石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (4): 869-886.doi: 10.11743/ogg20230406
张天舒1(), 朱如凯1(), 蔡毅1, 王华建1, 吕丹1, 周海燕1, 付秀丽2, 刘畅1, 崔坤宁2, 张素荣1, 王浡3, 吴松涛1, 张婧雅1, 姜晓华1, 冯有良1, 刘合1
收稿日期:
2023-02-22
修回日期:
2023-05-20
出版日期:
2023-08-01
发布日期:
2023-08-09
通讯作者:
朱如凯
E-mail:zhangtianshu@petrochina.com.cn;zrk@petrochina.com.cn
第一作者简介:
张天舒(1982—),女,博士、高级工程师,层序地层与沉积地质。E-mail:基金项目:
Tianshu ZHANG1(), Rukai ZHU1(), Yi CAI1, Huajian WANG1, Dan LYU1, Haiyan ZHOU1, Xiuli FU2, Chang LIU1, Kunning CUI2, Surong ZHANG1, Bo WANG3, Songtao WU1, Jingya ZHANG1, Xiaohua JIANG1, Youliang FENG1, He LIU1
Received:
2023-02-22
Revised:
2023-05-20
Online:
2023-08-01
Published:
2023-08-09
Contact:
Rukai ZHU
E-mail:zhangtianshu@petrochina.com.cn;zrk@petrochina.com.cn
摘要:
松辽盆地古龙凹陷白垩系青山口组陆相纯页岩型页岩油获得高产突破,但古龙页岩有机质分布的非均质性强,主控因素不清,制约有利区和甜点段预测。通过精细分析岩心、露头、薄片、地震、测井、地球化学和古生物等数据,针对湖相深水页岩特点,基于“层序等级”与“湖侵-湖退(T-R)旋回”理论,结合天文旋回研究进展,建立了深湖区高频层序等时格架。通过类比现代湖泊,建立了古湖泊沉积环境判识指标,分析了古生产力、氧化还原环境及沉积速率的耦合关系,探讨了高频层序格架下有机质富集非均质性的成因。研究认为:①古龙凹陷青山口组可划分为4个三级层序,其中,层序1和层序2识别出2个T-R旋回,由13个准层序组(52个准层序)构成;准层序和准层序组的沉积时长分别为约40 kyr和170 kyr。②层序格架下页岩发育3种岩相、4种纹层、5种组合类型、11种纹层组合模式和3种沉积微相;T-R旋回控制了沉积微相、岩相和纹层组合的纵向分布,其中,深湖相静水沉积和泥流沉积的黏土质页岩为有利岩相。③T-R旋回控制了有机质分布,湖泛面附近是有利部位;有利区/段为古龙凹陷的准层序组2以及三肇凹陷的准层序组1—4。该研究成果能够为页岩油有利区和甜点段预测提供沉积学依据。
中图分类号:
图1
松辽盆地区域地质概况(修改自参考文献[4-5,15-16])a. 松辽盆地构造分区;b.研究区井位、剖面位置及古沉积地貌单元;c.松辽盆地青山口组地层柱状图;d.松辽盆地构造剖面(剖面位置见图1a)Ⅰ.西斜坡英台三角洲—湖湾区(P1以西,C1、C2井);Ⅱ.龙虎泡-大安阶地英台三角洲—浅湖-半深湖斜坡区(P2以西, C3、C4、C5、C6、E1井);Ⅲ.龙虎泡-大安阶地—古龙凹陷英台半深湖-深湖区(P2和P3之间,C7、Y2、Y0、Y1、D3、D2井);Ⅳ.齐家-古龙凹陷讷河三角洲—浅湖-半深湖斜坡区(P3以东,大庆长垣以西,D8、D7、D6、D5、Y3、C8井);Ⅴ.齐家-古龙凹陷英台半深湖-深湖区(P3以东,大庆长垣以西,D4、Y4、D1、Y5、Y6井);Ⅵ.大庆长垣中央古隆起斜坡半深湖区(大庆长垣,C9、C10、SK-1s井);Ⅶ.三肇凹陷中央古隆起斜坡半深湖区(Y7井);Ⅷ.三肇凹陷中央古隆起斜坡讷河浅湖-半深湖区(C11、C12井);Ⅸ.三肇凹陷中部讷河半深湖-深湖区(Y8井)"
表1
松辽盆地北部青山口组准层序组沉积速率相对变化"
井号 | 不同准层序组相对沉积速率/(cm/kyr) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
D8 | 9.96 | 9.33 | 8.60 | 7.81 | 10.14 | 15.11 | 13.21 | 9.00 | 11.93 | 8.66 | 7.75 | 6.53 | 8.79 |
D7 | 11.85 | 6.12 | 7.83 | 9.68 | 7.00 | 10.97 | 12.11 | 7.80 | 9.08 | 7.45 | 6.15 | 7.42 | 9.91 |
D6 | 9.80 | 6.72 | 7.02 | 9.93 | 6.70 | 9.69 | 12.82 | 8.89 | 10.31 | 9.16 | 6.25 | 5.82 | 9.74 |
D5 | 10.75 | 7.86 | 8.34 | 9.27 | 7.58 | 13.41 | 11.57 | 11.65 | 13.42 | 11.02 | 7.30 | 6.67 | 9.46 |
Y3 | 8.74 | 6.75 | 7.53 | 9.47 | 6.79 | 10.17 | 12.18 | 10.06 | 10.44 | 9.31 | 8.17 | 7.82 | 9.54 |
Y2 | 10.34 | 6.29 | 6.81 | 7.37 | 6.78 | 8.28 | 11.22 | 11.25 | 11.82 | 8.28 | 6.62 | 9.85 | 13.04 |
Y0 | 9.64 | 5.39 | 8.34 | 9.40 | 6.32 | 7.39 | 11.62 | 12.96 | 9.42 | 6.39 | 7.58 | 9.96 | 8.80 |
Y1 | 7.71 | 6.24 | 6.95 | 7.91 | 6.52 | 8.84 | 11.61 | 10.40 | 11.49 | 9.87 | 6.28 | 9.85 | 11.00 |
D4 | 10.79 | 4.92 | 8.29 | 5.97 | 9.41 | 9.27 | 11.16 | 12.59 | 12.03 | 8.05 | 7.26 | 11.94 | 13.41 |
