石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (1): 151-166.doi: 10.11743/ogg20250111

• 油气地质 • 上一篇    下一篇

深层-超深层碎屑岩优质储层成因机理

王继远1,2(), 王斌1,2(), 胡宗全3, 商丰凯4, 刘德志4, 李振明1,2, 邱岐1,2, 宋振响1,2, 胡志啟5   

  1. 1.中国石化 石油勘探开发研究院 无锡石油地质研究所,江苏 无锡 214126
    2.中国石化 油气成藏重点实验室,江苏 无锡 214126
    3.中国石化 石油勘探开发研究院,北京 102206
    4.中国石化 胜利油田分公司 勘探开发研究院,山东 东营 257001
    5.中国地质大学(武汉) 资源学院,湖北 武汉 430074
  • 收稿日期:2024-07-09 修回日期:2024-11-10 出版日期:2025-02-28 发布日期:2025-03-03
  • 通讯作者: 王斌 E-mail:wangjy1992.syky@sinopec.com;wangbin.syky@sinopec.com
  • 第一作者简介:王继远(1990—),男,博士研究生、工程师,油气储层表征与评价。E-mail: wangjy1992.syky@sinopec.com
  • 基金项目:
    中国石化科技部基础前瞻性项目(2023JCQZ0037)

Genetic mechanisms of high-quality deep to ultra-deep clastic reservoirs: A case study of the Permian-Triassic strata in the hinterland of the Junggar Basin

Jiyuan WANG1,2(), Bin WANG1,2(), Zongquan HU3, Fengkai SHANG4, Dezhi LIU4, Zhenming LI1,2, Qi QIU1,2, Zhenxiang SONG1,2, Zhiqi HU5   

  1. 1.Wuxi Institute of Petroleum Geology,Petroleum Exploration and Production Research Institute,SINOPEC,Wuxi,Jiangsu 214126,China
    2.Key Laboratory of Hydrocarbon Accumulation,SINOPEC,Wuxi,Jiangsu 214126,China
    3.Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 102206,China
    4.Exploration and Development Research Institute,Shengli Oilfield Branch Company,SINOPEC,Dongying,Shandong 257001,China
    5.School of Earth Resources,China University of Geosciences (Wuhan),Wuhan,Hubei 430074,China
  • Received:2024-07-09 Revised:2024-11-10 Online:2025-02-28 Published:2025-03-03
  • Contact: Bin WANG E-mail:wangjy1992.syky@sinopec.com;wangbin.syky@sinopec.com

摘要:

为了揭示准噶尔盆地腹部深层-超深层碎屑岩优质储层成因机理,利用盆地腹部地区最新钻井资料及岩心样品,通过铸体薄片、扫描电镜、能谱和包裹体分析以及XRD等测试方法,对二叠系上乌尔禾组和三叠系百口泉组与克拉玛依组储层成因进行研究。结果表明:成岩演化差异控制了原生孔隙和次生溶蚀孔隙的发育。克拉玛依组经历了压实、绿泥石包壳式胶结、长石/火山岩岩屑溶蚀、硅质胶结、自生伊利石沉淀以及晚期方解石胶结,其中绿泥石包壳是原生孔隙保存的最主要成岩矿物;上乌尔禾组经历了压实、绿泥石充填式胶结、浊沸石胶结、浊沸石/长石/火山岩岩屑溶蚀、硅质胶结、自生伊利石沉淀以及晚期方解石胶结,其中早期浊沸石胶结以及浊沸石、长石和火山岩岩屑酸性溶蚀是次生孔隙发育的关键成岩作用。受浅水辫状河三角洲前缘水下分流河道高能相带强水动力淘洗,储层原始孔隙结构优越,与早成岩期的绿泥石包壳及强超压共同控制原生孔隙的保存。中-基性火山岩岩屑水化蚀变成因的高硬度浊沸石早期胶结,抵抗了快速深埋阶段的压实减孔。多期生烃酸性流体伴随超压传递促进硅铝酸盐矿物溶蚀增孔。低地温背景下,上乌尔禾组-百口泉组仍处于中成岩A-B期,减缓了成岩演化进程,有效孔隙发育的下限深度增加。

关键词: 成因机理, 优质储层, 深层-超深层, 上乌尔禾组, 百口泉组, 克拉玛依组, 准噶尔盆地

Abstract:

This study aims to reveal the genetic mechanisms underlying high-quality deep to ultra-deep clastic reservoirs in the hinterland of the Junggar Basin. Using the latest drilling data and core samples from the hinterland, as well as data from casting thin section observations, scanning electron microscopy (SEM), spectral analysis, inclusion analysis, and X-ray diffraction (XRD) analysis, we investigate the origins of reservoirs in the Permian Upper Urho Formation and the Triassic Baikouquan and Karamay formations. The results indicate that differential diagenetic evolution governs the development of primary pores and secondary dissolution pores. The Karamay Formation underwent compaction, chlorite coating cementation, dissolution of feldspar/volcanic detritus, siliceous cementation, authigenic illite precipitation, and the late-stage calcite cementation sequentially, during which chlorite coatings emerged as the most significant diagenetic mineral for the preservation of primary pores. In contrast, the Upper Urho Formation experienced compaction, chlorite filling cementation, laumontite cementation, dissolution of laumontite/feldspar/volcanic detritus, siliceous cementation, authigenic illite precipitation, and the late-stage calcite cementation in sequence. The early-stage laumontite cementation and acid dissolution of laumontite/feldspar/volcanic detritus, among others, play a critical role in the formation of secondary pores. In the subaqueous distributary channels at the front of the shallow braided river delta, the strong hydrodynamic elutriation in high-energy facies zones results in superior primary pore structures in these reservoirs. This, combined with early-stage chlorite coatings and significant overpressure, collectively contributes to the preservation of primary pores. The early-stage cementation of high-hardness laumontite formed by the hydrothermal alteration of intermediate-mafic volcanic detritus resists the compaction and porosity reduction in the rapid deep burial stage. The acidic fluids from multi-stage hydrocarbon generation and overpressure transfer jointly accelerate the dissolution of aluminosilicate minerals and porosity enhancement. Under the background of low geotemperature, the Upper Urho-Baikouquan formations remain in middle diagenetic stages A and B, which has slowed down the diagenetic evolution and increased the lower depth limit for effective porosity development.

Key words: genetic mechanism, high-quality reservoir, deep to ultra-deep strata, Upper Urho Formation, Baikouquan Formation, Karamay Formation, Junggar Basin

中图分类号: