石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (4): 910-928.doi: 10.11743/ogg20240403
收稿日期:
2024-02-20
修回日期:
2024-05-16
出版日期:
2024-09-05
发布日期:
2024-09-05
第一作者简介:
施振生(1976—),男,博士、高级工程师,细粒储层地质学理论技术研究。E-mail:shizs69@petrochina.com.cn。
基金项目:
Received:
2024-02-20
Revised:
2024-05-16
Online:
2024-09-05
Published:
2024-09-05
摘要:
综合分析了国内外细粒沉积的特征、成因及有机质富集模式研究进展。海相细粒沉积主要由黏土矿物、石英、碳酸盐矿物和有机质组成,受风力、异轻流、重力流和底流4大搬运营力作用,发育泥纹层和粉砂纹层2类纹层,单一型、顺序型和交互型3类纹层组(层系),块状层、递变层和交互层3类层(层组)。海相细粒沉积发育浊流沉积、底流沉积及远洋-半远洋沉积3种主要沉积相类型及其过渡类型。海相细粒沉积有机质存在高生产力和强保存2种富集模式,高生产力富集模式下黑色页岩主要通过“上升洋流”、“氧含量最低值区(OMZ)”和“近岸透光带缺氧(PZE)”模式形成高有机质富集,强保存富集模式下黑色页岩主要通过“受限盆地”、“改进的受限盆地”、“不规则底形”、“水洼扩张”、“海侵化变层”和“近岸海侵(TN)”模式形成高有机质富集。目前海相细粒沉积成因机制与相模式研究存在的主要问题包括名词术语不规范、不同矿物成分成因不明确,以及细粒浊流沉积、等深流沉积和半远洋沉积难以区分,需要今后进一步研究解决。
中图分类号:
表1
北美、欧洲和中国主要页岩层系及其分布"
地质时代 | 地区 | 盆地 | 页岩 |
---|---|---|---|
中、新生代 | 北美 | Saint Joaquin | Monterey |
晚白垩世 | 北美 | Maverick | Eagle Ford |
晚侏罗世—早白垩世 | 欧洲 | Wessex | Kimmeridge |
Barents Sea | Barents Sea | ||
北美 | Louisiana Salt | Haynesville | |
中侏罗世 | 欧洲 | Causse | Toarcian |
早侏罗世 | 欧洲 | Lower Saxony | Posidonia |
晚泥盆世—早石炭世 | 北美 | Williston | Bakken |
Arkoma | Fayetteville | ||
晚志留世—早泥盆世 | 北美 | Appalachian | Marcellus |
晚奥陶世—志留纪 | 北美 | Appalachia | Utica |
中国 | 四川 | 五峰组-龙马溪组 | |
寒武纪—志留纪 | 欧洲 | Baltic | Alum |
中国 | 四川 | 筇竹寺组 | |
鄂尔多斯 | 乌拉力克组 |
1 | KRUMBEIN W C. The mechanical analysis of fine-grained sediments[J]. Journal of Sedimentary Research, 1932, 2(3): 140-149. |
2 | TUCKER M E. Sedimentary petrology[M]. Oxford: Blackwell Science, 2001: 92-93. |
3 | MACQUAKER J H S, ADAMS A E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744. |
4 | APLIN A C, MACQUAKER J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059. |
5 | MILLIKEN K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199. |
6 | LAZAR O R, BOHACS K M, MACQUAKER J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246. |
7 | 姜在兴, 张建国, 孔祥鑫, 等. 中国陆相页岩油气沉积储层研究进展及发展方向[J]. 石油学报, 2023, 44(1): 45-71. |
JIANG Zaixing, ZHANG Jianguo, KONG Xiangxin, et al. Research progress and development direction of continental shale oil and gas deposition and reservoirs in China[J]. Acta Petrolei Sinica, 2023, 44(1): 45-71. | |
8 | 操应长, 梁超, 韩豫, 等. 基于物质来源及成因的细粒沉积岩分类方案探讨[J]. 古地理学报, 2023, 25(4): 729-741. |
CAO Yingchang, LIANG Chao, HAN Yu, et al. Discussions on classification scheme for fine-grained sedimentary rocks based on sediments sources and genesis[J]. Journal of Palaeogeography, 2023, 25(4): 729-741. | |
9 | 邵龙义, 张天畅. 泥质岩定义及分类问题的探讨[J]. 古地理学报, 2023, 25(4): 742-751. |
SHAO Longyi, ZHANG Tianchang. Discussion on definition and classification of mudrock[J]. Journal of Palaeogeography, 2023, 25(4): 742-751. | |
10 | 郭英海, 赵迪斐, 陈世悦. 细粒沉积物及其古地理研究进展与展望[J]. 古地理学报, 2021, 23(2): 263-283. |
GUO Yinghai, ZHAO Difei, CHEN Shiyue. Research progress and prospect of fine-grained sediments and palaeogeography[J]. Journal of Palaeogeography, 2021, 23(2): 263-283. | |
11 | 姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6): 1031-1039. |
JIANG Zaixing, LIANG Chao, WU Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039. | |
12 | PETTIJOHN F J. Sedimentary rocks[M]. 3rd ed. New York: Harper and Row, 1975: 260-292. |
13 | MILLIKEN K L, ZHANG Tongwei, CHEN Jianping, et al. Mineral diagenetic control of expulsion efficiency in organic-rich mudrocks, Bakken Formation (Devonian-Mississippian), Williston Basin, North Dakota, U.S.A[J]. Marine and Petroleum Geology, 2021, 127: 104869. |
14 | SHI Zhensheng, ZHAO Shengxian, ZHOU Tianqi, et al. Mineralogy and geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi shale on the Yangtze platform, south China: Implications for provenance analysis and shale gas sweet-spot interval[J]. Minerals, 2022, 12(10): 1190. |