Y4 | 10.71 | 5.08 | 8.80 | 6.02 | 10.95 | 10.27 | 10.10 | 13.46 | 11.23 | 8.92 | 7.45 | 12.30 | 13.05 |
D3 | 11.48 | 8.46 | 8.72 | 6.49 | 9.82 | 8.85 | 9.89 | 13.08 | 9.83 | 11.68 | 8.58 | 11.15 | 13.15 |
D2 | 10.09 | 7.16 | 5.60 | 6.02 | 9.44 | 9.13 | 10.28 | 12.24 | 9.75 | 9.65 | 6.80 | 7.55 | 12.51 |
D1 | 8.90 | 6.51 | 7.08 | 7.44 | 8.81 | 11.66 | 9.59 | 10.50 | 13.25 | 7.94 | 7.26 | 11.10 | 11.34 |
Y5 | 9.89 | 6.64 | 8.37 | 7.73 | 6.61 | 7.41 | 10.06 | 12.43 | 10.88 | 8.69 | 8.21 | 9.52 | 10.98 |
Y6 | 9.95 | 6.03 | 8.80 | 6.51 | 11.46 | 7.66 | 11.50 | 8.87 | 11.79 | 7.63 | 8.05 | 12.69 | 14.48 |
SK-1s | 8.71 | 6.49 | 7.31 | 9.51 | 6.03 | 7.64 | 10.92 | 7.58 | 7.95 | 7.27 | 6.79 | 8.51 | 11.83 |
C1 | 2.80 | 2.39 | 3.63 | 3.01 | 2.78 | 3.95 | 2.40 | 2.00 | 2.39 | 1.85 | 1.80 | 1.52 | 2.42 |
C2 | 5.40 | 4.08 | 4.71 | 3.94 | 5.46 | 3.98 | 3.00 | 3.94 | 4.36 | 3.88 | 3.94 | 4.43 | 5.05 |
C3 | 4.98 | 3.11 | 2.80 | 4.46 | 4.67 | 4.46 | 3.84 | 3.23 | 2.91 | 3.92 | 4.36 | 3.84 | 5.39 |
C4 | 5.72 | 5.31 | 4.84 | 3.73 | 4.07 | 6.31 | 7.21 | 4.33 | 5.51 | 6.31 | 4.34 | 5.59 | 6.94 |
C5 | 7.99 | 5.40 | 5.81 | 4.77 | 5.81 | 8.32 | 7.16 | 5.65 | 6.99 | 6.58 | 6.02 | 5.74 | 6.97 |
C6 | 9.92 | 5.72 | 6.10 | 6.85 | 5.72 | 8.44 | 11.85 | 8.92 | 9.82 | 8.16 | 6.72 | 7.03 | 8.26 |
Y3 | 8.74 | 6.75 | 7.53 | 9.47 | 6.79 | 10.17 | 12.18 | 10.06 | 10.44 | 9.31 | 8.17 | 7.82 | 9.54 |
C7 | 11.46 | 5.62 | 6.46 | 7.54 | 5.57 | 8.13 | 10.78 | 15.42 | 13.41 | 7.65 | 9.51 | 8.44 | 11.61 |
C8 | 11.20 | 6.33 | 6.95 | 6.43 | 6.02 | 8.20 | 9.44 | 8.09 | 7.26 | 6.46 | 8.11 | 5.95 | 7.67 |
C9 | 8.47 | 5.50 | 6.46 | 6.58 | 7.39 | 7.40 | 7.33 | 7.23 | 8.89 | 6.32 | 5.09 | 6.15 | 4.64 |
C10 | 6.24 | 4.73 | 5.09 | 5.93 | 6.21 | 9.84 | 8.93 | 8.56 | 7.77 | 6.33 | 4.85 | 5.87 | 5.89 |
Y8 | 10.06 | 6.19 | 6.85 | 6.43 | 7.16 | 8.71 | 9.31 | 7.39 | 8.82 | 7.47 | 6.33 | 8.29 | 7.47 |
C11 | 6.53 | 4.68 | 6.23 | 4.36 | 7.25 | 8.71 | 7.66 | 8.31 | 7.16 | 5.34 | 4.91 | 5.50 | 4.23 |
Y7 | 8.55 | 5.00 | 8.42 | 4.43 | 6.50 | 5.69 | 11.03 | 9.53 | 10.37 | 8.66 | 9.31 | 11.29 | 12.96 |
表2
松辽盆地北部青山口组古湖泊水体沉积环境判识指标(部分内容修改自参考文献[46-48])"
古沉积环境 | 类型 | 参数 | 古沉积环境 | 类型 | 参数 | 古沉积环境 | 类型 | 参数 |
---|---|---|---|---|---|---|---|---|
古气候 | 干旱 | Sr/Cu>25;Fe/Mn<70; 50<CIA<65 | 古水深 | 浅水 (水深0 ~ 5 m) | Co和La含量 法定量计算 | 氧化还原条件 | 分层较弱,贫氧-氧化 | V/Sc<10;V/(V+Ni)<0.6 |
潮湿 | Sr/Cu<25;Fe/Mn>70;CIA>65 | 较深水 (水深5 ~ 20 m) | 分层较弱,厌氧还原 | 10<V/Sc<25; 0.6<V/(V+Ni)<0.84 | ||||
古盐度 | 淡水 | Sr/Ba<0.6; Ca/(Ca+Fe)<0.3 | 深水 (水深>20 m) | 分层较强的硫化强还原 | V/Sc>25; V/(V+Ni)>0.84 | |||
微咸水 | 0.6<Sr/Ba<1; 0.3<Ca/(Ca+Fe)<0.5 | 有机质母质来源 | 藻型 | 藻类/水生植物 孢粉个数>2 | 古生产力 | 低 | 藻类/水生植物 孢粉个数总和<20 | |
咸水 | Sr/Ba>1; Ca/(Ca+Fe)>0.5 | 中-低 | 20<藻类/水生植物 孢粉个数总和<40 | |||||
