1 |
BATES C C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9): 2119-2162.
|
2 |
SYVITSKI J P M. Supply and flux of sediment along hydrological pathways: Research for the 21st Century[J]. Global and Planetary Change, 2003, 39(1/2): 1-11.
|
3 |
MULDER T, SYVITSKI J P M. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103: 285-299.
|
4 |
MULDER T, SYVITSKI J P M, MIGEON S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/8): 861-882.
|
5 |
MULDER T, ALEXANDER J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299.
|
6 |
CLARE M A, TALLING P J, CHALLENOR P, et al. Distal turbidites reveal a common distribution for large (>0.1 km3) submarine landslide recurrence[J]. Geology, 2014, 42(3): 263-266.
|
7 |
ZAVALA C, CARVAJAL, MARCANO, et al. Sedimentological indexes: a new tool for regional studies of hyperpycnal systems[C]// Sediment Transfer from Shelf to Deepwater-Revisiting the Delivery Mechanisms, Ushuaia, 2008. Tulsa: American Association of Petroleum Geologists, 2008: 1-4.
|
8 |
ZAVALA C, ARCURI M, DI MEGLIO M, et al. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits[M]//SLATT R M, ZAVALA C. Sediment Transfer from Shelf to Deep Water—Revisiting the Delivery System. Tulsa: American Association of Petroleum Geologists, 2011: 31-51.
|
9 |
ZAVALA C, ARCURI M, GAMERO H, et al. The composite bed: A new distinctive feature of hyperpycnal deposition[C]//AAPG Annual Convention, Long Beach, 2007. Tulsa: American Association of Petroleum Geologists, 2007: 90063.
|
10 |
ZAVALA C, PONCE J J, ARCURI M, et al. Ancient lacustrine hyperpycnites: A depositional model from a case study in the Rayoso Formation (Cretaceous) of west-central Argentina[J]. Journal of Sedimentary Research, 2006, 76(1): 41-59.
|
11 |
ZAVALA C, 潘树新. 异重流成因和异重岩沉积特征[J]. 岩性油气藏, 2018, 30(1): 1-18.
|
|
ZAVALA C, PAN Shuxin. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1): 1-18.
|
12 |
ZAVALA C, GAMERO H, ARCURI M. Lofting rhythmites: A diagnostic feature for the recognition of hyperpycnal deposits[C]//ALLISONPA, WELLSMR, PRATTBR. 2006 Philadelphia Annual Meeting: T137. EPI-Continental Seas in the Geological Record: The Limitations of the Uniformitarian Paradigm II, Philadelphia, 2006. Tulsa: Geological Society of America, 2006: 11.
|
13 |
PETTER A L, STEEL R J. Deepwater-slope channels and hyperpycnal flows from the Eocene of the central Spitsbergen Basin: Predicting basin-floor sands from a shelf edge/upper slope perspective[C]//AAPG Annual Meeting, Calgary, 2005. Tulsa: American Association of Petroleum Geologists, 2005: 90039.
|
14 |
PAN Shuxin, LIU Huaqing, ZAVALA C, et al. Sublacustrine hyperpycnal channel-fan system in a large depression basin: A case study of Nen 1 Member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2017, 44(6): 911-922.
|
15 |
YANG Renchao, JIN Zhijun, LOON A J (Tom) VAN, et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
|
16 |
栾国强, 董春梅, 林承焰, 等. 异重流发育条件、演化过程及沉积特征[J]. 石油与天然气地质, 2018, 39(3): 438-453.
|
|
LUAN Guoqiang, DONG Chunmei, LIN Chengyan, et al. Development conditions, evolution process and depositional features of hyperpycnal flow[J]. Oil & Gas Geology, 2018, 39(3): 438-453.
|
17 |
李华, 何幼斌, 谈梦婷, 等. 深水重力流水道-朵叶体系形成演化及储层分布——以鄂尔多斯盆地西缘奥陶系拉什仲组露头为例[J]. 石油与天然气地质, 2022, 43(4): 917-928.
|
|
LI Hua, HE Youbin, TAN Mengting, et al. Evolution of and reservoir distribution within deep-water gravity flow channel-lobe system: A case study of the Ordovician Lashenzhong Formation outcrop at western margin of Ordos Basin[J]. Oil & Gas Geology, 2022, 43(4): 917-928.
|
18 |
邵雨, 杨勇强, 万敏, 等. 吉木萨尔凹陷二叠系芦草沟组沉积特征及沉积相演化[J]. 新疆石油地质, 2015, 36(6): 635-641.
|
|
SHAO Yu, YANG Yongqiang, WAN Min, et al. Sedimentary characteristic and facies evolution of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2015, 36(6): 635-641.