15 | QI Ling, WANG Hongyan, SHI Zhensheng, et al. Mineralogical and geochemical characteristics of the deeply buried Wufeng-Longmaxi Shale in the southern Sichuan Basin, China: Implications for provenance and tectonic setting[J]. Minerals, 2023, 13(12): 1502. |
16 | MELCHIN M J, MITCHELL C E, HOLMDEN C, et al. Environmental changes in the Late Ordovician-Early Silurian: Review and new insights from black shales and nitrogen isotopes[J]. GSA Bulletin, 2013, 125(11/12): 1635-1670. |
17 | MUNNECKE A, CALNER M, HARPER D A T, et al. Ordovician and Silurian Sea-water chemistry, sea level, and climate: A synopsis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(3/4): 389-413. |
18 | 张兴亮. 海洋惰性溶解有机碳库与海侵黑色页岩[J]. 科学通报, 2022, 67(15): 1607-1613. |
ZHANG Xingliang. Marine refractory dissolved organic carbon and transgressive black shales[J]. Chinese Science Bulletin, 2022, 67(15): 1607-1613. | |
19 | 邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12. |
ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. | |
20 | GORSLINE D S. Introduction to a symposium on fine-grained sedimentology[J]. Geo-Marine Letters, 1984, 4(3): 133-138. |
21 | 朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. |
ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264. | |
22 | SORBY H C. On the application of quantitative methods to the study of the structure and history of rocks[J]. Quarterly Journal of the Geological Society, 1908, 64(1/4): 171-233. |
23 | PICARD M D. Classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195. |
24 | 施振生, 周天琪, 孙莎莎, 等. 川南地区海相细粒储层研究与页岩气勘探[M]. 北京: 石油工业出版社, 2024: 1-233. |
SHI Zhensheng, ZHOU Tianqi, SUN Shasha, et al. Research on marine fine-grained reservoirs and shale gas exploration in the southern Sichuan region[M]. Beijing: Petroleum Industry Press, 2024: 1-233. | |
25 | LOUCKS R G, RUPPEL S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. |
26 | MACQUAKER J H S, BENTLEY S J, BOHACS K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950. |
27 | 胡斌, 王冠忠, 齐永安. 痕迹学理论与应用[M]. 徐州: 中国矿业大学出版社, 1997: 1-209. |
HU Bin, WANG Guanzhong, QI Yongan. Theory of ichnology and its application[M]. Xuzhou: China University of Mining and Technology press, 1997: 1-209. | |
28 | 颜佳新, 孟琦, 王夏, 等. 碳酸盐工厂与浅水碳酸盐岩台地: 研究进展与展望[J]. 古地理学报, 2019, 21(2): 232-253. |
YAN Jiaxin, MENG Qi, WANG Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography, 2019, 21(2): 232-253. | |
29 | Erosion HILLIER S., sedimentation and sedimentary origin of clays[M]//VELDE B. Origin and Mineralogy of Clays. Berlin: Springer, 1995: 162-219. |
30 | POTTER P E, MAYNARD J B, DEPETRIS P J. Mud and mudstones: Introduction and overview[M]. Berlin: Springer, 2005: 297. |
31 | SCHIEBER J. Early diagenetic silica deposition in algal cysts and spores; a source of sand in black shales?[J]. Journal of Sedimentary Research, 1996, 66(1): 175-183. |
32 | STOW D A V. Fine-grained sediments in deep water: An overview of processes and facies models[J]. Geo-Marine Letters, 1985, 5(1): 17-23. |
33 | STOW D A V, HUC A Y, BERTRAND P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 2001, 18(4): 491-498. |
34 | SCHIEBER J. Mud re-distribution in epicontinental basins: Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133. |
35 | MIDDLETON N J, GOUDIE A S. Saharan dust: Sources and trajectories[J]. Transactions of the Institute of British Geographers, 2001, 26(2): 165-181. |
36 | WERNE J P, SAGEMAN B B, LYONS T W, et al. An integrated assessment of a “type euxinic” deposit: Evidence for multiple controls on black shale deposition in the middle Devonian Oatka Creek formation[J]. American Journal of Science, 2002, 302(2): 110-143. |
37 | SAGEMAN B B, MURPHY A E, WERNE J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/4): 229-273. |
38 | 杜学斌, 贾冀新, 赵珂, 等. 扬子地区奥陶纪—志留纪过渡期深时火山灰层发育特征及其对富有机质页岩沉积的影响[J]. 中南大学学报(自然科学版), 2022, 53(9): 3509-3521. |