草藻型 | 1<藻类/水生植物 孢粉个数<2 | |||||||
陆源输入量 | 低 | Ti/Al<0.03;Si/Al<3; 粒度中值<0.008 mm; 黏土级粒度占比>40 % | ||||||
中 | 40<藻类/水生植物 孢粉个数总和<60 | |||||||
草型 | 藻类/水生植物 孢粉个数<1 | |||||||
中-高 | 60<藻类/水生植物 孢粉个数总和<80 | |||||||
高 | Ti/Al>0.03;Si/Al>3; 粒度中值>0.008 mm; 黏土级粒度占比<40 % | |||||||
细菌型 | 干酪根 δ13Corg <-29 ‰ | |||||||
高 | 藻类/水生植物 孢粉个数总和>80 |
1 | 孙龙德. 古龙页岩油(代序)[J]. 大庆石油地质与开发, 2020, 39(3): 1-7. |
SUN Longde. Gulongshale oil (preface)[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 1-7. | |
2 | 张辉, 王志章, 杨亮, 等. 松南上白垩统青山口组一段不同赋存状态页岩油定量评价[J]. 吉林大学学报(地球科学版), 2022, 52(2): 315-327. |
ZHANG Hui, WANG Zhizhang, YANG Liang, et al. Quantitative evaluation of shale oil in different occurrence states in First Member of Qingshankou Formation of Upper Cretaceousin South of Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 315-327. | |
3 | 曾花森, 霍秋立, 张晓畅, 等. 松辽盆地古龙页岩油赋存状态演化定量研究[J]. 大庆石油地质与开发, 2022, 41(3): 80-90. |
ZENG Huasen, HUO Qiuli, ZHANG Xiaochang, et al. Quantitative analysis on occurrence evolution of Gulong shale oil in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 80-90. | |
4 | 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 453-463. |
SUN Longde, LIU He, HE Wenyuan, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453-463. | |
5 | 付秀丽, 蒙启安, 郑强, 等. 松辽盆地古龙页岩有机质丰度旋回性与岩相古地理[J]. 大庆石油地质与开发, 2022, 41(3): 38-52. |
FU Xiuli, MENG Qi’an, ZHENG Qiang, et al. Cyclicity of organic matter abundance and lithofacies paleogeography of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 38-52. | |
6 | 朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. |
ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264. | |
7 | 吴怀春, 张世红, 黄清华. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J]. 地学前缘, 2008, 15(4): 159-169. |
WU Huaichun, ZHANG Shihong, HUANG Qinghua. Establishment of floating astronomical time scale for the terrestrial Late Cretaceoes Qingshankoa Formation in the Songliao Basin of Northeast China[J]. Earth Science Frontiers, 2008, 15(4): 159-169. | |
8 | HUANG He, GAO Yuan, MA Chao, et al. Organic carbon burial is paced by a ~ 173-ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 2021, 7(28): eabf9489. |
9 | 石巨业, 金之钧, 刘全有, 等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序 定量划分[J]. 石油与天然气地质, 2019, 40(6): 1205-1214. |
SHI Juye, JIN Zhijun, LIU Quanyou, et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 2019, 40(6): 1205-1214. | |
10 | 彭军, 于乐丹, 许天宇, 等. 天文地层学研究程序及其在渤海湾盆地东营凹陷的应用实例分析[J]. 石油与天然气地质, 2022, 43(6): 1292-1308. |
PENG Jun, YU Ledan, XU Tianyu, et al. Research procedure of astrostratigraphy and case study of Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(6): 1292-1308. | |
11 | 崔宝文, 张顺, 付秀丽, 等. 松辽盆地古龙页岩有机层序地层划分及影响因素[J]. 大庆石油地质与开发, 2021, 40(5): 13-28. |
