石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (5): 1289-1304.doi: 10.11743/ogg20240507
冯德浩1,2(), 刘成林1,2(), 杨海波3, 韩杨3, 杨小艺1,2, 苏加佳1,2, 李国雄1,2, 张景坤1,2
收稿日期:
2024-05-14
修回日期:
2024-07-19
出版日期:
2024-10-30
发布日期:
2024-11-06
通讯作者:
刘成林
E-mail:apparate_z@126.com;liucl@cup.edu.cn
第一作者简介:
冯德浩(1997—),男,博士研究生,咸化湖盆成烃、成储和成藏。E-mail: apparate_z@126.com。
基金项目:
Dehao FENG1,2(), Chenglin LIU1,2(), Haibo YANG3, Yang HAN3, Xiaoyi YANG1,2, Jiajia SU1,2, Guoxiong LI1,2, Jingkun ZHANG1,2
Received:
2024-05-14
Revised:
2024-07-19
Online:
2024-10-30
Published:
2024-11-06
Contact:
Chenglin LIU
E-mail:apparate_z@126.com;liucl@cup.edu.cn
摘要:
中二叠统咸化湖相页岩是准噶尔盆地东部最重要的烃源岩,研究其生气潜力及成藏贡献对油气勘探具有重要的意义。根据近年来新钻井的录井、岩石学、有机地球化学、半开放体系热模拟实验及天然气地球化学分析数据,系统评价了中二叠统咸化湖相烃源岩的生气潜力,研究了天然气成因和来源,提出了有利的天然气勘探领域。研究表明:①东道海子凹陷中二叠统咸化湖相烃源岩厚度自边缘向凹陷中心逐渐增大,凹陷中部厚度普遍超过350 m,最厚可达600 m。阜康凹陷存在2个中二叠统咸化湖相烃源岩厚度高值区,其中东北缘烃源岩厚度主要为200 ~ 250 m,中南部烃源岩厚度超过400 m。阜康凹陷和东道海子凹陷中二叠统咸化湖相烃源岩以中等—极好烃源岩为主,发育倾油型生烃母质,具有厚度大、滞留烃含量高、普遍达到生气窗的特点,具备规模生气潜力。②准噶尔盆地东部发现来自于咸化湖相烃源岩生成的油型气,主要分布在阜康凹陷、东道海子凹陷和阜康断裂带,克拉美丽气田和彩南油气田煤型气也混有中二叠统生成的油型气。③阜康凹陷和东道海子凹陷超深层是油型气勘探的有利地区,主要包括源外常规气、源内致密气和源内页岩气3个有利的天然气勘探领域。
中图分类号:
图2
准噶尔盆地东部中二叠统咸化湖相烃源岩岩石学镜下特征(吉木萨尔凹陷图件引自文献[25-26])a. 吉木萨尔凹陷,J10025井,页岩,埋深2 292.50 m,单偏光照片;b. 吉木萨尔凹陷,J174井,页岩,埋深3 227.10 m,正交光照片;c. 北三台凸起,S123井,页岩,埋深2 565.50 m,单偏光照片;d. 北三台凸起,S123井,页岩,埋深2 544.49 m,单偏光照片;e. 阜康凹陷,F49井,页岩,埋深5 624.27 m,单偏光照片;f. 阜康凹陷,KT3井,页岩,埋深5 829.55 m,正交光照片;g. 东道海子凹陷,DN21井,页岩,埋深4 940.47 m,单偏光照片;h. 东道海子凹陷,DN21井,页岩,埋深4 940.94 m,单偏光照片;i. 五彩湾凹陷,C57井,页岩,埋深2 396.00 m,单偏光照片"
图6
准噶尔盆地东部中二叠统咸化湖相烃源岩有机显微组分特征(吉木萨尔凹陷图件引自文献[27])a. 吉木萨尔凹陷,埋深3 577.10 m,荧光照片;b. 吉木萨尔凹陷,埋深 3 518.25 m,荧光照片;c. 北三台凸起,S123井,埋深2 480.15 m,荧光照片;d. 北三台凸起,S123井,埋深2 541.84 m,荧光照片;e. 阜康凹陷,F49井,埋深5 626.08 m,荧光照片;f. 阜康凹陷,F50井,埋深4 335.11 m,荧光照片;g. 东道海子凹陷,DN12井,埋深3 862.52 m,荧光照片;h. 东道海子凹陷,DN21井,埋深4 940.47 m,荧光照片;i. 五彩湾凹陷,C57井,埋深2 396.00 m,荧光照片"
表2
准噶尔盆地东部中二叠统咸化湖相烃源岩半开放体系烃类气产率"
温度/℃ | Ro/% | 单温阶模拟 | 连续递进升温模拟 | ||||
---|---|---|---|---|---|---|---|
甲烷产率/ (mg/g) | 湿气产率/ (mg/g) | 烃类气产率/ (mg/g) | 甲烷产率/ (mg/g) | 湿气产率/ (mg/g) | 烃类气产率/ (mg/g) | ||
250 | 0.56 | 4.75 | 11.44 | 16.20 | 6.58 | 8.35 | 14.93 |
300 | 0.67 | 3.33 | 15.53 | 18.87 | 10.55 | 14.73 | 25.29 |
325 | 0.79 | 5.10 | 19.73 | 24.82 | 12.05 | 19.68 | 31.73 |
350 | 1.01 | 9.19 | 33.07 | 42.26 | 16.28 | 35.93 | 52.20 |
375 | 1.31 | 17.73 | 58.73 | 76.46 | 26.93 | 78.12 | 105.05 |
400 | 1.59 | 40.97 | 159.68 | 200.65 | 35.48 | 107.22 | 142.70 |
425 | 1.97 | 54.99 | 185.25 | 240.25 | 41.21 | 111.25 | 152.46 |
450 | 2.64 | 92.96 | 223.56 | 316.52 | 47.19 | 112.63 | 159.82 |
500 | 3.15 | 164.68 | 138.01 | 302.69 | 56.22 | 113.81 | 170.03 |
