盆地阿克苏地区下寒武统肖尔布拉克组定年检测样品特征 a.灰黑色薄层藻泥晶白云岩,由①至③分别为围岩、充填孔洞白云石和充填裂缝方解石,肖尔布拉克西沟剖面,样品X-30,肖下2段;b.灰黑色薄层藻泥晶白云岩,由①至②分别为围岩和充填孔洞方解石,肖尔布拉克西沟剖面,样品X-28,肖下2段;c.灰黑色薄层状泥晶白云岩,由①至②分别为围岩和充填孔洞白云石,样品X-17,肖下1段;d.灰黑色薄层状藻凝块石白云岩,孔洞部分为亮晶方解石(①)充填,样品X-13,肖下1段;e.凝块石白云岩,由①至②分别为围岩和充填孔洞的白云石,舒探1井,肖上1段,样品ST2-20,埋深1 886 m;f.微生物白云岩,由①至②分别为围岩和充填藻架孔的白云石,肖尔布拉克西沟剖面,样品X-56,肖上1段;g.微生物白云岩,由①至②分别为围岩和充填藻架孔的白云石,肖尔布拉克西沟剖面,样品X-55,肖上1段;h.凝块石白云岩,由①至②分别为围岩和充填裂缝的白云石,肖尔布拉克东1沟剖面,样品D1-49,肖上1段;i.灰黑色薄层藻泥晶白云岩,由①至③分别为围岩和充填裂缝的两期白云石,肖尔布拉克西沟剖面,样品X-35,肖下3段"
表2
塔里木盆地阿克苏地区肖尔布拉克组样品围岩和白云石、方解石胶结物U-Pb同位素年龄及其他地球化学特征"
样品编号 | 样品产状 | 同位素年龄/Ma | 阴极发光 | 地球化学特征 | ||
Δ47或包裹体均一温度/℃ | δ13C(PDB)/‰ | δ18O(PDB)/‰ | ||||
X-30-① | 围岩 | 491.6±9.2 | 不发光 | — | 0~2 | -2~-4 |
X-56-① | 围岩 | 488±24 | 昏暗发光 | — | 0~2 | 0~-3 |
X-17-② | 充填孔洞白云石 | 476±13 | 橙黄色明亮发光 | 149.3 | -1~3 | -6~-12 |
X-13-① | 充填孔洞方解石 | 486±23 | 橙黄色中等发光 | 225 | -2~2 | -9~-17 |
ST2-20-② | 充填藻架孔白云石 | 235.9±4.0 | 橙黄色明亮发光 | 205 | — | — |
X-56-② | 充填藻架孔白云石 | 458±12 | 橙黄色中等发光 | — | — | — |
X-55-② | 充填藻架孔白云石 | 457±17 | 橙黄色中等发光 | — | — | — |
X-30-③ | 充填裂缝方解石 | 204±37 | 亮黄色明亮发光 | 141.5 | -1~2 | -7~-14 |
X-28-② | 充填裂缝方解石 | 471±10 | 亮黄色明亮发光 | 137.5 | -2~2 | -8~-15 |
D1-49-② | 充填裂缝白云石 | 450±15 | 橙黄色明亮发光 | 135 | -2~2 | -7~-12 |
X-35-② | 充填裂缝白云石 | 227.0±4.5 | 橙黄色中等/明亮发光 | — | — | — |
X-35-③ | 充填裂缝白云石 | 14±13 | 橙黄色中等/明亮发光 | — | — | — |
表3
塔里木阿克苏地区肖尔布拉克组样品围岩、白云石和方解石胶结物的微量元素、稀土元素和锶同位素地球化学特征"
样品编号 | 样品产状 | 176Lu/10-6 | 178Hf/10-6 | 206Pb/10-6 | 207Pb/10-6 | 208Pb/10-6 | 238U/10-6 | Sr同位素 |
X-30-① | 围岩 | 0.011 67 | 0.005 1 | 0.690 | 0.310 0 | 0.330 0 | 1.220 0 | 0.708 673 |
X-56-① | 围岩 | 0.034 20 | 0.048 0 | 3.230 | 2.180 0 | 2.210 0 | 2.860 0 | 0.708 922 |
X-17-② | 充填孔洞白云石 | 0.007 06 | 0.000 9 | 0.275 | 0.221 0 | 0.219 0 | 0.153 3 | 0.709 756 |
X-13-① | 充填孔洞方解石 | 0.010 09 | 0 | 0.205 | 0.022 1 | 0.009 1 | 0.644 0 | 0.708 808 |
ST2-20-② | 充填藻架孔白云石 | 0.008 10 | 0 | 0.164 | 0.136 0 | 0.154 0 | 0.225 0 | 0.709 809 |
X-56-② | 充填藻架孔白云石 | 0.009 40 | 0.001 3 | 0.177 | 0.162 0 | 0.176 0 | 0.267 0 | 0.709 106 |
X-55-② | 充填藻架孔白云石 | 0.020 40 | 0 | 1.010 | 0.980 0 | 0.950 0 | 0.125 0 | — |
X-30-③ | 充填裂缝方解石 | 0.018 90 | 0.001 1 | 3.090 | 2.980 0 | 3.060 0 | 0.014 0 | 0.709 386 |
X-28-② | 充填裂缝方解石 | 0.007 85 | 0.006 0 | 2.210 | 2.150 0 | 2.210 0 | 0.042 0 | 0.709 308 |
D1-49-② | 充填裂缝白云石 | 0.043 90 | 0.000 6 | 0.094 | 0.082 0 | 0.093 0 | 0.025 6 | 0.709 357 |
X-35-② | 充填裂缝白云石 | 0.017 50 | 0 | 0.211 | 0.176 0 | 0.171 0 | 0.035 0 | — |
X-35-③ | 充填裂缝白云石 | 0.045 50 | 0 | 0.279 | 0.250 0 | 0.249 0 | 0.026 0 | — |
1 |