CUI Baowen, ZHANG Shun, FU Xiuli, et al. Organic sequence stratigraphic division and its influencing factors’analyses for Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 13-28. | |
12 | CATUNEANU O. Scale in sequence stratigraphy[J]. Marine and Petroleum Geology, 2019, 106: 128-159. |
13 | EMBRY A F. Transgressive-regressive (T-R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago[J]. Canadian Journal of Earth Sciences, 1993, 30(2): 301-320. |
14 | 孙龙德, 王广昀. 论大庆油田振兴发展战略[J]. 大庆石油地质与开发, 2019, 38(5): 1-7. |
SUN Longde, WANG Guangyun. Revitalization and development strategy of Daqing Oilfield[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 1-7. | |
15 | 冯有良, 邹才能, 蒙启安, 等. 构造及气候对后裂谷盆地层序建造的影响: 以松辽盆地西斜坡晚白垩世为例[J]. 地球科学, 2018, 43(10): 3445-3461. |
FENG Youliang, ZOU Caineng, MENG Qi’an, et al. Tectonic and climatic influences on architecture of sequences and sedimentary systems in a post-rift basin: Insight from Late Cretaceous northern Songliao Basin[J]. Earth Science, 2018, 43(10): 3445-3461. | |
16 | FENG Youliang, YANG Zhi, ZHU Jichang, et al. Sequence stratigraphy in post-rift river-dominated lacustrine delta deposits: A case study from the Upper Cretaceous Qingshankou Formation, northern Songliao Basin, northeastern China[J]. Geological Journal, 2021, 56(1): 316-336. |
17 | 何文渊, 崔宝文, 王凤兰, 等. 松辽盆地古龙凹陷白垩系青山口组储集空间与油态研究[J]. 地质论评, 2022, 68(2): 693-741. |
HE Wenyuan, CUI Baowen, WANG Fenglan, et al. Study on reservoir spaces and oil states of the Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin[J]. Geological Review, 2022, 68(2): 693-741. | |
18 | SCHIEBER J. Developing a sequence stratigraphic framework for the Late Devonian Chattanooga Shale of the southeastern U.S.A.: Relevance for the Bakken shale[J]. AAPG Bulletion, 1998, 13(1): 58-68. |
19 | 吴靖, 姜在兴, 吴明昊. 细粒岩层序地层学研究方法综述[J]. 地质科技情报, 2015, 34(5): 16-20. |
WU Jing, JIANG Zaixing, WU Minghao. Summary of research methods about the sequence stratigraphy of the fine-grained rocks[J]. Geological Science and Technology Information, 2015, 34(5): 16-20. | |
20 | 徐长明. XRF技术在岩心样品快速分析中的应用研究[D]. 成都: 成都理工大学, 2011: 10-35. |
XU Changming. Application research on XRF technology applied in the quick analysis of core samples[D]. Chengdu: Chengdu University of Technology, 2011: 10-35. | |
21 | ROWE H, HUGHES N, ROBINSON K. The quantification and application of handheld energy-dispersive X-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry[J]. Chemical Geology, 2012, 324/325: 122-131. |
22 | 马晓潇, 黎茂稳, 庞雄奇, 等. 手持式X荧光光谱仪在济阳坳陷古近系陆相页岩岩心分析中的应用[J]. 石油实验地质, 2016, 38(2): 278-286. |
MA Xiaoxiao, LI Maowen, PANG Xiongqi, et al. Application of hand-held X-ray fluorescence spectrometry in the core analysis of Paleogene lacustrine shales in the Jiyang Depression[J]. Petroleum Geology and Experiment, 2016, 38(2): 278-286. | |