|
19 |
杨志浩, 李胜利, 于兴河, 等. 准噶尔盆地南缘中二叠统芦草沟组富砂型湖泊深水扇沉积特征及其相模式[J]. 古地理学报, 2018, 20(6): 989-1000.
|
|
YANG Zhihao, LI Shengli, YU Xinghe, et al. Sedimentary characteristics and facies model of deep-water fan in sand-rich lake of the Middle Permian Lucaogou Formation in southern Junggar Basin[J]. Journal of Palaeogeography, 2018, 20(6): 989-1000.
|
20 |
李书琴, 印森林, 高阳, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学, 2020, 31(2): 235-249.
|
|
LI Shuqin, YIN Senlin, GAO Yang, et al. Study on sedimentary microfacies of mixed fine-grained rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2020, 31(2): 235-249.
|
21 |
张奎华, 曹忠祥, 王越, 等. 博格达地区中二叠统芦草沟组沉积相及沉积演化[J]. 油气地质与采收率, 2020, 27(4): 1-12.
|
|
ZHANG Kuihua, CAO Zhongxiang, WANG Yue, et al. Sedimentary facies and evolution of Middle Permian Lucaogou Formation in Bogda area[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 1-12.
|
22 |
王越, 林会喜, 张奎华, 等. 博格达山周缘中二叠统芦草沟组与红雁池组沉积特征及演化[J]. 沉积学报, 2018, 36(3): 500-509.
|
|
WANG Yue, LIN Huixi, ZHANG Kuihua, et al. Sedimentary characteristics and evolution of the middle Permain Lucaogou Formation and Hongyanchi Formation on the periphery of Bogda Mountain[J]. Acta Sedimentologica Sinica, 2018, 36(3): 500-509.
|
23 |
李映艳, 陈轩, 高阳, 等. 井震结合分析页岩油“甜点”沉积特征及分布——以吉木萨尔凹陷芦草沟组“下甜点” 为例[J]. 断块油气田, 2023, 30(2): 186-195.
|
|
LI Yingyan, CHEN Xuan, GAO Yang, et al. Sedimentary morphologys and distributions of shale oil “sweet spot” by the data of well to seismic analysis: A case study of the lower sweet pot in Lucaogou Formation of Jimsar Sag[J]. Fault-Block Oil and Gas Field, 2023, 30(2): 186-195.
|
24 |
邓远, 陈轩, 覃建华, 等. 吉木萨尔凹陷二叠系芦草沟组一段沉积期古地貌特征及有利储层分布[J/OL].岩性油气藏: 1-9[2023-05-01]. .
|
|
DENG Yuan, CHEN Xuan, QIN Jianhua, et al. Paleogeomorphology and favorable reservoir distribution of the first member of Permian Lucaogou Formation in Jimsar Sag[J/OL]. Lithologic Reservoirs: 1-9[2023-05-01]. .
|
25 |
印森林, 陈恭洋, 许长福, 等. 陆相混积细粒储集岩岩相构型及其对甜点的控制作用——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组页岩油为例[J]. 石油与天然气地质, 2022, 43(5): 1180-1193.
|
|
YIN Senlin, CHEN Gongyang, XU Changfu, et al. Lithofacies architecture of lacustrine fine-grained mixed reservoirs and its control over sweet spot: A case study of Permian Lucaogou Formation shale oil reservoir in the Jimsar Sag, Juggar Basin[J]. Oil & Gas Geology, 2022, 43(5): 1180-1193.
|
26 |
马克, 侯加根, 董虎, 等. 页岩油储层混合细粒沉积孔喉特征及其对物性的控制作用——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油与天然气地质, 2022, 43(5): 1194-1205.
|
|
MA Ke, HOU Jiagen, DONG Hu, et al. Pore throat characteristics of fine-grained mixed deposits in shale oil reservoirs and their control on reservoir physical properties: A case study of the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(5): 1194-1205.
|
27 |
支东明, 宋永, 何文军, 等. 准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向[J]. 新疆石油地质, 2019, 40(4): 389-401.
|
|
ZHI Dongming, SONG Yong, HE Wenjun, et al. Geological characteristics, resource potential and exploration direction of shale oil in Middle-Lower Permian, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 389-401.
|
28 |
WANG Jian, CAO Yingchang, WANG Xintong, et al. Sedimentological constraints on the initial uplift of the West Bogda mountains in Mid-Permian[J]. Scientific Reports, 2018, 8(1): 1453.
|
29 |
孙龙德, 赵文智, 刘合, 等. 页岩油 “甜点” 概念及其应用讨论[J]. 石油学报, 2023, 44(1):1-13.
|
|
SUN Longde, ZHAO Wenzhi, LIU He, et al. Concept and application of “sweet spot” in shale oil[J]. Acta Petrolei Sinica, 2023, 44(1): 1-13.
|