表3
准噶尔盆地东部中二叠统咸化湖相页岩半开放体系热模拟气碳同位素组成"
温度/℃ | Ro/% | 单温阶模拟 | 连续递进升温模拟 | ||||||
---|---|---|---|---|---|---|---|---|---|
δ13C1/‰ | δ13C2/‰ | δ13C3/‰ | δ13C4/‰ | δ13C1/‰ | δ13C2/‰ | δ13C3/‰ | δ13C4/‰ | ||
250 | 0.56 | -31.7 | — | — | — | -41.6 | -29.6 | -27.8 | -31.5 |
300 | 0.67 | -37.4 | -34.0 | -33.3 | — | -41.4 | -31.2 | -29.2 | -32.0 |
325 | 0.79 | -44.1 | -37.2 | -35.9 | -34.9 | -44.6 | -35.6 | -35.6 | -36.5 |
350 | 1.01 | -47.5 | -38.6 | -37.6 | -36.5 | -46.5 | -38.7 | -38.2 | -37.3 |
375 | 1.31 | -48.2 | -38.9 | -38.0 | -36.4 | -48.9 | -38.6 | -37.8 | -36.4 |
400 | 1.59 | -48.1 | -39.5 | -37.3 | -35.7 | -43.7 | -36.7 | -35.4 | -34.2 |
425 | 1.97 | -45.9 | -37.1 | -34.6 | -31.7 | -36.3 | -29.4 | -30.3 | — |
450 | 2.64 | -44.6 | -36.6 | -31.7 | -24.6 | -29.6 | — | — | — |
500 | 3.15 | -41.0 | -30.0 | -26.5 | -31.5 | -27.6 | — | — | — |
表4
准噶尔盆地东部地区已发现天然气成因分类"
类别 | 甲烷含量/% | δ13C1/‰ | δ13C2/‰ | δ13C3/‰ | 干燥系数 | 成因 | 烃源岩 |
---|---|---|---|---|---|---|---|
Ⅰ类 | 71.27 ~ 96.21 (87.48)/124 | -35.90 ~ -27.40 (-31.16)/125 | -27.68 ~ -22.20 (-26.07)/125 | -26.90 ~ -17.20 (-24.57)/117 | 0.75 ~ 0.99 (0.92)/124 | 高熟煤型气 | 石炭系 |
ⅡA类 | 67.27 ~ 94.74 (85.38)/13 | -39.97 ~ -36.04 (-38.03)/13 | -27.80 ~ -22.55 (-26.41)13 | -26.10 ~ -17.10 (-23.67)/12 | 0.70 ~ 0.98 (0.88)/13 | 成熟煤型气 | 侏罗系 |
ⅡB类 | 77.91 ~ 98.69 (91.78)/7 | -50.70 ~ -42.24 (-45.92)/8 | -28.70 ~ -23.06 (-26.38)/7 | -26.90 ~ -18.90 (-22.31)/4 | 0.79 ~ 0.99 (0.94)/7 | 低熟煤型气 | 侏罗系 |
ⅢA类 | 22.58 ~ 95.14 (81.86)/56 | -38.60 ~ -26.78 (-32.13)/56 | -32.40 ~ -26.89 (-28.24)/56 | -30.60 ~ -24.03 (-26.41)/56 | 0.62 ~ 0.98 (0.88)/56 | 高熟油型气 | 中二叠统 |
ⅢB类 | 67.03 ~ 97.06 (82.97)/23 | -45.70 ~ -38.20 (-39.88)/23 | -33.30 ~ -27.90 (-29.37)/23 | -32.50 ~ -25.20 (-27.11)/22 | 0.69 ~ 0.99 (0.87)/23 | 成熟油型气 | 中二叠统 |
ⅢC类 | 91.51 ~ 98.34 (95.78)/6 | -51.40 ~ -46.20 (-48.01)/8 | -33.10 ~ -31.40 (-32.04)/8 | -30.70 ~ -23.60 (-27.97)/3 | 0.95 ~ 0.99 (0.98)/6 | 低熟油型气 | 中二叠统 |
1 | WARREN J K. Evaporites: A geological compendium[M]. 2nd ed. Cham: Springer, 2016: 833-955. |
2 | VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5): 719-833. |
3 | TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin: Springer, 1984: 160-228. |
4 | LI Jian, MA Wei, WANG Yifeng, et al. Modeling of the whole hydrocarbon-generating process of sapropelic source rock[J]. Petroleum Exploration and Development, 2018, 45(3): 461-471. |
5 | 郭旭升, 马晓潇, 黎茂稳, 等. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
GUO Xusheng, MA Xiaoxiao, LI Maowen, et al. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. | |
