| 1 |
金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7): 821-835.
|
|
JIN Zhijun, WANG Guanping, LIU Guangxiang, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821-835.
|
| 2 |
郭旭升, 马晓潇, 黎茂稳, 等. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349.
|
|
GUO Xusheng, MA Xiaoxiao, LI Maowen, et al. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J]. Oil & Gas Geology, 2023, 44(6): 1333-1349.
|
| 3 |
RIBEIRO L H, LI Huina, BRYANT J E. Use of a CO2-hybrid fracturing design to enhance production from unpropped-fracture networks[J]. SPE Production & Operations, 2017, 32(1): 28-40.
|
| 4 |
YANG Feng, XIE Congjiao, XU Shang, et al. Supercritical methane sorption on organic-rich shales over a wide temperature range[J]. Energy & Fuels, 2017, 31(12): 13427-13438.
|
| 5 |
PERERA M S A, RANJITH P G, VIETE D R. Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin[J]. Applied Energy, 2013, 110: 73-81.
|
| 6 |
BLEAKLEY W B. Mitchell energy foam fracs tight gas zones[J]. Petroleum Engineer International, 1980, 52(15): 24, 26, 28.
|
| 7 |
WENDORFF C L, AINLEY B R. Massive hydraulic fracturing of high-temperature wells with stable frac foams[C]//SPE Annual Technical Conference and Exhibition, San Antonio, 1981. Richardson: Society of Petroleum Engineers, 1981: SPE-10257-MS.
|
| 8 |
GABRIS S J, TAYLOR J L III. The utility of CO2 as an energizing component for fracturing fluids[J]. SPE Production Engineering, 1986, 1(5): 351-358.
|
| 9 |
GRUNDMANN S R, LORD D L. Foam stimulation[J]. Journal of Petroleum Technology, 1983, 35(3): 597-602.
|
| 10 |
HARRIS P E, KLEBENOW D E, KUNDERT P D. Constant-internal-phase design improves stimulation results[J]. SPE Production Engineering, 1991, 6(1): 15-19.
|
| 11 |
WARD V L. N2 and CO2 in the oil field: Stimulation and completion applications[J]. SPE Production Engineering, 1986, 1(4): 275-278.
|
| 12 |
LILLIES A T, KING S R. Sand fracturing with liquid carbon dioxide[C]//SPE Production Technology Symposium, Hobbs, 1982. Richardson: Society of Petroleum Engineers, 1982: SPE-11341-MS.
|
| 13 |
BURKE L H, NEVISON G W, PETERS W E. Improved unconventional gas recovery with energized fracturing fluids: Montney example[C]//SPE Eastern Regional Meeting, Columbus, 2011. Richardson: Society of Petroleum Engineers, 2011: SPE-149344-MS.
|
| 14 |
姚红生, 云露, 昝灵, 等. 苏北盆地溱潼凹陷阜二段断块型页岩油定向井开发模式及实践[J]. 油气藏评价与开发, 2023, 13(2): 141-151.
|
|
YAO Hongsheng, YUN Lu, ZAN Ling, et al. Development mode and practice of fault-block oriented shale oil well in the second member of Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(2): 141-151.
|
| 15 |
张志超, 柏明星, 杜思宇. 页岩油藏注CO2驱孔隙动用特征研究[J]. 油气藏评价与开发, 2024, 14(1): 42-47.
|
|
ZHANG Zhichao, BAI Mingxing, DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47.
|
| 16 |
杨兆臣, 卢迎波, 杨果, 等. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184.
|
|
YANG Zhaochen, LU Yingbo, YANG Guo, et al. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil[J]. Lithologic Reservoirs, 2024, 36(1): 178-184.
|
| 17 |
邹雨时, 李彦超, 李四海. CO2前置注入对页岩压裂裂缝形态和岩石物性的影响[J]. 天然气工业, 2021, 41(10): 83-94.
|
|
ZOU Yushi, LI Yanchao, LI Sihai. Influence of CO2 pre-injection on fracture mophology and the petrophysical properties in shale fracturing[J]. Natural Gas Industry, 2021, 41(10): 83-94.
|
| 18 |
RIBEIRO L H, LI Huina, BRYANT J E. Use of a CO2-hybrid fracturing design to enhance production from unpropped fracture networks[C]//SPE Hydraulic Fracturing Technology Conference, the Woodlands, 2015. Richardson: Society of Petroleum Engineers, 2015: SPE-173380-MS.
|
| 19 |
ZHANG Xinwei, LU Yiyu, TANG Jiren, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2017, 190: 370-378.
|
| 20 |
陈立强, 田守嶒, 李根生, 等. 超临界CO2压裂起裂压力模型与参数敏感性研究[J]. 岩土力学, 2015, 36(S2): 125-131.
|
|
CHEN Liqiang, TIAN Shouceng, LI Gensheng, et al. Initiation pressure models for supercritical CO2 fracturing and sensitivity analysis[J]. Rock and Soil Mechanics, 2015, 36(S2): 125-131.
|
| 21 |
RIBEIRO L, THOMA A, BRYANT J, et al. Lessons learned from the large-scale CO2 stimulation of 11 unconventional wells in the Williston Basin: A practical review of operations, logistics, production uplift, and CO2 storage[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition, the Woodlands, 2022. Richardson: Society of Petroleum Engineers, 2022: SPE-209159-MS.
|
| 22 |
张琴, 卢东连, 王凯, 等. 下扬子地区荷塘组细粒沉积岩岩相划分及微观孔隙发育特征[J]. 石油与天然气地质, 2024, 45(4): 1089-1105.
|
|
ZHANG Qin, LU Donglian, WANG Kai, et al. Lithofacies classification and microscopic pore characteristics of fine-grained sedimentary rocks in the Hetang Formation, Lower Yangtze region[J]. Oil & Gas Geology, 2024, 45(4): 1089-1105.
|
| 23 |
张瑾. 致密储层超临界二氧化碳—水—岩作用机理研究[D]. 成都: 西南石油大学, 2018.
|
|
ZHANG Jin. Research on mechanism of supercritical carbon dioxide-water-rock interaction in tight reservoir[D]. Chengdu: Southwest Petroleum University, 2018.
|
| 24 |
LI Lei, CHEN Zheng, SU Yuliang, et al. Experimental investigation on enhanced-oil-recovery mechanisms of using supercritical carbon dioxide as prefracturing energized fluid in tight oil reservoir[J]. SPE Journal, 2021, 26(5): 3300-3315.
|
| 25 |
MOJID M R, NEGASH B M, ABDULELAH H, et al. A state-of-art review on waterless gas shale fracturing technologies[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108048.
|
| 26 |
王强, 李志明, 钱门辉, 等. 超临界二氧化碳萃取泥页岩中可动油实验研究[J]. 石油实验地质, 2020, 42(4): 646-652.
|
|
WANG Qiang, LI Zhiming, QIAN Menhui, et al. Movable oil extraction from shale with supercritical carbon dioxide[J]. Petroleum Geology and Experiment, 2020, 42(4): 646-652.
|
| 27 |
陈秀林, 王秀宇, 许昌民, 等. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究[J]. 油气藏评价与开发, 2023, 13(3): 296-304.
|
|
CHEN Xiulin, WANG Xiuyu, XU Changmin, et al. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304.
|