石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (2): 495-509.doi: 10.11743/ogg20230219
宋泽章1,2(), 阿比德·阿不拉1,2, 吕明阳1,2, 张月巧3, 姜福杰1,2(), 刘哲宇1,2, 郑伟1,2, 王夏阳3
收稿日期:
2022-06-06
修回日期:
2022-12-15
出版日期:
2023-03-17
发布日期:
2023-03-17
通讯作者:
姜福杰
E-mail:Songzz@cup.edu.cn;jiangfj@cup.edu.cn
第一作者简介:
宋泽章(1988—),男,博士、副教授,非常规储层评价、油气运聚与成藏、机器学习。E?mail: 基金项目:
Zezhang SONG1,2(), Abula ABIDE1,2, Mingyang LYU1,2, Yueqiao ZHANG3, Fujie JIANG1,2(), Zheyu LIU1,2, Wei ZHENG1,2, Xiayang WANG3
Received:
2022-06-06
Revised:
2022-12-15
Online:
2023-03-17
Published:
2023-03-17
Contact:
Fujie JIANG
E-mail:Songzz@cup.edu.cn;jiangfj@cup.edu.cn
摘要:
低温氮气吸附滞后回环的形态和面积可以有效反映多孔介质的孔隙结构及其对吸附气体的滞留效应,但其在页岩孔隙结构定量表征中的作用常被忽视。优选鄂尔多斯盆地上三叠统延长组7段(长7段)页岩为研究对象,综合场发射扫描电镜孔隙结构定性观察、低温氮气吸附孔隙结构定量分析、“滞后回环”定量分析、总有机碳含量(TOC)分析、热解实验、X射线衍射实验等手段,对页岩在低温氮气吸附-脱附实验中能否形成“滞后回环”以及形成的“滞后回环”面积大小的决定因素进行了探索。研究结果表明:①页岩样品在低温氮气吸附-脱附实验中是否能形成滞后回环,与其比表面积、比孔容、黏土矿物含量及孔隙结构分形维数之间存在明显的正相关关系,与总有机碳含量呈明显负相关关系,而与平均孔径大小、孔隙表面分形维数、最高热解峰温和脆性矿物含量等无明显相关关系;②滞后回环的面积大小取决于两端开放的圆柱形孔、墨水瓶孔或平行板孔的发育程度,可借助滞后回环的面积大小来定量评价圆柱形孔、墨水瓶孔或平行板孔占孔隙空间的相对比例;③长7段泥页岩样品中开放的圆柱形孔、墨水瓶孔或平行板孔主要由黏土矿物晶间孔提供,滞后回环面积与泥页岩样品中黏土矿物含量之间存在明显的正相关关系。
中图分类号:
表1
鄂尔多斯盆地陇东地区长7段泥页岩样品XRD分析测试结果"
样品号 | 全岩矿物组分含量/% | |||||||
---|---|---|---|---|---|---|---|---|
石英 | 钾长石 | 斜长石 | 方解石 | 白云石 | 菱铁矿 | 黄铁矿 | 黏土矿物 | |
Z22-1584.65* | 22.2 | 0 | 6.8 | 0 | 0 | 0 | 0 | 71.0 |
Z22-1626.00 | 33.4 | 0 | 10.9 | 0 | 0 | 0 | 0 | 55.7 |
Z22-1632.45 | 10.8 | 4.7 | 8.7 | 0 | 0 | 6.5 | 0 | 69.3 |
LI231-2105.90 | 32.4 | 0 | 0 | 0 | 0 | 0 | 12.7 | 54.9 |
YAN56-3032.10* | 42.6 | 0 | 5.6 | 0 | 0 | 0 | 0 | 51.8 |
YAN56-3058.40 | 45.3 | 0 | 0.0 | 0 | 0 | 0 | 1.9 | 52.8 |
Z22-1563.40 | 21.2 | 0 | 18.3 | 0 | 0 | 0 | 13.5 | 47.0 |
Z22-1569.10 | 19.1 | 0 | 21.7 | 0 | 0 | 0 | 11.4 | 47.8 |
LI68-2078.90* | 42.3 | 0 | 9.9 | 0 | 0 | 0 | 17.3 | 30.5 |
表2
鄂尔多斯盆地陇东地区长7段泥页岩样品氮气吸附实验孔隙结构参数统计"
滞后回环类型 | 样品编号 | 深度/m | 滞后回环面积/ (mL·nm-1·g-1) | DFT比表面积/ (m2·g-1) | DFT比孔容/ (mL·g-1) | DFT平均孔径/nm | 孔隙表面分形维数(D1) | 孔隙结构分形维数(D2) |
---|---|---|---|---|---|---|---|---|
A类 | Z22 | 1584.65 | 0.578 68 | 13.840 | 0.048 55 | 7.032 | 2.518 | 2.609 |
Z22 | 1626.00 | 0.565 96 | 15.080 | 0.048 05 | 7.032 | 2.533 | 2.605 | |
Z22 | 1632.45 | 0.711 39 | 20.210 | 0.060 20 | 2.583 | 2.579 | 2.620 | |
平均值 | 0.618 68 | 16.377 | 0.052 27 | 5.549 | 2.543 | 2.611 | ||
B类 | LI231 | 2105.90 | 0.561 16 | 9.872 | 0.046 56 | 7.032 | 2.451 | 2.452 |
YAN56 | 3032.10 | 0.425 26 | 8.828 | 0.043 66 | 6.079 | 2.450 | 2.487 | |
YAN56 | 3058.40 | 0.742 62 | 10.210 | 0.051 74 | 7.032 | 2.445 | 2.438 | |
平均值 | 0.576 35 | 9.637 | 0.047 32 | 6.714 | 2.449 | 2.459 | ||
C类 | Z22 | 1563.40 | 0.203 17 | 7.641 | 0.038 32 | 12.120 | 2.528 | 2.458 |
Z22 | 1569.10 | 0.143 76 | 5.675 | 0.026 76 | 7.032 | 2.558 | 2.479 | |
LI68 | 2078.90 | 0.147 53 | 8.459 | 0.027 35 | 2.583 | 2.627 | 2.545 | |
平均值 | 0.164 82 | 7.258 | 0.030 81 | 7.245 | 2.571 | 2.494 |
图8
鄂尔多斯盆地陇东地区长7段页岩样品孔隙空间扫描电镜定性观察a.Z22井,埋深1 584.65 m;黏土矿物晶间孔、粒间孔发育,溶蚀孔发育,可见黄铁矿;b.Z22井,埋深1 626.00 m,有机质孔发育;c.Z22井,埋深1 632.45 m,黏土矿物晶间孔发育,可见黄铁矿;d.LI231井,埋深2 105.90 m,溶蚀孔发育,可见黏土矿物、黄铁矿、石英、长石;e.YAN56井,埋深3 032.10 m,有机质孔发育,可见黄铁矿;f.YA56井,埋深3 058.40 m,黄铁矿晶间孔发育,可见黏土;g.Z22井,埋深1 563.40 m,黏土矿物晶间孔、石英晶内孔、微裂缝发育;h.Z22井,埋深1 569.10 m,有机质孔发育;i.LI68井,埋深2 078.90 m,溶蚀孔发育Qtz.石英;F.长石;Clay.黏土矿物;Py.黄铁矿; OM.有机质;OP.有机质孔; PIP.晶间孔;IP.粒间孔;DP.溶蚀孔; Mf.微裂缝"