23 | LAGRANGE M T, KONHAUSER K O, CATUNEANU O, et al. Sequence stratigraphy in organic-rich marine mudstone successions using chemostratigraphic datasets[J]. Earth-Science Reviews, 2020, 203: 103137. |
24 | NIO S D, BROUWER J H, SMITH D, et al. Spectral trend attribute analysis: Applications in the stratigraphic analysis of wireline logs[J]. First Break, 2005, 23(4): 71-75. |
25 | 任金锋, 廖远涛, 孙鸣, 等. 基于小波变换的高精度层序地层定量划分研究及其应用[J]. 地球物理学进展, 2013, 28(5): 2651-2658. |
REN Jinfeng, LIAO Yuantao, SUN Ming, et al. A method for quantitative division of sequence stratigraphy with high-resolution based on wavelet transform and its application[J]. Progress in Geophysics, 2013, 28(5): 2651-2658. | |
26 | 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66. |
HUANG Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66. | |
27 | 杜学斌, 陆永潮, 刘惠民, 等. 细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J]. 石油实验地质, 2018, 40(2): 244-252. |
DU Xuebin, LU Yongchao, LIU Huimin, et al. Division of high-frequency sequences of different orders in fine-grained deposits and its geologic significance: A case study of mud shale from the lower section of the third member to the upper section of the fourth member of Shahejie Formation in Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology and Experiment, 2018, 40(2): 244-252. | |
28 | ZHANG Jingyu, PAS D, KRIJGSMAN W, et al. Astronomical forcing of the Paleogene coal-bearing hydrocarbon source rocks of the East China Sea Shelf Basin[J]. Sedimentary Geology, 2020, 406: 105715. |
29 | 彭军, 于乐丹, 许天宇, 等. 湖相泥页岩地层米氏旋回测井识别及环境响应特征——以渤海湾盆地济阳坳陷东营凹陷樊页1井Es4scs为例[J]. 石油与天然气地质, 2022, 43(4): 957-969. |
PENG Jun, YU Ledan, XU Tianyu, et al. Logging identification of Milankovitch cycle and environmental response characteristics of lacustrine shale—A case study on Es4scs in Well Fanye 1, Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(4): 957-969. | |
30 | 周靖皓, 鲜本忠, 张建国, 等. 高频旋回地层约束下的湖相页岩有机质富集规律: 以东营凹陷古近系沙三下亚段为例[J]. 古地理学报, 2022, 24(4): 759-770. |
ZHOU Jinghao, XIAN Benzhong, ZHANG Jianguo, et al. Organic matter enrichment law of lacustrine shale constrained by high resolution cyclostratigraphy: A case study from the lower sub-member of Member 3 of Paleogene Shahejie Formation, Dongying Sag[J]. Journal of Palaeogeography, 2022, 24(4): 759-770. | |
31 | CATUNEANU O. Sequence stratigraphy of deep-water systems[J]. Marine and Petroleum Geology, 2020, 114: 104238. |
32 | ZHANG Jinyu, AMBROSE W, STEEL R, et al. Long cores through the Wilcox Group, Gulf of Mexico, show process variability across different time scales[J]. AAPG Bulletin, 2022, 106(7): 1403-1429. |