DU Xuebin, JIA Jixin, ZHAO Ke, et al. Development characteristics of deep-time volcanic ash layers and its influence on deposition of organic-rich shale across Ordovician—Silurian transition in Yangtze area, South China[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3509-3521. | |
39 | SU Wenbo, HUFF W D, ETTENSOHN F R, et al. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana[J]. Gondwana Research, 2009, 15(1): 111-130. |
40 | SCHIEBER J. Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record[J]. Sedimentary Geology, 2016, 331: 162-169. |
41 | PATTISON S A J. Storm-influenced prodelta turbidite complex in the Lower Kenilworth member at Hatch Mesa, Book Cliffs, Utah, U.S.A.: Implications for shallow marine facies models[J]. Journal of Sedimentary Research, 2005, 75(3): 420-439. |
42 | ALEXANDER J, MULDER T. Experimental quasi-steady density currents[J]. Marine Geology, 2002, 186(3/4): 195-210. |
43 | JIN Lina, SHAN Xin, SHI Xuefa, et al. Hybrid event beds generated by erosional bulking of modern hyperpycnal flows on the Choshui River delta front, Taiwan Strait[J]. Sedimentology, 2021, 68(6): 2500-2522. |
44 | MULDER T, SYVITSKI J P M. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103(3): 285-299. |
45 | PANTIN H M. Interaction between velocity and effective density in turbidity flow: Phase-plane analysis, with criteria for autosuspension[J]. Marine Geology, 1979, 31(1/2): 59-99. |
46 | FRIEDRICHS C T, WRIGHT L D. Gravity-driven sediment transport on the continental shelf: Implications for equilibrium profiles near river mouths[J]. Coastal Engineering, 2004, 51(8/9): 795-811. |
47 | BHATTACHARYA J P, MACEACHERN J A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America[J]. Journal of Sedimentary Research, 2009, 79(4): 184-209. |
48 | OGSTON A S, STERNBERG R W, NITTROUER C A, et al. Sediment delivery from the Fly River tidally dominated delta to the nearshore marine environment and the impact of El Niño[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1): F01S11. |
49 | STOW D A V, BOWEN A J. A physical model for the transport and sorting of fine-grained sediment by turbidity currents[J]. Sedimentology, 1980, 27(1): 31-46. |
50 | AIGNER T, REINECK H E. Proximality trends in modern storm sands from the Helgoland bight (North Sea) and their implications for basin analysis[J]. Senckenbergiana Maritima, 1982, 14(5/6): 183-215. |
51 | FAUGÈRES J C, STOW D A V. Bottom-current-controlled sedimentation: A synthesis of the contourite problem[J]. Sedimentary Geology, 1993, 82(1/4): 287-297. |
52 | REBESCO M, HERNÁNDEZ-MOLINA F J, VAN ROOIJ D, et al. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations[J]. Marine Geology, 2014, 352: 111-154. |
53 | STOW D, SMILLIE Z. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites[J]. Geosciences, 2020, 10(2): 68. |
54 | MA Xiaochuan, YAN Jun, HOU Yijun, et al. Footprints of obliquely incident internal solitary waves and internal tides near the shelf break in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(12): 8706-8719. |
55 | STOW D A V, HERNÁNDEZ-MOLINA F J, LLAVE E, et al. The Cadiz Contourite Channel: Sandy contourites, bedforms and dynamic current interaction[J]. Marine Geology, 2013, 343: 99-114. |
56 | MCANALLY W H, FRIEDRICHS C, HAMILTON D, et al. Management of fluid mud in estuaries, bays, and lakes. I: Present state of understanding on character and behavior[J]. Journal of Hydraulic Engineering, 2007, 133(1): 9-22. |
57 | TRAN D, STROM K. Suspended clays and silts: Are they Independent or dependent fractions when it comes to settling in a turbulent suspension?[J]. Continental Shelf Research, 2017, 138: 81-94. |
58 | SCHIEBER J. Reverse engineering mother nature—Shale sedimentology from an experimental perspective[J]. Sedimentary Geology, 2011, 238(1/2): 1-22. |
59 | TALLING P J, MASSON D G, SUMNER E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003. |