王兆荣, 彭子成, 倪守斌, 等. 高精度热电离质谱定年对石笋古温度研究的意义[J]. 自然杂志, 1999, 21 (5): 281- 284.
doi: 10.3969/j.issn.0253-9608.1999.05.010 |
Wang Zhaorong , Peng Zicheng , Ni Shoubin , et al. Dating by high-precision thermal ionization mass spectrometry (TIMS) to the paleotemperature stalagmites from cave meaning[J]. Nature Magazine, 1999, 21 (5): 281- 284.
doi: 10.3969/j.issn.0253-9608.1999.05.010 |
|
2 |
Zhao J X , Neil D T , Feng Yu X , et al. High-precision U-series dating of very young cyclone-transported coral reef blocks from Heron and Wistari reefs, southern Great Barrier Reef, Australia[J]. Quaternary International, 2009, 195 (1-2): 122- 127.
doi: 10.1016/j.quaint.2008.06.004 |
3 | Woodhead J , Hellstrom J , Maas R , et al. U-Pb geochronology of speleothems by MC-ICP-MS[J]. Quaternary Geochronology, 2009, 1 (3): 208- 221. |
4 | Rasbury E T , Cole J M . Directly dating geologic events:U-Pb dating of carbonates[J]. Reviews of Geophysics, 2009, 47 (3): 4288- 4309. |
5 | Pickering R , Kramers J D . A re-appraisal of the stratigraphy and new U\\Pb dates at the Sterkfontein hominin site, South Africa[J]. Journal of Human Evolution, 2010, 56, 70- 86. |
6 |
Woodhead J , Pickering R . Beyond 500ka:Progress and prospects in the U-Pb chronology of speleothems, and their application to studies in palaeoclimate, human evolution, biodiversity and tectonics[J]. Chemical Geology, 2012, 322-323, 290- 299.
doi: 10.1016/j.chemgeo.2012.06.017 |
7 |
Hill C A , Polyak V J , Asmerom Y , et al. Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone[J]. Tectonics, 2016, 35 (4): 896- 906.
doi: 10.1002/2016TC004166 |
8 |
Li Q , Parrish R R , Horstwood M S A , et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376, 76- 83.
doi: 10.1016/j.chemgeo.2014.03.020 |
9 |
Coogan L A , Parrish R R , Roberts N M W . Early hydrothermal carbon uptake by the upper oceanic crust:Insight from in situ U-Pb dating[J]. Geology, 2016, 44 (2): 147- 150.
doi: 10.1130/G37212.1 |
10 |
Roberts N M W , Rasbury T E , Parrish R R , et al. A calcite reference material for LA-ICP-MS U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18 (7): 2807- 2814.
doi: 10.1002/2016GC006784 |
11 |
Godeau N , Deschamps P , Guihou A , et al. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs:Case of the Urgonian Limestone, France[J]. Geology, 2018, 46 (3): 247- 250.
doi: 10.1130/G39905.1 |
12 |
Roberts N M W , Richard W J . U-Pb geochronology of calcite-mineralized faults:absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44 (7): 531- 534.