33 | 辛仁臣, 张翼, 张春卉, 等. 松辽盆地中部含油组合高精度层序地层格架分析[J]. 地层学杂志, 2008, 32(4): 389-396. |
XIN Renchen, ZHANG Yi, ZHANG Chunhui, et al. High-resolution sequence stratigraphic framework for the middle oil-bearing beds in the Songliao Basin[J]. Journal of Stratigraphy, 2008, 32(4): 389-396. | |
34 | 高有峰, 王璞珺, 程日辉, 等. 松科1井南孔白垩系青山口组一段沉积序列精细描述:岩石地层、沉积相与旋回地层[J]. 地学前缘, 2009, 16(2): 314-323. |
GAO Youfeng, WANG Pujun, CHENG Rihui, et al. Description of Cretaceous sedimentary sequence of the first member of the Qingshankou Formation recovered by CCSD-SK-Ⅰs borehole in Songliao Basin: Lithostratigraphy, sedimentary facies and cyclic stratigraphy[J]. Earth Science Frontiers, 2009, 16(2): 314-323. | |
35 | 王璞珺, 高有峰, 程日辉, 等. 松科1井南孔白垩系青山口组二、三段沉积序列精细描述:岩石地层、沉积相与旋回地层[J]. 地学前缘, 2009, 16(2): 288-313. |
WANG Pujun, GAO Youfeng, CHENG Rihui, et al. Description of Cretaceous sedimentary sequence of the second and third member of the Qingshankou Formation recovered by CCSD-SK-Ⅰs borehole in Songliao Basin: Lithostratigraphy, sedimentary facies and cyclic stratigraphy[J]. Earth Science Frontiers, 2009, 16(2): 288-313. | |
36 | 石兰亭, 潘树新, 郭维华, 等. 松辽盆地南部上白垩统中部组合层序界面的识别标志及高分辨率层序地层格架[J]. 沉积学报, 2010, 28(2): 235-242. |
SHI Lanting, PAN Shuxin, GUO Weihua, et al. Sequence boundary characteristics and its high resolution sequence stratigraphic framework of the middle oil-bearing beds in the south of Songliao Basin[J]. Acta Sedimentologica Sinica, 2010, 28(2): 235-242. | |
37 | 刘招君, 孙平昌, 贾建亮, 等. 陆相深水环境层序识别标志及成因解释:以松辽盆地青山口组为例[J]. 地学前缘, 2011, 18(4): 171-180. |
LIU Zhaojun, SUN Pingchang, JIA Jianliang, et al. Distinguishing features and their genetic interpretation of stratigraphic sequences in continental deep water setting: A case from Qingshankou Formation in Songliao Basin[J]. Earth Science Frontiers, 2011, 18(4): 171-180. | |
38 | 赵静. 松辽盆地晚白垩世早—中期孢粉、藻类及古气候古湖泊条件[D]. 北京: 中国地质大学(北京), 2013: 60-75. |
ZHAO Jing. Late Cretaceous palynology (spores, pollen, algae), climate, and lacustrine conditions in Songliao Basin[D]. Beijing: China University of Geosciences(Beijing), 2013: 60-75. | |
39 | 吕丹, 王华建, 李罡, 等. 松辽盆地青山口组页岩沉积水体环境演变的古生物学证据[J]. 石油与天然气地质, 2023, 43(4):870-881. |
Dan LYU, WANG Huajian, LI Gang, et al. Paleobiological evidence of the paleowater environment evolution of the Qingshankou shale in the Songliao Basin[J]. Oil and Gas Geology, 2023, 43(4): 870-881. | |
40 | GUAN Modi, WU Songtao, HOU Lianhua, et al. Paleoenvironment and chemostratigraphy heterogenity of the Cretaceous organic-rich shales[J]. Advances in Geo-Energy Research, 2021, 5(4): 444-455. |
41 | WANG Tiantian, RAMEZANI J, WANG Chengshan, et al. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China[J]. Earth and Planetary Science Letters, 2016, 446: 37-44. |