60 | STERNBERG R W, BERHANE I, OGSTON A S. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf[J]. Marine Geology, 1999, 154(1/4): 43-53. |
61 | SCHIEBER J, SOUTHARD J, THAISEN K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763. |
62 | SCHIEBER J, SOUTHARD J B. Bedload transport of mud by floccule ripples—Direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486. |
63 | YAWAR Z, SCHIEBER J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34. |
64 | SCHIEBER J, SOUTHARD J B, SCHIMMELMANN A. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds—Interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80(1): 119-128. |
65 | EINSELE G, OVERBECK R, SCHWARZ H U, et al. Mass physical properties, sliding and erodibility of experimentally deposited and differently consolidated clayey muds (Approach, equipment, and first results)[J]. Sedimentology, 1974, 21(3): 339-372. |
66 | PEVERILL K I, SPARROW L A, REUTER D J. Soil analysis: An interpretation manual[M]. Collingwood: CSIRO Publishing, 1999: 388. |
67 | PLINT A G, MACQUAKER J H S, VARBAN B L. Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, western Canada foreland basin[J]. Journal of Sedimentary Research, 2012, 82(11): 801-822. |
68 | SCHIEBER J, BENNETT R. Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, western Canada foreland basin—discussion[J]. Journal of Sedimentary Research, 2013, 83(12): 1198-1199. |
69 | PLINT A G. Mud dispersal across a Cretaceous prodelta: Storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies[J]. Sedimentology, 2014, 61(3): 609-647. |
70 | DICKINSON W R. Interpreting detrital modes of graywacke and arkose[J]. Journal of Sedimentary Research, 1970, 40(2): 695-707. |
71 | FOWLER S W, KNAUER G A. Role of large particles in the transport of elements and organic compounds through the oceanic water column[J]. Progress in Oceanography, 1986, 16(3): 147-194. |
72 | ALLDREDGE A L, SILVER M W. Characteristics, dynamics and significance of marine snow[J]. Progress in Oceanography, 1988, 20(1): 41-82. |
73 | THORNTON D. Diatom aggregation in the sea: Mechanisms and ecological implications[J]. European Journal of Phycology, 2002, 37(2): 149-161. |
74 | GRIMM K A, LANGE C B, GILL A S. Self-sedimentation of phytoplankton blooms in the geologic record[J]. Sedimentary Geology, 1997, 110(3/4): 151-161. |
75 | FLÜGEL E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer, 2004: 976. |
76 | SCHIEBER J, SHAO Xinhe. Detecting detrital carbonate in shale successions-Relevance for evaluation of depositional setting and sequence stratigraphic interpretation[J]. Marine and Petroleum Geology, 2021, 130: 105130. |
77 | HONJO S. The rain of ocean particles and earth’s carbon cycle[J]. Oceanus, 1997, 40(2): 4-7. |
78 | MACQUAKER J H S, KELLER M A, DAVIES S J. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of Sedimentary Research, 2010, 80(11): 934-942. |
79 | MACQUAKER J H S, BOHACS K M. On the accumulation of mud[J]. Science, 2007, 318(5857): 1734-1735. |
80 | CAMPBELL C V. Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26. |
81 | 施振生, 邱振, 董大忠, 等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018, 45(2): 339-348. |
SHI Zhensheng, QIU Zhen, DONG Dazhong, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(2): 339-348. | |
82 | 施振生, 董大忠, 王红岩, 等. 含气页岩不同纹层及组合储集层特征差异性及其成因——以四川盆地下志留统龙马溪组一段典型井为例[J]. 石油勘探与开发, 2020, 47(4): 829-840. |
SHI Zhensheng, DONG Dazhong, WANG Hongyan, et al. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(4): 829-840. | |
83 | 施振生, 邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报, 2021, 39(1): 181-196. |
SHI Zhensheng, QIU Zhen. Main bedding types of marine fine-grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica, 2021, 39(1): 181-196. | |
84 | 施振生, 赵圣贤, 周天琪, 等. 海相含气页岩水平层理类型、成因及其页岩气意义——以川南地区古生界五峰组-龙马溪组为例[J]. 石油与天然气地质, 2023, 44(6): 1499-1514. |