6 | 黎茂稳, 马晓潇, 金之钧, 等. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J]. Oil & Gas Geology, 2022, 43(1): 1-25. | |
7 | XIA Liuwen, CAO Jian, HU Wenxuan, et al. Paleo-environmental conditions and organic carbon accumulation during glacial events: New insights from saline lacustrine basins[J]. Global and Planetary Change, 2023, 227: 104162. |
8 | 何涛华, 李文浩, 谭昭昭, 等. 南襄盆地泌阳凹陷核桃园组页岩油富集机制[J]. 石油与天然气地质, 2019, 40(6): 1259-1269. |
HE Taohua, LI Wenhao, TAN Zhaozhao, et al. Mechanism of shale oil accumulation in the Hetaoyuan Formation from the Biyang Depression, Nanxiang Basin[J]. Oil & Gas Geology, 2019, 40(6): 1259-1269. | |
9 | 刘惠民, 杨怀宇, 张鹏飞, 等. 古湖泊水介质条件对混积岩相组合沉积的控制作用——以渤海湾盆地东营凹陷古近系沙河街组三段为例[J]. 石油与天然气地质, 2022, 43(2): 297-306. |
LIU Huimin, YANG Huaiyu, ZHANG Pengfei, et al. Control effect of paleolacustrine water conditions on mixed lithofacies assemblages: A case study of the Palaeogene Es3, Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(2): 297-306. | |
10 | 唐勇, 胡素云, 龚德瑜, 等. 准噶尔盆地中央坳陷西部下二叠统风城组天然气勘探潜力与重点领域[J]. 石油勘探与开发, 2024, 51(3): 490-500, 512. |
TANG Yong, HU Suyun, GONG Deyu, et al. Natural gas exploration potential and favorable targets of Permian Fengcheng Formation in the western Central Depression of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2024, 51(3): 490-500, 512. | |
11 | 王奇, 郝芳, 邹华耀, 等. 关于富油盆地深层天然气来源与勘探前景的几点思考——以渤海海域渤中地区为例[J]. 长江大学学报(自然科学版), 2023, 20(5): 47-54. |
WANG Qi, HAO Fang, ZOU Huayao, et al. Some considerations on the origins and exploration prospects of deep gas in oil-rich basins: A case study of the Bozhong area of Bohai Sea[J]. Journal of Yangtze University (Natural Science Edition), 2023, 20(5): 47-54. | |
12 | FENG Dehao, LIU Chenglin, TIAN Jixian, et al. Natural gas genesis, source and accumulation processes in northwestern Qaidam Basin, China, revealed by integrated 3D basin modeling and geochemical research[J]. Natural Resources Research, 2023, 32(1): 391-412. |
13 | 唐勇, 白雨, 高岗, 等. 玛湖凹陷风云1井陆相深层页岩气勘探突破及其油气地质意义[J]. 中国石油勘探, 2024, 29(1): 106-118. |
TANG Yong, BAI Yu, GAO Gang, et al. Exploration breakthrough and geological significance of continental deep shale gas in Well Fengyun 1 in Mahu Sag[J]. China Petroleum Exploration, 2024, 29(1): 106-118. | |
14 | 李艳平, 邹红亮, 李雷, 等. 准噶尔盆地东道海子凹陷上乌尔禾组油气勘探思路及发现[J]. 新疆石油地质, 2022, 43(2): 127-134. |
LI Yanping, ZOU Hongliang, LI Lei, et al. Petroleum exploration ideas and discoveries in Upper Wuerhe Formation, Dongdaohaizi Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(2): 127-134. | |
15 | 施和生, 王清斌, 王军, 等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探, 2019, 24(1): 36-45. |
SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong Sag[J]. China Petroleum Exploration, 2019, 24(1): 36-45. | |
16 | HU Guoyi, ZHANG Shuichang, LI Jin, et al. The origin of natural gas in the Hutubi gas field, Southern Junggar Foreland Sub-basin, NW China[J]. International Journal of Coal Geology, 2010, 84(3/4): 301-310. |
17 | 龚德瑜, 齐雪峰, 郑孟林, 等. 准噶尔盆地克拉美丽气田及周缘天然气成因来源再认识与勘探启示[J]. 天然气工业, 2024, 44(2): 81-91. |
GONG Deyu, QI Xuefeng, ZHENG Menglin, et al. Origin of natural gas in the Kelameili Gas Field in the Junggar Basin and its periphery: Re-understanding and its implications for natural gas exploration[J]. Natural Gas Industry, 2024, 44(2): 81-91. | |
18 | SUN Ping’an, WANG Yuce, LENG Kun, et al. Geochemistry and origin of natural gas in the eastern Junggar Basin, NW China[J]. Marine and Petroleum Geology, 2016, 75: 240-251. |
19 | 张宇, 李二庭, 米巨磊, 等. 准噶尔盆地东部古生界深层天然气轻烃地球化学特征[J/OL]. 天然气地球科学: 1-28. . |
ZHANG Yu, LI Erting, MI Julei, et al. Geochemical characteristics of light hydrocarbons associated with deep natural gas in the Paleozoic of the eastern Junggar Basin[J/OL]. Natural Gas Geoscience: 1-28. . | |
20 | ZHANG Wenjie, HU Wenxuan, YANG Shengchao, et al. Differences and constraints of varying gas dryness coefficients in the Cainan oil-gas field, Junggar Basin, NW China[J]. Marine and Petroleum Geology, 2022, 139: 105582. |
21 | ZHOU Zengyuan, LI Yong, LU Jungang, et al. Origin and genesis of the Permain hydrocarbon in the northeast of the Dongdaohaizi Depression, Junggar Basin, China[J]. ACS Omega, 2022, 7(28): 24157-24173. |
22 | 龚德瑜, 赵长永, 何文军, 等. 准噶尔盆地西北缘天然气成因来源及勘探潜力[J]. 石油与天然气地质, 2022, 43(1): 161-174. |
GONG Deyu, ZHAO Changyong, HE Wenjun, et al. Genetic types and exploration potential of natural gas at northwestern margin of Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 161-174. | |
23 | CAO Zhe, GAO Jin, LIU Guangdi, et al. Investigation of oil potential in saline lacustrine shale: A case study of the Middle Permian Pingdiquan shale (Lucaogou equivalent) in the Junggar Basin, northwest China[J]. Energy & Fuels, 2017, 31(7): 6670-6688. |
24 | ZENG Wenren, ZHANG Zhihuan, WANG Boran, et al. Formation mechanism of organic-rich mixed sedimentary rocks in saline lacustrine basin, Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, northwest China[J]. Marine and Petroleum Geology, 2023, 156: 106452. |
25 | YANG Guangqing, ZENG Jianhui, QIAO Juncheng, et al. Differences between laminated and massive shales in the Permian Lucaogou Formation: Insights into the paleoenvironment, petrology, organic matter, and microstructure[J]. ACS Earth and Space Chemistry, 2022, 6(10): 2530-2551. |