42 | WU Huaichun, HINNOV L A, ZHANG Shihong, et al. Continental geological evidence for Solar System chaotic behavior in the Late Cretaceous[J]. GSA Bulletin, 2022, 135(3/4): 712-724. |
43 | 侯启军, 冯志强, 冯子辉, 等. 松辽盆地陆相石油地质学[M]. 北京: 石油工业出版社, 2009: 77. |
HOU Qijun, FENG Zhiqiang, FENG Zihui, et al. Terrestrial petroleum geology of Songliao Basin[M]. Beijing: Petroleum Industry Press, 2009: 77. | |
44 | 王国栋, 程日辉, 王璞珺, 等. 松辽盆地青山口组震积岩的特征、成因及其构造-火山事件[J]. 岩石学报, 2010, 26(1): 121-129. |
WANG Guodong, CHENG Rihui, WANG Pujun, et al. Coniacian seismites: Structure, sequence and volcanogenic origin of Qingshankou Formation in the Cretaceous Songliao Basin[J]. Acta Petrologica Sinica, 2010, 26(1): 121-129. | |
45 | 王一同, 张顺, 林春明, 等. 松辽盆地古龙凹陷泉头组坡折带特征及其对沉积层序的控制作用[J]. 高校地质学报, 2018, 24(3): 425-432. |
WANG Yitong, ZHANG Shun, LIN Chunming, et al. Characteristics of the slope break belt and its control on the depositional sequence: The Quantou Formation of the Gulong Sag, Songliao Basin[J]. Geological Journal of China Universities, 2018, 24(3): 425-432. | |
46 | 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544. |
FENG Lianjun, CHU Xuelei, ZHANG Qirui, et al. CIA (chemical index of alteration) and its applications in the neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544. | |
47 | 朱如凯, 张婧雅, 李梦莹, 等. 陆相页岩油富集基础研究进展与关键问题[J/OL]. 地质学报: 1-23[2023-02-22]. . |
ZHU Rukai, ZHANG Jingya, LI Mengying, et al. Advances and key issues in the basic research of non-marine shale oil enrichment[J/OL]. Acta Goloe gica Snica: 1-23[2023-02-22]. . | |
48 | 金相灿. 中国湖泊环境[M]. 北京: 海洋出版社, 1995: 142-266. |
JIN Xiangcan. The environment of Chinese lakes[M]. Beijing: China Ocean Press, 1995: 142-266. | |
49 | 范萌萌, 卜军, 赵筱艳, 等. 鄂尔多斯盆地东南部延长组微量元素地球化学特征及环境指示意义[J]. 西北大学学报(自然科学版), 2019, 49(4): 633-642. |
FAN Mengmeng, BU Jun, ZHAO Xiaoyan, et al. Geochemical characteristics and environmental implications of trace elements of Yanchang Formation in southeastern Ordos Basin[J]. Journal of Northwest University(Natural Science Edition), 2019, 49(4): 633-642. | |
50 | 王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 2017, 35(6): 1265-1273. |
WANG Feng, LIU Xuanchun, DENG Xiuqin, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1265-1273. | |
51 | 王昌勇, 常玖, 李楠, 等. 四川盆地东部地区早侏罗世湖泊古水深恢复[J/OL]. 沉积学报: 1-16[2023-02-22]. . |
WANG Changyong, CHANG Jiu, LI Nan, et al. Paleo-water-depth reconstruction of Early Jurassic lakes in the eastern Sichuan Basin[J/OL]. Acta Sedimentologica Sinca: 1-16[2023-02-22]. . | |
52 | 邹才能, 冯有良, 杨智, 等. 中国湖盆细粒重力流沉积作用及其对页岩油 “甜点段” 发育的影响[J/OL]. 石油勘探与开发: 1-15[2023-02-22]. . |