1 | MALEK A, FAROOQ S. Comparison of isotherm models for hydrocarbon adsorption on activated carbon[J]. AIChE Journal, 1996, 42(11): 3191-3201. |
2 | KIRCHOFER A, FIROUZI M, PSARRAS P, et al. Modeling CO2 transport and sorption in carbon slit pores[J]. The Journal of Physical Chemistry C, 2017, 121(38): 21018-21028. |
3 | ALJAMA H, WILCOX J. Microscopic diffusion of CO2 in clay nanopores[J]. Chemical Physics Letters, 2017, 677: 162-166. |
4 | ZOLFAGHARI A, DEHGHANPOUR H. Pore size distribution from water adsorption isotherm[C]//SPE Annual Technical Conference and Exhibition, Houston, 2015. Houston: SPE, 2015: SPE-175155-MS. |
5 | 吴建国, 刘大锰, 姚艳斌. 鄂尔多斯盆地渭北地区页岩纳米孔隙发育特征及其控制因素[J]. 石油与天然气地质, 2014, 35(4): 542-550. |
WU Jianguo, LIU Dameng, YAO Yanbin. Characteristics and controlling factors of nanopores in shales in Weibei, Ordos Basin[J]. Oil & Gas Geology, 2014, 35(4): 542-550. | |
6 | 刘毅, 陆正元, 冯明石, 等. 渤海湾盆地东营凹陷沙河街组页岩油储层微观孔隙特征[J]. 地质学报, 2017, 91(3): 629-644. |
LIU Yi, LU Zhengyuan, FENG Mingshi, et al. Micro-pore characteristics of shale oil reservoirs of the Shahejie Formation in the Dongying Sag, Bohai Bay Basin[J]. Acta Geologica Sinica, 2017, 91(3): 629-644. | |
7 | 严继民, 张启元. 吸附与凝聚: 固体的表面与孔[M]. 北京: 科学出版社, 1979. |
YAN Jimin, ZHANG Qiyuan. Adsorption and condensation: Surfaces and pores of solids[M]. Beijing: Science Press, 1979. | |
8 | 刘辉, 吴少华, 姜秀民, 等. 快速热解褐煤焦的低温氮吸附等温线形态分析[J]. 煤炭学报, 2005, 30(4): 507-510. |
LIU Hui, WU Shaohua, JIANG Xiumin, et al. The configuration analysis of the adsorption isotherm of nitrogen in low temperature with the lignite char produced under fast pyrolysis[J]. Journal of China Coal Society, 2005, 30(4): 507-510. | |
9 | THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
10 | BRUNAUER S, DEMING L S, DEMING W E, et al. On a theory of the van der Waals adsorption of gases[J]. Journal of the American Chemical Society, 1940, 62(7): 1723-1732. |
11 | 赵迪斐, 郭英海, 解德录, 等. 基于低温氮吸附实验的页岩储层孔隙分形特征[J]. 东北石油大学学报, 2014, 38(6): 100-108. |
ZHAO Difei, GUO Yinghai, XIE Delu, et al. Fractal characteristics of shale reservoir pores based on nitrogen adsorption[J]. Journal of Northeast Petroleum University, 2014, 38(6): 100-108. | |
12 | 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析: 以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692. |
FENG Xiaolong, AO Weihua, TANG Xuan. Characteristics of pore development and its main controlling factors of continental shale gas reservoirs: A case study of Chang 7 member in Ordos Basin[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 678-692. | |
13 | 杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455. |
YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3): 450-455. | |
14 | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
15 | LIU Xiangjun, XIONG Jian, LIANG Lixi. Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 62-72. |
16 | DE BOER J H. The structure and properties of porous materials[M]. London: Butterworths, 1958. |
17 | LABANI M M, REZAEE R, SAEEDI A, et al. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning basins, Western Australia[J]. Journal of Petroleum Science and Engineering, 2013, 112: 7-16. |