SHI Zhensheng, ZHAO Shengxian, ZHOU Tianqi, et al. Types and genesis of horizontal bedding of marine gas-bearing shale and its significance for shale gas: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Oil & Gas Geology, 2023, 44(6): 1499-1514. | |
85 | STOW D A V. Sedimentary rocks in the field-A colour guide[M]. London: CRC Press, 2005: 1-318. |
86 | SHI Zhensheng, ZHOU Tianqi, WANG Hongyan, et al. Depositional structures and their reservoir characteristics in the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Energies, 2022, 15(5): 1618. |
87 | 冯增昭. 沉积岩石学[M]. 2版. 北京: 石油工业出版社, 1994: 1-298. |
FENG Zengzhao. Sedimentary petrology[M]. 2nd ed. Beijing: Petroleum Industry Press, 1994: 1-298. | |
88 | STOW D A V, SHANMUGAM D. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments[J]. Sedimentary Geology, 1980, 25(1/2): 23-42. |
89 | COLLINSON J D, MOUNTNEY N P. Sedimentary structures[M]. 4th ed. Edinburgh: Dunedin Academic Press, 2019: 1-340. |
90 | TALLING P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3): 460-488. |
91 | PIPER D J W. Turbidite origin of some laminated mudstones[J]. Geological Magazine, 1972, 109(2): 115-126. |
92 | STOW D A V, BOWEN A J. Origin of lamination in deep sea, fine-grained sediments[J]. Nature, 1978, 274(5669): 324-328. |
93 | MCCAVE I N, JONES K P N. Deposition of ungraded muds from high-density non-turbulent turbidity currents[J]. Nature, 1988, 333(6170): 250-252. |
94 | SCHIMMELMANN A, LANGE C B, SCHIEBER J, et al. Varves in marine sediments: A review[J]. Earth-Science Reviews, 2016, 159: 215-246. |
95 | BAAS J H, BEST J L, PEAKALL J E. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows[J]. Sedimentology, 2011, 58(7): 1953-1987. |
96 | KRENMAYR H G. Hemipelagic and turbiditic mudstone facies associations in the Upper Cretaceous Gosau Group of the Northern Calcareous Alps (Austria)[J]. Sedimentary Geology, 1996, 101(3/4): 149-172. |
97 | STOW D A V, TABREZ A R. Hemipelagites: Processes, facies and model[J]. Geological Society, London, Special Publications, 1998, 129(1): 317-337. |
98 | MULDER T, ALEXANDER J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299. |
99 | MULDER T, SYVITSKI J P M, MIGEON S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/8): 861-882. |
100 | 施振生, 王红岩, 赵圣贤, 等. 川南地区上奥陶统—下志留统五峰组-龙马溪组快速海进页岩特征及有机质分布[J]. 古地理学报, 2023, 25(4): 788-805. |
SHI Zhensheng, WANG Hongyan, ZHAO Shengxian, et al. Rapid transgressive shale characteristics and organic matter distribution of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi formations in southern Sichuan Basin, China[J]. Journal of Palaeogeography, 2023, 25(4): 788-805. | |
101 | MIGEON S, SAVOYE B, ZANELLA E, et al. Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): significance for sediment transport and deposition and for the mechanisms of sediment-wave construction[J]. Marine and Petroleum Geology, 2001, 18(2): 179-208. |
102 | NORMARK W R, PIPER D J W, POSAMENTIER H, et al. Variability in form and growth of sediment waves on turbidite channel levees[J]. Marine Geology, 2002, 192(1/3): 23-58. |
103 | KNELLER B C, MCCAFFREY W D. The interpretation of vertical sequences in turbidite beds: The influence of longitudinal flow structure[J]. Journal of Sedimentary Research, 2003, 73(5): 706-713. |
104 | PAULL C K, USSLER III W, HOLBROOK W S, et al. The tail of the Storegga Slide: Insights from the geochemistry and sedimentology of the Norwegian Basin deposits[J]. Sedimentology, 2010, 57(6): 1409-1429. |
105 | 林春明. 沉积岩石学[M]. 北京: 科学出版社, 2019: 1-399. |
LIN Chunming. Sedimentary petrology[M]. Beijing: Science Press, 2019: 1-399. | |
106 | DROSER M L, BOTTJER D J. A semiquantitative field classification of ichnofabric[J]. Journal of Sedimentary Research, 1986, 56(4): 558-559. |