ZOU Caineng, FENG Youliang, YANG Zhi, et al. Fine-grained gravity flow sedimentation and its influence on development of shale oil sweet intervals in lacustrine basins in China[J/OL]. Petroleum Exploration and Development: 1-15[2023-02-22]. . | |
53 | CAI Yi, ZHU Rukai, LUO Zhong, et al. Lithofacies and source rock quality of organic-rich shales in the Cretaceous Qingshankou Formation, Songliao Basin, NE China[J]. Minerals, 2022, 12(4): 465. |
54 | 张水昌, 王华建, 王晓梅, 等. 中元古代海洋生物碳泵: 有机质来源、降解与富集[J]. 科学通报, 2022, 67(15): 1624-1643. |
ZHANG Shuichang, WANG Huajian, WANG Xiaomei, et al. Mesoproterozoic marine biological carbon pump: Source, degradation, and enrichment of organic matter[J]. Chinese Science Bulletin, 2022, 67(15): 1624-1643. | |
55 | ZHU Changfeng, CUI Xingqian, HE Yuxin, et al. Extended 3β- methylhopanes up to C45 in source rocks from the Upper Cretaceous Qingshankou Formation, Songliao Basin, Northeast China[J]. Organic Geochemistry, 2020, 142: 103998. |
56 | WANG Xiaomei, ZHANG Shuichang, YE Yuntao, et al. Molecular and carbon isotopic evidence of pigments indicating a dynamic oceanic chemocline 1.4 billion years ago in northern China[J]. Organic Geochemistry, 2021, 154: 104207. |
57 |
HE Wenyuan, ZHU Rukai, CUI Baowen, et al. The geoscience frontier of gulong shale oil: Revealing the role of continental shale from oil generation to production[J/OL]. Engineering: . DOI: 10.1016/j.eng.2022.08.018 .
doi: 10.1016/j.eng.2022.08.018 |
[1] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[2] | 李宁, 李瑞磊, 苗贺, 曹开芳, 田军. 松辽盆地深层中-基性火山岩有利相带及储层“甜点”逐级识别[J]. 石油与天然气地质, 2024, 45(3): 801-815. |
[3] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[4] | 翟常博, 林良彪, 尤东华, 刘冯斌, 刘思雨. 川西南地区中二叠统茅口组一段沉积微相特征及有机质富集模式[J]. 石油与天然气地质, 2024, 45(2): 440-456. |
[5] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[6] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
[7] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[8] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[9] | 刘合, 孟思炜, 王素玲, 董康兴, 杨柳, 陶嘉平, 梁立豪. 古龙页岩力学特征与裂缝扩展机理[J]. 石油与天然气地质, 2023, 44(4): 820-828. |
[10] | 张瑞, 金之钧, 朱如凯, 李明松, 惠潇, 魏韧, 贺翔武, 张谦. 中国陆相富有机质页岩沉积速率研究及其页岩油勘探意义[J]. 石油与天然气地质, 2023, 44(4): 829-845. |
[11] | 白斌, 戴朝成, 侯秀林, 杨亮, 王瑞, 王岚, 孟思炜, 董若婧, 刘羽汐. 松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价[J]. 石油与天然气地质, 2023, 44(4): 846-856. |
[12] | 吕丹, 王华建, 李罡, 张江永, 付秀丽, 刘畅, 王晓梅, 朱如凯, 张水昌. 松辽盆地青山口组页岩沉积水体环境演变的古生物学证据[J]. 石油与天然气地质, 2023, 44(4): 857-868. |
[13] | 徐长贵, 龚承林. 从层序地层走向源-汇系统的储层预测之路[J]. 石油与天然气地质, 2023, 44(3): 521-538. |
[14] | 吴冬, 邓虎成, 熊亮, 曹凯旋, 董晓霞, 赵勇, 魏力民, 王同, 马若龙. 四川盆地及其周缘下寒武统麦地坪组-筇竹寺组层序充填和演化模式[J]. 石油与天然气地质, 2023, 44(3): 764-777. |
[15] | 周家全, 王越, 宋子怡, 柳季廷, 成赛男. 准噶尔盆地博格达地区中二叠统芦草沟组热液硅质结核特征及页岩油意义[J]. 石油与天然气地质, 2023, 44(3): 789-800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||