18 | SING K S W, WILLIAMS R T. Physisorption hysteresis loops and the characterization of nanoporous materials[J]. Adsorption Science & Technology, 2004, 22(10): 773-782. |
19 | 吴俊. 煤微孔隙特征及其与油气运移储集关系的研究[J]. 中国科学(B辑 化学 生命科学 地学), 1993, 23(1): 77-84. |
WU Jun. Study on the characteristics of coal microporosity and its relationship with oil and gas transportation and storage[J]. Science in China(Series B), 1993, 23(1): 77-84. | |
20 | 付小平, 杨滔. 川东北地区下侏罗统自流井组陆相页岩储层孔隙结构特征[J]. 石油实验地质, 2021, 43(4): 589-598. |
FU Xiaoping, YANG Tao. Pore structure of continental shale reservoirs in Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin[J]. Petroleum Geology and Experiment, 2021, 43(4): 589-598. | |
21 | 刘伟新, 俞凌杰, 张文涛, 等. 川东南龙马溪组页岩微观孔隙结构特征[J]. 海洋地质与第四纪地质, 2016, 36(3): 127-134. |
LIU Weixin, YU Lingjie, ZHANG Wentao, et al. Micro-pore structure of Longmaxi shale from Southeast Sichuan Basin[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 127-134. | |
22 | 刘娜娜. 南川地区龙马溪组优质页岩段微观孔隙结构特征[J]. 石油地质与工程, 2021, 35(4): 21-25. |
LIU Nana. Micro pore structure characteristics of high quality shale section of Longmaxi formation in Nanchuan area[J]. Petroleum Geology and Engineering, 2021, 35(4): 21-25. | |
23 | 李浩. 鄂尔多斯盆地古生界气藏成藏模式及优势储层预测[J]. 特种油气藏, 2022, 29(2): 57-63. |
LI Hao. Accumulation pattern and favorable reservoir prediction of Paleozoic gas reservoirs in Ordos Basin[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 57-63. | |
24 | 赵靖舟, 王力, 孙兵华, 等. 鄂尔多斯盆地东部构造演化对上古生界大气田形成的控制作用[J]. 天然气地球科学, 2010, 21(6): 875-881. |
ZHAO Jingzhou, WANG Li, SUN Binghua, et al. Effect of structural evolution on the formation and distribution of Upper Paleozoic giant gas fields in the East Ordos Basin[J]. Natural Gas Geoscience, 2010, 21(6): 875-881. | |
25 | 葸克来, 李克, 操应长, 等. 鄂尔多斯盆地延长组长73亚段砂-泥协同成岩作用[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 1-11. |
XI Kelai, LI Ke, CAO Yingchang, et al. Synergistic diagenesis of sandstone and mudstone in Chang 73 sub-member of Triassic Yanchang Formation in Ordos Basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 1-11. | |
26 | 付金华, 刘显阳, 李士祥, 等. 鄂尔多斯盆地三叠系延长组长7段页岩油勘探发现与资源潜力[J]. 中国石油勘探, 2021, 26(5): 1-11. |
FU Jinhua, LIU Xianyang, LI Shixiang, et al. Discovery and resource potential of shale oil of Chang 7 member, Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2021, 26(5): 1-11. | |
27 | GUO Xiaobo, SHI Baohong, LI Yu, et al. Closed-system pyrolysis-based hydrocarbon generation simulation and gas potential evaluation of the Shanxi Formation shales from the Ordos Basin, China[J]. Energy Geoscience, 2022, 3(1): 8-16. |
28 | 杨巍, 陈国俊, 吕成福, 等. 鄂尔多斯盆地东南部延长组长7段富有机质页岩孔隙特征[J]. 天然气地球科学, 2015, 26(3): 418-426, 591. |
YANG Wei, CHEN Guojun, Chengfu LYU, et al. Micropore characteristics of the organic-rich shale in the 7th member of the Yanchang Formation in the southeast of Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(3): 418-426, 591. | |
29 | 曹尚, 李树同, 党海龙, 等. 鄂尔多斯盆地东南部长7段页岩孔隙特征及其控制因素[J]. 新疆石油地质, 2022, 43(1): 11-17. |
CAO Shang, LI Shutong, DANG Hailong, et al. Pore characteristics and controlling factors of Chang 7 shale in southeastern Ordos Basin[J]. Xinjiang Petroleum Geology, 2022, 43(1): 11-17. | |