107 | O’BRIEN N R, SLATT R M. Argillaceous rock atlas[M]. New York: Springer, 1990: 141. |
108 | WIGNALL P B. Black shales[M]. New York: Oxford University Press, 1994: 130. |
109 | RÖHL H J, SCHMID-RÖHL A, OSCHMANN W, et al. The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by sea level and palaeoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 165(1/2): 27-52. |
110 | SCHMID-RÖHL A, RÖHL H J, OSCHMANN W, et al. Palaeoenvironmental reconstruction of Lower Toarcian epicontinental black shales (Posidonia Shale, SW Germany): Global versus regional control[J]. Geobios, 2002, 35(1): 13-20. |
111 | LOWE D R. Sediment gravity flows; II, Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297. |
112 | WALKER R G. The origin and significance of the internal sedimentary structures of turbidites[J]. Proceedings of the Yorkshire Geological Society, 1965, 35(1): 1-32. |
113 | STOW D A V, SHANMUGAM G. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments[J]. Sedimentary Geology, 1980, 25(1/2): 23-42. |
114 | STOW D A V, PIPER D J W. Deep-water fine-grained sediments: Facies models[J]. Geological Society, London, Special Publications, 1984, 15(1): 611-646. |
115 | 王红岩, 施振生, 孙莎莎, 等. 陆表海页岩沉积微相类型及微相分布模式——以川南地区五峰组-龙马溪组为例[J]. 石油勘探与开发, 2023, 50(1): 51-64. |
WANG Hongyan, SHI Zhensheng, SUN Shasha, et al. Microfacies types and distribution of epicontinental shale: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2023, 50(1): 51-64. | |
116 | 冯增昭. 华北下奥陶统岩相古地理新探[J]. 华东石油学院学报, 1977, 1(3): 57-79. |
FENG Zengzhao. Preliminary discussion on the Lower Ordovician lithofacies and paleogeography in North China[J]. Journal of East China Petroleum Institute, 1977, 1(3): 57-79. | |
117 | 冯增昭. 华北早奥陶世岩相古地理新探[J]. 地质科学, 1979, 14(4): 302-313, 385-386. |
FENG Zengzhao. A preliminary discussion on the Lower Ordovician lithofacies and paleogeography in North China[J]. Chinese Journal of Geology, 1979, 14(4): 302-313, 385-386. | |
118 | 施振生, 周天琪, 郭伟, 等. 海相页岩定量古地理编图及深水陆棚沉积微相划分——以川南泸州地区五峰组-龙马溪组龙一11-4小层为例[J]. 沉积学报, 2022, 40(6): 1728-1744. |
SHI Zhensheng, ZHOU Tianqi, GUO Wei, et al. Quantitative paleogeographic mapping and sedimentary microfacies division in a deep-water marine shale shelf: Case study of wufeng Formation-Longmaxi formation shale, southern Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1728-1744. | |
119 | SHI Zhensheng, ZHOU Tianqi, ZHAO Qun, et al. Microfacies analysis and mapping of the Late Ordovician-Early Silurian Wufeng-Longmaxi shelf shale in southern Sichuan Basin, China[J]. Arabian Journal of Geosciences, 2022, 15(11): 1075. |
120 | ARTHUR M A, SAGEMAN B B. Marine black shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 499-551. |
121 | DEMAISON G J, MOORE G T. Anoxic environments and oil source bed genesis[J]. AAPG Bulletin, 1980, 64(8): 1179-1209. |
122 | LEONOWICZ P. Nearshore transgressive black shale from the Middle Jurassic shallow-marine succession from southern Poland[J]. Facies, 2016, 62(2): 16. |
123 | 邱振, 韦恒叶, 刘翰林, 等. 异常高有机质沉积富集过程与元素地球化学特征[J]. 石油与天然气地质, 2021, 42(4): 931-948. |
QIU Zhen, WEI Hengye, LIU Hanlin, et al. Accumulation of sediments with extraordinary high organic matter content: Insight gained through geochemical characterization of indicative elements[J]. Oil & Gas Geology, 2021, 42(4): 931-948. | |
124 | PEDERSEN T F, CALVERT S E. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466. |
125 | JENKYNS H C. Cretaceous anoxic events: From continents to oceans[J]. Journal of the Geological Society, 1980, 137(2): 171-188. |
126 | JENKYNS H C. The Early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidence[J]. American Journal of Science, 1988, 288(2): 101-151. |
127 | JENKYNS H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03004. |
128 | SŁOWAKIEWICZ M, TUCKER M E, PERRI E, et al. Nearshore euxinia in the photic zone of an ancient sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 242-259. |