26 | WU Haiguang, HU Wenxuan, WANG Yuce, et al. Depositional conditions and accumulation models of tight oils in the Middle Permian Lucaogou Formation in Junggar Basin, northwestern China: New insights from geochemical analysis[J]. AAPG Bulletin, 2021, 105(12): 2477-2518. |
27 | LIU Shiju, GAO Gang, GANG Wenzhe, et al. Differences in geochemistry and hydrocarbon generation of source-rock samples dominated by telalginite and lamalginite: A case study on the Permian saline lacustrine source rocks in the Jimusaer Sag, NW China[J]. Petroleum Science, 2023, 20(1): 141-160. |
28 | XIANG Baoli, LI Erting, GAO Xiuwei, et al. Petroleum generation kinetics for Permian lacustrine source rocks in the Junggar Basin, NW China[J]. Organic Geochemistry, 2016, 98: 1-17. |
29 | ZHAO Zhongfeng, FENG Qiao, LIU Xinran, et al. Petroleum maturation processes simulated by high-pressure pyrolysis and kinetic modeling of low-maturity type I kerogen[J]. Energy & Fuels, 2022, 36(4): 1882-1893. |
30 | FENG Dehao, LIU Chenglin, YANG Haibo, et al. Experimental investigation of hydrocarbon generation, retention, and expulsion of saline lacustrine shale: Insights from improved semi-open pyrolysis experiments of Lucaogou Shale, eastern Junggar Basin, China[J]. Journal of Analytical and Applied Pyrolysis, 2024, 181: 106640. |
31 | WU Liangliang, WANG Peng, GENG Ansong. Later stage gas generation in shale gas systems based on pyrolysis in closed and semi-closed systems[J]. International Journal of Coal Geology, 2019, 206: 80-90. |
32 | 何登发, 张磊, 吴松涛, 等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质, 2018, 39(5): 845-861. |
HE Dengfa, ZHANG Lei, WU Songtao, et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geology, 2018, 39(5): 845-861. | |
33 | 刘得光, 王屿涛, 杨海波, 等. 准噶尔盆地阜康凹陷及周缘凸起区的原油成因与分布[J]. 中国石油勘探, 2023, 28(1): 94-107. |
LIU Deguang, WANG Yutao, YANG Haibo, et al. Genesis types and distribution of crude oil in Fukang Sag and its peripheral bulges, Junggar Basin[J]. China Petroleum Exploration, 2023, 28(1): 94-107. | |
34 | 王勇. 济阳坳陷古近系沙三下—沙四上亚段咸化湖盆证据及页岩油气地质意义[J]. 中国石油大学学报(自然科学版), 2024, 48(3): 27-36. |
WANG Yong. Evidence of Paleogene saline lake basin in the 3rd and 4th members of Shahejie Formation in Jiyang Depression and geological significance of shale oil and gas[J]. Journal of China University of Petroleum(Edition of Natural Science), 2024, 48(3): 27-36. | |
35 | 王大兴, 曾治平, 胡海燕, 等. 准噶尔盆地中部下乌尔禾组深层陆相页岩孔隙结构分形特征及其地质意义[J]. 油气地质与采收率, 2024, 31(1): 23-35. |