doi: 10.1130/G37868.1 |
13 | 吴林, 管树巍, 任荣, 等. 前寒武纪沉积盆地发育特征与深层烃源岩分布——以塔里木新元古代盆地与下寒武统烃源岩为例[J]. 石油勘探与开发, 2016, 43 (6): 905- 915. |
Wu Lin , Guan Shuwei , Ren Rong , et al. The characteristics of Precambrian sedimentary basin and the distribution of deep source rock:a case study of Tarim Basin in Neoproterozoic and source rocks in Early Cambrian, Western China[J]. Petroleum Exploration and Development, 2016, 43 (6): 905- 915. | |
14 | 郑剑锋, 袁文芳, 黄理力, 等. 塔里木盆地肖尔布拉克露头区下寒武统肖尔布拉克组沉积相模式及其勘探意义[J]. 古地理学报, 2019, 8 (4): 589- 602. |
Zheng Jianfeng , Yuan Wenfang , Huang Lili , et al. Sedimentary facies model and its exploration significance of the Lower Cambrian Xiaoerblak Formation in Xiaoerblak area, Tarim Basin[J]. Journal of Palaeogeography, 2019, 8 (4): 589- 602. | |
15 | 杜金虎, 潘文庆. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向[J]. 石油勘探与开发, 2016, 43 (3): 327- 339. |
Du Jinhu , Pan Wenqing . Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43 (3): 327- 339. | |
16 | 潘文庆, 陈永权, 熊益学, 等. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义[J]. 天然气地球科学, 2015, 26 (7): 1224- 1232. |
Pan Wenqing , Chen Yongquan , Xiong Yixue , et al. Sedimentary facies research and implications to advantaged exploration regions on Lower Cambrian source rocks, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26 (7): 1224- 1232. | |
17 | 郑剑锋, 沈安江, 刘永福, 等. 塔里木盆地寒武系与蒸发岩相关的白云岩储层特征及主控因素[J]. 沉积学报, 2013, 31 (1): 89- 98. |
Zheng Jianfeng , Shen Anjiang , Liu Yongfu , et al. Main controlling factors and characteristics of Cambrian dolomite reservoirs related to evaporite in Tarim Basin[J]. Acta Sedimentologica Sinica, 2013, 31 (1): 89- 98. | |
18 |
严威, 郑剑锋, 陈永权, 等. 塔里木盆地下寒武统肖尔布拉克组白云岩储层特征及成因[J]. 海相油气地质, 2017, 22 (4): 35- 43.
doi: 10.3969/j.issn.1672-9854.2017.04.005 |
Yan Wei , Zheng Jianfeng , Chen Yongquan , et al. Characteristics and genesis of dolomite reservoir in the Lower Cambrian Xiaoerblak Formation, Tarim Basin[J]. Marine Origin Petroleum Geology, 2017, 22 (4): 35- 43.
doi: 10.3969/j.issn.1672-9854.2017.04.005 |
|
19 | 沈安江, 郑剑锋, 陈永权, 等. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布[J]. 石油勘探与开发, 2016, 43 (3): 340- 349. |
Shen Anjiang , Zheng Jianfeng , Chen Yongquan , et al. Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43 (3): 340- 349. | |
20 | 黄擎宇, 胡素云, 潘文庆, 等. 台内微生物丘沉积特征及其对储层发育的控制:以塔里木盆地柯坪-巴楚地区下寒武统肖尔布拉克组为例[J]. 天然气工业, 2016, 36 (6): 21- 29. |
Huang Qqinyu , Hu Suyun , Pan Wenqing , et al. Sedimentary characteristics of intraplatform microbial mounds and their controlling effects on the development of reservoirs:a case study of the Lower Cambrian Xiaoerbulake Fm.in the Keping-Bachu area, Tarim Basin[J]. Natural Gas Industry, 2016, 36 (6): 21- 29. | |
21 | 乔占峰, 沈安江, 倪新锋, 等. 塔里木盆地下寒武统肖尔布拉克组丘滩体系类型及其勘探意义[J]. 石油与天然气地质, 2019, 40 (2): 392- 402. |
Qiao Zhanfeng , Shen Anjiang , Ni Xinfeng , et al. Types of mound-shoal complex of the Lower Cambrian Xiaoerbulake Formation in Tarim Basin, northwest China, and its implications for exploration[J]. Oil & Gas Geology, 2019, 40 (2): 392- 402. | |
22 |
Vaks A , Woodhead J , Bar-Matthews M , et al. Pliocene-Pleistocene climate of the northern margin of Saharan-Arabian Desert recorded in speleothems from the Negev Desert, Israel[J]. Earth and Planetary Science Letters, 2013, 368, 88- 100.