129 | MCARTHUR J M, ALGEO T J, VAN DE SCHOOTBRUGGE B, et al. Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event[J]. Paleoceanography, 2008, 23(4): PA4217. |
130 | HALLAM A, BRADSHAW M J. Bituminous shales and oolitic ironstones as indicators of transgressions and regressions[J]. Journal of the Geological Society, 1979, 136(2): 157-164. |
131 | WIGNALL P B. Model for transgressive black shales?[J]. Geology, 1991, 19(2): 167-170. |
132 | RÖHL H J, SCHMID-RÖHL A. Lower Toarcian (Upper Liassic) black shales of the central European Epicontinental Basin: A sequence stratigraphic case study from the Sw German Posidonia Shale[M]//HARRIS N B. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Broken Arrow: SEPM Society for Sedimentary Geology, 2005: 165-189. |
133 | WIGNALL P B, NEWTON R. Black shales on the basin margin: A model based on examples from the Upper Jurassic of the Boulonnais, northern France[J]. Sedimentary Geology, 2001, 144(3/4): 335-356. |
134 | 邱振, 邹才能. 非常规油气沉积学: 内涵与展望[J]. 沉积学报, 2020, 38(1): 1-29. |
QIU Zhen, ZOU Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. | |
135 | ZOU Caineng, QIU Zhen, POULTON S W, et al. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6): 535-538. |
136 | INGRAM R L. Fissility of mudrocks[J]. GSA Bulletin, 1953, 64(8): 869-878. |
137 | TWENHOFEL W H. The bottom sediments of Lake Monona, a fresh-water lake of southern Wisconsin[J]. Journal of Sedimentary Research, 1937, 7(2): 67-77. |
138 | ILGEN A G, HEATH J E, AKKUTLU I Y, et al. Shales at all scales: Exploring coupled processes in mudrocks[J]. Earth-Science Reviews, 2017, 166: 132-152. |
139 | BOGGS S, Jr. Petrology of sedimentary rocks[M]. 2nd ed. Cambridge: Cambridge University Press, 2009: 194-219. |
140 | 曾允孚, 夏文杰. 沉积岩石学[M]. 北京: 地质出版社, 1986: 1-142. |
ZENG Yunfu, XIA Wenjie. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1986: 1-142. | |
141 | MILLIKEN K L, ERGENE S M, OZKAN A. Quartz types, authigenic and detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA[J]. Sedimentary Geology, 2016, 339: 273-288. |
142 | MACQUAKER J H S, TAYLOR K G, KELLER M, et al. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones[J]. AAPG Bulletin, 2014, 98(3): 587-603. |
143 | 管全中, 董大忠, 张华玲, 等. 富有机质页岩生物成因石英的类型及其耦合成储机制——以四川盆地上奥陶统五峰组-下志留统龙马溪组为例[J]. 石油勘探与开发, 2021, 48(4): 700-709. |
GUAN Quanzhong, DONG Dazhong, ZHANG Hualing, et al. Types of biogenic quartz and its coupling storage mechanism in organic-rich shales: A case study of the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(4): 700-709. | |
144 | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27(2): 377-386. |
ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386. | |
145 | MILLIKEN K L, OLSON T . diagenesis Silica, evolution porosity, and mechanical behavior in siliceous mudstones, Mowry Shale (Cretaceous), mountains rocky, U.S.A.[J]. Journal of Sedimentary Research, 2017, 87(4): 366-387. |
146 | 赵建华, 金之钧. 泥岩成岩作用研究进展与展望[J]. 沉积学报, 2021, 39(1): 58-72. |
ZHAO Jianhua, JIN Zhijun. Mudstone diagenesis: Research advances and prospects[J]. Acta Sedimentologica Sinica, 2021, 39(1): 58-72. | |
147 | 江茂生, 朱井泉, 李学杰. 深水碳酸盐沉积研究进展[J]. 古地理学报, 2001, 3(4): 61-68. |
JIANG Maosheng, ZHU Jingquan, LI Xuejie. New progress in research on deep water carbonate sedimentation[J]. Journal of Palaeogeography, 2001, 3(4): 61-68. | |
148 | SCHIEBER J, KRINSLEY D, RICIPUTI L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985. |
149 | 蓝先洪, 张宪军, 刘新波, 等. 南黄海表层沉积物黏土矿物分布及物源[J]. 海洋地质与第四纪地质, 2011, 31(3): 11-16. |
LAN Xianhong, ZHANG Xianjun, LIU Xinbo, et al. Distribution pattern of clay minerals in surface sediments of South Yellow Sea and their provenance[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 11-16. | |