WANG Daxing, ZENG Zhiping, HU Haiyan, et al. Fractal characteristics of pore structure of deep continental shale of Lower Wuerhe Formation in central Junggar Basin and its geological significance[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(1): 23-35. | |
36 | JARVIE D, CLAXTON B, HENK F, et al. Oil and shale gas from the Barnett shale, Ft.Worth Basin, Texas[C]//AAPG National Convention, Denver, 2001. |
37 | 何川, 郑伦举, 王强, 等. 烃源岩生排烃模拟实验技术现状、应用与发展方向[J]. 石油实验地质, 2021, 43(5): 862-870. |
HE Chuan, ZHENG Lunju, WANG Qiang, et al. Experimental development and application of source rock thermal simulation for hydrocarbon generation and expulsion[J]. Petroleum Geology and Experiment, 2021, 43(5): 862-870. | |
38 | GONG Deyu, SONG Yong, WEI Yanzhao, et al. Geochemical characteristics of Carboniferous coaly source rocks and natural gases in the Southeastern Junggar Basin, NW China: Implications for new hydrocarbon explorations[J]. International Journal of Coal Geology, 2019, 202: 171-189. |
39 | ZHANG Bin, TAO Shu, SUN Bin, et al. Genesis and accumulation mechanism of external gas in deep coal seams of the Baijiahai Uplift, Junggar Basin, China[J]. International Journal of Coal Geology, 2024, 286: 104506. |
40 | LU Jungang, WANG Li, CHEN Shijia, et al. Features and origin of oil degraded gas of Santai field in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(4): 466-474. |
41 | XU Kun, CHEN Shijia, LIU Chaowei, et al. Geochemical characteristics of source rocks and natural gas in Fudong area, Junggar Basin: Implications for the genesis of natural gas[J]. Arabian Journal of Geosciences, 2022, 15(6): 544. |
42 | 张林, 张敏, 高永进, 等. 准噶尔盆地南缘博格达山前带二叠系芦草沟组油气源分析和勘探潜力[J]. 中国矿业, 2021, 30(11): 178-188. |
ZHANG Lin, ZHANG Min, GAO Yongjin, et al. Oil and gas source analysis and exploration potential of Permian Lucaogou Formation in Bogda piedmont belt in the southern margin of Junggar Basin[J]. China Mining Magazine, 2021, 30(11): 178-188. | |
43 | LIU Quanyou, WU Xiaoqi, WANG Xiaofeng, et al. Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas[J]. Earth-Science Reviews, 2019, 190: 247-272. |
44 | MILKOV A V. New approaches to distinguish shale-sourced and coal-sourced gases in petroleum systems[J]. Organic Geochemistry, 2021, 158: 104271. |
45 | LORANT F, PRINZHOFER A, BEHAR F, et al. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases[J]. Chemical Geology, 1998, 147(3/4): 249-264. |
46 | PRINZHOFER A A, HUC A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases[J]. Chemical Geology, 1995, 126(3/4): 281-290. |
47 | 彭平安, 贾承造. 深层烃源演化与原生轻质油/凝析油气资源潜力[J]. 石油学报, 2021, 42(12): 1543-1555. |