doi: 10.1016/j.epsl.2013.02.027 |
23 |
Mason A J , Henderson G M , Vaks A . An acetic acid-based extraction protocol for the recovery of U, Th and Pb from calcium carbonates for U-(Th)-Pb geochronology[J]. Geostandards and Geoanalytical Research, 2013, 37 (3): 261- 275.
doi: 10.1111/j.1751-908X.2013.00219.x |
24 |
Nuriel P , Weinberger R , Kylander-Clark A R C , et al. The onset of the Dead Sea transform based on calcite age-strain analyses[J]. Geology, 2017, 45 (7): 587- 590.
doi: 10.1130/G38903.1 |
25 | 郑剑锋, 严威, 黄理力, 等. 苏盖特布拉克剖面肖尔布拉克组储层建模研究及其勘探意义[J]. 沉积学报, 2013, 37 (3): 601- 609. |
Zheng Jianfeng , Yan Wei , Huang Lili , et al. Reservoir modeling of the Lower Cambrian Xiaoerblak Formation in the Sugaitblak section and its significance for exploring regions in the Tarim Basin, NW China[J]. Acta Sedimentologica Sinica, 2019, 37 (3): 601- 609. | |
26 | 李斌, 彭军, 杨素举, 等. 塔里木盆地巴楚地区寒武系肖尔布拉克组储层特征及成因模式[J]. 石油实验地质, 2017, 39 (6): 797- 804. |
Li Bin , Peng Jun , Yang Suju , et al. Genetic model and characteristics of the Cambrian Shorebulake reservoir in Bachu area, Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39 (6): 797- 804. | |
27 | 王珊, 曹颖辉, 杜德道, 等. 塔里木盆地柯坪-巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29 (6): 784- 795. |
Wang Shan , Cao Yinghui , Du Dedao , et al. The characteristics and main controlling factors of dolostone reservoir in Lower Cambrian Xiaoerbulak Formation in Keping-Bachu area, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2018, 29 (6): 784- 795. | |
28 | 沈安江, 赵文智, 胡安平, 等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42 (5): 545- 554. |
Shen Anjiang , Zhao Wenzhi , Hu Anping , et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42 (5): 545- 554. | |
29 | Clyde H M . Carbonate reservoirs-porosity evolution and diagenesis in a sequence stratigraphic framework[M]. Amsterdam: Elsevier, 2001: 293- 298. |
30 |
李慧莉, 邱楠生, 金之钧, 等. 塔里木盆地的热史[J]. 石油与天然气地质, 2005, 26 (5): 613- 617.
doi: 10.3321/j.issn:0253-9985.2005.05.009 |
Li Huili , Qiu Nansheng , Jin Zhijun , et al. Geochermal history of Tarim Basin[J]. Oil & Gas Geology, 2005, 26 (5): 613- 617.
doi: 10.3321/j.issn:0253-9985.2005.05.009 |
|
31 | 庄新兵, 顾忆, 邵志兵, 等. 塔里木盆地地温场对油气成藏过程的控制作用-以古城墟隆起为例[J]. 石油学报, 2017, 38 (5): 502- 511. |
Zhuang Xinbing , Gu Yi , Shao Zhibing , et al. Control effect of geothermal field on hydrocarbon accumulation process in Tarim Basin:a case study of Guchengxu uplift[J]. Acta Petrolei Sinica, 2017, 38 (5): 502- 511. | |
32 | 张水昌, 高志勇, 李建军, 等. 塔里木盆地寒武系-奥陶系海相烃源岩识别与分布预测[J]. 石油勘探与开发, 2012, 39 (3): 285- 294. |
Zhang Shuichang , Gao Zhiyong , Li Jianjun , et al. Identification and distribution of marine hydrocarbon source rocks in the Ordovician and Cambrian of the Tarim Basin[J]. Petroleum Exploration and Devolopment, 2012, 39 (3): 285- 294. | |
33 | 云金表, 金之钧, 解国军, 等. 塔里木盆地下古生界主力烃源岩分布[J]. 石油与天然气地质, 2014, 35 (6): 827- 838. |
Yun Jinbiao , Jin Zhijun , Xie Guojun . Distribution of major hydrocarbon source rocks in the Lower Palaeozoic, Tarim Basin[J]. Oil & Gas Geology, 2014, 35 (6): 827- 838. | |
34 |
张光亚, 赵文智, 王红军, 等. 塔里木盆地多旋回构造演化与复合含油气系统[J]. 石油与天然气地质, 2007, 28 (5): 653- 663.
doi: 10.3321/j.issn:0253-9985.2007.05.017 |
Zhang Guangya , Zhao Wenzhi , Wang Hongjun , et al. Multicycle tectonic evolution and composite petroleum system in the Tarim Basin[J]. Oil & Gas Geology, 2007, 28 (5): 653- 663.