150 | 虞义勇, 王永红, 李日辉, 等. 渤海西部表层沉积物中黏土矿物分布特征及物源指示[J]. 海洋地质与第四纪地质, 2017, 37(1): 51-58. |
YU Yiyong, WANG Yonghong, LI Rihui, et al. Clay mimerals distribution pattern in surface sediments of western Bohai and their provenance implications[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 51-58. | |
151 | 周晓峰, 李熙喆, 郭伟, 等. 四川盆地五峰组-龙马溪组页岩储层中碳酸盐矿物特征、形成机制及对储层物性影响[J]. 天然气地球科学, 2022, 33(5): 775-788. |
ZHOU Xiaofeng, LI Xizhe, GUO Wei, et al. Characteristics, formation mechanism and influence on physical properties of carbonate minerals in shale reservoir of Wufeng-Longmaxi formations, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(5): 775-788. | |
152 | 李国刚, 秦蕴珊. 中国近海细粒级沉积物中的方解石分布,成因及其地质意义[J]. 海洋学报, 1991, 13(3): 381-386. |
LI Guogang, QIN Yunshan. The distribution, genesis, and geological significance of calcite in fine-grained sediments near the coast of China[J]. Acta Oceanologica Sinica, 1991, 13(3): 381-386. | |
153 | 李学杰, 陈芳, 刘坚, 等. 南海西部表层沉积物碳酸盐分布特征及其溶解作用[J]. 地球化学, 2004, 33(3): 254-260. |
LI Xuejie, CHEN Fang, LIU Jian, et al. Distribution and its dissolution of carbonate in seafloor surface sediment in the western South China Sea[J]. Geochimica, 2004, 33(3): 254-260. | |
154 | 张光荣, 聂海宽, 唐玄, 等. 页岩中黄铁矿类型及其对页岩气富集的影响——以四川盆地及其周缘五峰组-龙马溪组页岩为例[J]. 石油实验地质, 2020, 42(3): 459-466. |
ZHANG Guangrong, NIE Haikuan, TANG Xuan, et al. Pyrite type and its effect on shale gas accumulation: A case study of Wufeng-Longmaxi shale in Sichuan Basin and its periphery[J]. Petroleum Geology and Experiment, 2020, 42(3): 459-466. | |
155 | SHANMUGAM G. Contourites: Physical oceanography, process sedimentology, and petroleum geology[J]. Petroleum Exploration and Development, 2017, 44(2): 183-216. |
156 | 王红岩, 周尚文, 赵群, 等. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
WANG Hongyan, ZHOU Shangwen, ZHAO Qun, et al. Enrichment characteristics, exploration and exploitation progress, and prospects of deep shale gas in the southern Sichuan Basin, China[J]. Oil & Gas Geology, 2023, 44(6): 1430-1441. | |
157 | 边瑞康, 孙川翔, 聂海宽, 等. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
BIAN Ruikang, SUN Chuanxiang, NIE Haikuan, et al. Types, characteristics, and exploration targets of deep shale gas reservoirs in the WufengLongmaxi formations, southeastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(6): 1515-1529. |
[1] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[2] | 翟常博, 林良彪, 尤东华, 刘冯斌, 刘思雨. 川西南地区中二叠统茅口组一段沉积微相特征及有机质富集模式[J]. 石油与天然气地质, 2024, 45(2): 440-456. |
[3] | 施振生, 赵圣贤, 周天琪, 孙莎莎, 袁渊, 张成林, 李博, 祁灵. 海相含气页岩水平层理类型、成因及其页岩气意义[J]. 石油与天然气地质, 2023, 44(6): 1499-1514. |
[4] | 张天舒, 朱如凯, 蔡毅, 王华建, 吕丹, 周海燕, 付秀丽, 刘畅, 崔坤宁, 张素荣, 王浡, 吴松涛, 张婧雅, 姜晓华, 冯有良, 刘合. 松辽盆地古龙凹陷白垩系青山口组页岩层序等时格架下的有机质分布规律[J]. 石油与天然气地质, 2023, 44(4): 869-886. |
[5] | 张瑞, 金之钧, 朱如凯, 李明松, 惠潇, 魏韧, 贺翔武, 张谦. 中国陆相富有机质页岩沉积速率研究及其页岩油勘探意义[J]. 石油与天然气地质, 2023, 44(4): 829-845. |
[6] | 李庆, 卢浩, 吴胜和, 夏东领, 李江山, 齐奉强, 付育璞, 伍岳. 鄂尔多斯盆地南部三叠系长73亚段凝灰岩沉积成因及储层特征[J]. 石油与天然气地质, 2022, 43(5): 1141-1154. |
[7] | 朱如凯, 李梦莹, 杨静儒, 张素荣, 蔡毅, 曹琰, 康缘. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. |
[8] | 陈双全, 钟庆良, 李忠平, 张敏, 赵欣, 李向阳. 水平层理缝岩石物理建模及其地震响应特征[J]. 石油与天然气地质, 2020, 41(6): 1273-1281, 1287. |
[9] | 张玉玺, 陈建文, 周江羽. 苏北地区早寒武世黑色页岩地球化学特征与有机质富集模式[J]. 石油与天然气地质, 2020, 41(4): 838-851. |
[10] | 鞠玮, 尤源, 冯胜斌, 徐浩然, 张晓丽, 王胜宇. 鄂尔多斯盆地延长组长7油层组致密砂岩储层层理缝特征及成因[J]. 石油与天然气地质, 2020, 41(3): 596-605. |
[11] | 黎荣, 胡明毅, 杨威, 刘满仓. 四川盆地中二叠统沉积相模式及有利储集体分布[J]. 石油与天然气地质, 2019, 40(2): 369-379. |
[12] | 王鹏万, 张磊, 李昌, 李娴静, 邹辰, 张朝, 李君军, 李庆飞. 黑色页岩氧化还原条件与有机质富集机制——以昭通页岩气示范区A井五峰组-龙马溪组下段为例[J]. 石油与天然气地质, 2017, 38(5): 933-943. |
[13] | 朱晓军, 蔡进功. 泥质烃源岩的比表面与有机质关系研究进展及意义[J]. 石油与天然气地质, 2012, 33(3): 375-384. |
[14] | 刘祥, 郎建军, 杨清福. 火山碎屑沉积物是油气的重要储层[J]. 石油与天然气地质, 2011, 32(6): 859-866,889. |
[15] | 宋一涛, 廖永胜, 王忠. 潍北凹陷孔店组烃源岩评价及油源分析[J]. 石油与天然气地质, 2005, 26(4): 487-493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||