PENG Pingan, JIA Chengzao. Evolution of deep source rock and resource potential of primary light oil and condensate[J]. Acta Petrolei Sinica, 2021, 42(12): 1543-1555. | |
48 | 杨有星, 张君峰, 张金虎, 等. 新疆博格达山周缘中上二叠统与中上三叠统沉积特征及其主控因素[J]. 石油勘探与开发, 2022, 49(4): 670-682. |
YANG Youxing, ZHANG Junfeng, ZHANG Jinhu, et al. Sedimentary characteristics and main controlling factors of the Middle-Upper Permian and Middle-Upper Triassic around Bogda Mountain of Xinjiang, NW China[J]. Petroleum Exploration and Development, 2022, 49(4): 670-682. | |
49 | 金之钧, 张谦, 朱如凯, 等. 中国陆相页岩油分类及其意义[J]. 石油与天然气地质, 2023, 44(4): 801-819. |
JIN Zhijun, ZHANG Qian, ZHU Rukai, et al. Classification of lacustrine shale oil reservoirs in China and its significance[J]. Oil & Gas Geology, 2023, 44(4): 801-819. |
[1] | 宋璠, 孔庆圆, 张学才, 曹海防, 焦国华, 杨悦. 干旱型浅水三角洲沉积特征及沉积模式[J]. 石油与天然气地质, 2024, 45(5): 1275-1288. |
[2] | 张洪, 冯有良, 刘畅, 杨智, 伍坤宇, 龙国徽, 姚健欢, 孟博文, 邢浩婷, 蒋文琦, 王小妮, 魏琪钊. 柴达木盆地干柴沟地区古近系下干柴沟组上段页岩层系优势岩相及其控储因素[J]. 石油与天然气地质, 2024, 45(5): 1305-1320. |
[3] | 蒋前前, 吴娟, 王恒, 匡龙伟, 周志鹏, 杨雨然, 李彦佑, 罗超, 邓宾, 焦堃. 川南地区下志留统龙马溪组有机质热演化及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1321-1336. |
[4] | 彭军, 刘芳兰, 张连进, 郑斌嵩, 唐松, 李顺, 梁新玉. 川中龙女寺地区中二叠统茅口组储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1337-1354. |
[5] | 王威, 刘珠江, 魏富彬, 李飞. 川东北地区二叠系大隆组页岩储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1355-1367. |
[6] | 张琴, 邱振, 赵群, 董大忠, 刘雯, 孔维亮, 庞正炼, 高万里, 蔡光银, 李永洲, 李星涛, 林文姬. 海-陆过渡相与海相页岩气“甜点段”差异特征与形成机理[J]. 石油与天然气地质, 2024, 45(5): 1400-1416. |
[7] | 倪良田, 杜玉山, 蒋龙, 孙红霞, 程紫燕, 刘祖鹏, 钟建华, 曹增辉, 马存飞. 渤海湾盆地济阳坳陷陆相断陷湖盆中-低成熟度页岩“富烃-成储-富集-高产”的理论认识与开发实践[J]. 石油与天然气地质, 2024, 45(5): 1417-1430. |
[8] | 龚训, 金之钧, 马新华, 刘钰洋, 李关访, 缪欢. 川南地区志留系龙马溪组页岩力学性质及微观破裂机理[J]. 石油与天然气地质, 2024, 45(5): 1447-1455. |
[9] | 刘国勇, 薛建勤, 吴松涛, 伍坤宇, 张博策, 邢浩婷, 张娜, 庞鹏, 朱超. 柴达木盆地柴西坳陷古近系-新近系石油地质特征与油气环带状分布模式[J]. 石油与天然气地质, 2024, 45(4): 1007-1017. |
[10] | 孙靖, 尤新才, 薛晶晶, 郑孟林, 常秋生, 王韬. 准噶尔盆地深层-超深层碎屑岩致密气储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 1046-1063. |
[11] | 高永进, 尹成明, 刘丽红, 徐大融, 杨有星, 张远银, 宋泽章, 甄曼彤. 塔里木盆地西北缘寒武系肖尔布拉克组烃源岩特征[J]. 石油与天然气地质, 2024, 45(4): 1064-1078. |
[12] | 解馨慧, 邓虎成, 胡蓝霄, 李勇, 毛金昕, 刘佳杰, 张鑫, 李柏洋. 湖相细粒沉积岩颗粒微观力学特征及类型划分[J]. 石油与天然气地质, 2024, 45(4): 1079-1088. |
[13] | 张琴, 卢东连, 王凯, 刘畅, 郭明强, 张梦婕, 郭超杰, 王颖, 胡文忠, 朱筱敏. 下扬子地区荷塘组细粒沉积岩岩相划分及微观孔隙发育特征[J]. 石油与天然气地质, 2024, 45(4): 1089-1105. |
[14] | 李倩文. 渤海湾盆地东营凹陷古近系沙河街组页岩储层润湿性及其主控因素[J]. 石油与天然气地质, 2024, 45(4): 1142-1154. |
[15] | 李一波, 陈耀旺, 赵金洲, 王志强, 魏兵, Valeriy Kadet. 超临界二氧化碳与页岩相互作用机制[J]. 石油与天然气地质, 2024, 45(4): 1180-1194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||