30 | 赵俊峰, 刘池洋, 张东东, 等. 鄂尔多斯盆地南缘铜川地区三叠系延长组长7段剖面及其油气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 233-245. |
ZHAO Junfeng, LIU Chiyang, ZHANG Dongdong, et al. Description and its hydrocarbon geological implications of outcrop sections of Triassic Chang-7 Member in southern Ordos Basin[J]. Reservoir Evaluation and Development, 2022, 12(1): 233-245. | |
31 | 王子龙, 郭少斌. 海陆过渡相页岩储层孔隙表征方法对比研究[J/OL]. 中国地质: 1-16[2022-06-01]. . |
WANG Zilong, GUO Shaobin. Comparative study on pore characterization methods of shale reservoir[J]. Geology in China: 1-16[2022-06-01]. . | |
32 | 李嫣然, 胡志明, 刘先贵, 等. 泸州地区龙马溪组深层页岩孔隙结构特征[J]. 断块油气田, 2022, 29(5): 584-590. |
LI Yanran, HU Zhiming, LIU Xiangui, et al. The pore structure characteristics of deep shale in Longmaxi Formation of Luzhou area[J]. Fault-Block Oil and Gas Field, 2022, 29(5): 584-590. | |
33 | SONG Zezhang, ABULA A, ZHAO Junyi, et al. A novel hybrid thermodynamic model for pore size distribution characterisation for shale[J]. Petroleum Science, 2022, 19(3): 963-978. |
34 | 王玉满, 王淑芳, 董大忠, 等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 2016, 23(1): 119-133. |
WANG Yuman, WANG Shufang, DONG Dazhong, et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1): 119-133. | |
35 | BAI Longhui, LIU Bo, DU Yijing, et al. Distribution characteristics and oil mobility thresholds in lacustrine shale reservoir: Insights from N2 adsorption experiments on samples prior to and following hydrocarbon extraction[J]. Petroleum Science, 2022, 19(2): 486-497. |
36 | CHALMERS G R L, BUSTIN R M. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity[J]. Bulletin of Canadian Petroleum Geology, 2008, 56(1): 1-21. |
37 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第2部分: 气体吸附法分析介孔和大孔: [S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 2: Analysis of mesopores and macropores by gas adsorption: [S]. Beijing: Standards Press of China, 2008. | |
38 | 张伟庆, 黄滨, 余小岚, 等. 对BJH方法计算孔径分布过程的解读[J]. 大学化学, 2020, 35(2): 98-106. |
ZHANG Weiqing, HUANG Bin, YU Xiaolan, et al. Interpretation of BJH method for calculating aperture distribution process[J]. University Chemistry, 2020, 35(2): 98-106. | |
39 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第3部分: 气体吸附法分析微孔: [S]. 北京: 中国标准出版社, 2012. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption—Part 3: Analysis of micropores by gas adsorption: [S]. Beijing: Standards Press of China, 2012. | |
40 | THOMMES M. Physical adsorption characterization of nanoporous materials[J]. Chemie Ingenieur Technik, 2010, 82(7): 1059-1073. |
41 | HAZRA B, WOOD D A, VISHAL V, et al. Porosity controls and fractal disposition of organic-rich Permian shales using low-pressure adsorption techniques[J]. Fuel, 2018, 220: 837-848. |
42 | XIONG Jian, LIU Xiangjun, LIANG Lixi. An investigation of fractal characteristics of marine shales in the southern China from nitrogen adsorption data[J]. Journal of Chemistry, 2015, 2015: 303164. |
43 | 金彦任, 黄振兴. 吸附与孔径分布[M]. 北京: 国防工业出版社, 2015: 1-228. |
JIN Yanren, HUANG Zhenxing. Adsorption and pore size distribution[M]. Beijing: National Defense University Press, 2015: 1-228. | |
44 | 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 2版. 北京: 化学工业出版社, 2006: 1-273. |