doi: 10.3321/j.issn:0253-9985.2007.05.017 |
|
35 | 杨勇, 汤良杰, 刁新东, 等. 塔里木盆地雅克拉断凸断裂差异变形特征及其控制因素[J]. 石油与天然气地质, 2018, 39 (1): 89- 97. |
Yang Yong , Tang Liangjie , Diao Xindong , et al. Differential deformation and its control mechanism of fault structures in Yakela fault-salient, Tarim Basin[J]. Oil & Gas Geology, 2018, 39 (1): 89- 97. | |
36 | 刘红光, 刘波, 曹鉴华, 等. 塔里木盆地玉北地区中-下奥陶统储层发育特征及控制因素[J]. 石油与天然气地质, 2018, 39 (1): 107- 118. |
Liu Hongguang , Liu Bo , Cao Jianhua , et al. Characteristics and controlling factors of Lower-Middle Ordovician reservoirs in Yubei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39 (1): 107- 118. | |
37 | 黄诚. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别:以塔里木盆地顺北地区为例[J]. 石油实验地质, 2019, 41 (3): 379- 389. |
Huang Cheng . Multi-stage activity characteristics of small-scale strike-slip faults in superimposed basin and its identification method:a case study of Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41 (3): 379- 389. | |
38 | 韩强, 黄太柱, 耿锋, 等. 塔里木盆地北部雅克拉地区海相油气成藏特征与运聚过程[J]. 石油实验地质, 2019, 41 (5): 648- 656. |
Han Qiang , Huang Taizhu , GengG Feng , et al. Marine oil and gas accumulation in Yakela area, northern Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41 (5): 648- 656. | |
39 |
邬光辉, 李启明, 肖中尧, 等. 塔里木盆地古隆起演化特征及油气勘探[J]. 大地构造与成矿学, 2009, 33 (1): 124- 130.
doi: 10.3969/j.issn.1001-1552.2009.01.016 |
Wu Guanghui , Li Qimign , Xiao Zhongyao , et al. The evolution characteristics of palaeo-uplifts in Tarim Basin and its exploration directions for oil and gas[J]. Geotectonica et Metallogenia, 2009, 33 (1): 124- 130.
doi: 10.3969/j.issn.1001-1552.2009.01.016 |
|
40 | 谭万仓. 群克构造志留系储层包裹体特征与油气成藏过程[J]. 大庆石油地质与开发, 2018, 37 (4): 38- 43. |
Tan Wanchang . Fluid inclusion characteristics and hydrocarbon accumulation process for Silurian reservoirs in Qunke structure[J]. Petroleum Geology & Oilfield Development in Daqing, 2018, 37 (4): 38- 43. | |
41 | 乔桂林, 赵永强, 沙旭光, 等. 塔里木盆地塔中隆起南坡油气勘探领域[J]. 石油实验地质, 2019, 41 (5): 630- 637. |
Qiao Guilin , Zhao Yongqiang , Sha Xuguang , et al. Oil and gas exploration domains on the southern slope of Central Tarim Uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41 (5): 630- 637. | |
42 | 李宏卫, 曹建劲, 李红中, 等. 油气包裹体在确定油气成藏年代及期次中的应用[J]. 中山大学研究生学刊(自然科学、医学版), 2008, 29 (4): 29- 35. |
Li Hongwei , Cao Jianjin , Li Hongzhong , et al. Application of oil-gas inclusion to the reservoir formation time and accumulation periods of the oil-gas reservoirs[J]. Journal of the Graduates Sun Tai-sen University (Natural Science, Medicine), 2008, 29 (4): 29- 35. | |
43 | 刘文汇, 王杰, 陶成, 等. 中国海相层系油气成藏年代学[J]. 天然气地球科学, 2013, 24 (2): 199- 209. |
Liu Wenhui , Wang Jie , Tao cheng , et al. The geochronology of petroleum accumulation of China marine sequence[J]. Natural Gas Geosciences, 2013, 24 (2): 199- 209. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[8] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[9] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[10] | 屈海洲, 郭新宇, 徐伟, 李文皓, 唐松, 邓雅霓, 何仕鹏, 张云峰, 张兴宇. 碳酸盐岩微孔隙的分类、成因及对岩石物理性质的影响[J]. 石油与天然气地质, 2023, 44(5): 1102-1117. |
[11] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[12] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[13] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[14] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
[15] | 李斌, 赵星星, 邬光辉, 韩剑发, 关宝珠, 沈春光. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||