KONDO S, ISHIKAWA T, ABE I. The adsorption of science[M]. LI Guoxi, translated. 2nd ed. Beijing: Chemical Industry Press, 2006: 1-273. | |
45 | 刘学锋, 张晓伟, 曾鑫, 等. 采用机器学习分割算法和扫描电镜分析页岩微观孔隙结构[J]. 中国石油大学学报(自然科学版), 2022, 46(1): 23-33. |
LIU Xuefeng, ZHANG Xiaowei, ZENG Xin, et al. Pore structure characterization of shales using SEM and machine learning-based segmentation method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(1): 23-33. | |
46 | LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. |
47 | 姜涛, 金之钧, 刘光祥, 等. 四川盆地元坝地区自流井组页岩储层孔隙结构特征[J]. 石油与天然气地质, 2021, 42(4): 909-918. |
JIANG Tao, JIN Zhijun, LIU Guangxiang, et al. Pore structure characteristics of shale reservoirs in the Ziliujing Formation in Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 909-918. | |
48 | 王林生, 叶义平, 覃建华, 等. 陆相页岩油储层微观孔喉结构表征与含油性分级评价——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油与天然气地质, 2022, 43(1): 149-160. |
WANG Linsheng, YE Yiping, QIN Jianhua, et al. Microscopic pore structure characterization and oil-bearing property evaluation of lacustrine shale reservoir: A case study of the Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 149-160. | |
49 | 鲍芳, 俞凌杰, 芮晓庆, 等. 页岩中有机质孔隙非均质性的微观结构及电镜—拉曼联用研究[J]. 石油实验地质, 2021, 43(5): 871-879. |
BAO Fang, YU Lingjie, RUI Xiaoqing, et al. Microstructure and SEM-Raman study of organic matter pore heterogeneity in shale[J]. Petroleum Geology and Experiment, 2021, 43(5): 871-879. | |
50 | YANG Chao, ZHANG Jinchuan, TANG Xuan, et al. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China[J]. International Journal of Coal Geology, 2017, 171: 76-92. |
51 | 刘忠宝, 胡宗全, 刘光祥, 等. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素[J]. 石油与天然气地质, 2021, 42(1): 136-145. |
LIU Zhongbao, HU Zongquan, LIU Guangxiang, et al. Pore characteristics and controlling factors of continental shale reservoirs in the Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 136-145. | |
52 | 姜振学, 李鑫, 王幸蒙, 等. 中国南方典型页岩孔隙特征差异及其控制因素[J]. 石油与天然气地质, 2021, 42(1): 41-53. |
JIANG Zhenxue, LI Xin, WANG Xingmeng, et al. Characteristic differences and controlling factors of pores in typical South China shale[J]. Oil & Gas Geology, 2021, 42(1): 41-53. | |
53 | WANG Pengfei, JIANG Zhenxue, JI Wenming, et al. Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China: Evidence from SEM digital images and fractal and multifractal geometries[J]. Marine and Petroleum Geology, 2016, 72: 122-138. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[4] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[5] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[6] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[7] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[8] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[9] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[10] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[11] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[12] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[13] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[14] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[15] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||