石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (6): 1524-1536.doi: 10.11743/ogg20240602
刘大锰1,2(), 王子豪1,2, 陈佳明1,2, 邱峰1,2, 朱凯1,2, 高羚杰1,2, 周柯宇1,2, 许少博1,2, 孙逢瑞1,2
收稿日期:
2024-06-10
修回日期:
2024-10-11
出版日期:
2024-12-30
发布日期:
2024-12-31
第一作者简介:
刘大锰(1965—),男,教授、博士研究生导师,煤层气储层地质学。E-mail: dmliu@cugb.edu.cn。
基金项目:
Dameng LIU1,2(), Zihao WANG1,2, Jiaming CHEN1,2, Feng QIU1,2, Kai ZHU1,2, Lingjie GAO1,2, Keyu ZHOU1,2, Shaobo XU1,2, Fengrui SUN1,2
Received:
2024-06-10
Revised:
2024-10-11
Online:
2024-12-30
Published:
2024-12-31
摘要:
显微组分和微裂缝是煤储层重要的微观特征,影响煤储层产气能力和力学性质。采集鄂尔多斯盆地深部煤层气井石炭系本溪组8#煤层样品,运用ResNet残差神经网络识别方法,研究了显微组分和微裂缝发育特征。在煤样305个显微组分和65个微裂缝图样本研究的基础上,建立了基于残差神经网络识别的煤岩显微组分和微裂缝识别方法,并利用残差神经网络技术对镜下数据进行反演,构建了深部煤储层显微组分和微裂缝的识别和分类模型。结合地质特征和聚类算法结果联合验证,模型具有可靠性。显微组分预测准确率为0.90,微裂缝预测准确率为0.80,可以有效预测煤岩显微组分和微裂缝类型。模型识别与预测表明裂缝形态与显微组分具有相关关系。裂缝的发育与显微组分中的镜质组关系最大,裂缝类别和数量的预测结果与显微组分发育的相吻合。
中图分类号:
表1
鄂尔多斯盆地中、东部本溪组8#煤层煤样基本性质"
煤样编号 | 深度/m | 工业组分含量/% | 显微组分含量/% | ||||||
---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 镜质组 | 壳质组 | 惰质组 | 黏土矿物 | ||
Q1 | 3 260.12 | 0.89 | 12.94 | 7.64 | 78.53 | 72.19 | 0 | 21.63 | 6.18 |
Q2 | 3 261.67 | 0.60 | 31.51 | 8.97 | 58.92 | 70.62 | 0 | 23.72 | 5.66 |
Q3 | 3 262.43 | 0.56 | 36.09 | 9.33 | 54.02 | 72.21 | 0 | 9.58 | 18.21 |
Q4 | 3 263.18 | 0.79 | 9.66 | 8.07 | 81.48 | 78.59 | 0 | 15.54 | 5.87 |
M1 | 2 425.20 | 0.48 | 32.83 | 15.57 | 51.12 | 58.67 | 2.33 | 38.00 | 1.00 |
M2 | 2 425.97 | 0.65 | 22.84 | 12.75 | 63.76 | 45.33 | 0 | 40.67 | 4.00 |
M3 | 2 426.99 | 0.98 | 12.69 | 12.16 | 74.17 | 49.00 | 17.00 | 31.00 | 3.00 |
M4 | 2 427.64 | 0.65 | 17.38 | 15.70 | 66.27 | 66.67 | 2.67 | 31.33 | 1.33 |
M5 | 2 428.39 | 0.65 | 12.23 | 11.95 | 75.17 | 52.33 | 2.00 | 44.67 | 1.00 |
M6 | 2 428.99 | 0.79 | 21.46 | 11.81 | 65.94 | 57.33 | 1.67 | 39.67 | 1.33 |
M7 | 2 429.62 | 1.09 | 11.04 | 11.54 | 76.33 | 32.00 | 16.00 | 47.67 | 4.33 |
M8 | 2 430.25 | 0.66 | 42.17 | 11.93 | 45.24 | 52.00 | 4.33 | 41.67 | 2.00 |
M9 | 2 430.72 | 0.98 | 35.42 | 11.88 | 51.72 | 54.33 | 3.67 | 33.00 | 9.00 |
M10 | 2 431.47 | 0.93 | 16.46 | 11.89 | 70.72 | 39.67 | 23.33 | 28.00 | 9.00 |
M11 | 2 432.34 | 0.79 | 19.43 | 11.96 | 67.82 | 57.33 | 5.33 | 33.33 | 4.00 |
M12 | 2 432.97 | 0.70 | 17.47 | 12.84 | 68.99 | 44.00 | 17.33 | 31.67 | 7.00 |
M13 | 2 433.79 | 0.72 | 17.63 | 13.13 | 68.52 | 38.00 | 15.67 | 38.00 | 8.33 |
L1 | 3 861.00 | 0.31 | 6.14 | 10.54 | 83.01 | 61.33 | 0 | 38.34 | 0.33 |
L2 | 3 863.40 | 0.50 | 3.81 | 9.70 | 85.99 | 83.67 | 0 | 16.00 | 0.33 |
L3 | 3 864.24 | 0.38 | 13.88 | 10.77 | 74.97 | 44.33 | 0 | 52.67 | 2.00 |
J1 | 3 400.83 | 0.58 | 26.33 | 13.82 | 59.27 | 59.82 | 0 | 28.83 | 11.35 |
J2 | 3 401.70 | 0.73 | 9.43 | 12.43 | 77.41 | 50.20 | 0 | 43.6 | 6.20 |
J3 | 3 402.44 | 0.63 | 5.29 | 13.23 | 80.85 | 60.40 | 0 | 37.92 | 1.68 |
J4 | 3 403.42 | 0.64 | 13.60 | 12.13 | 73.63 | 72.64 | 0 | 19.00 | 8.36 |
J5 | 3 403.80 | 0.72 | 11.98 | 11.01 | 76.29 | 38.48 | 0 | 56.36 | 5.15 |
J6 | 3 404.57 | 0.32 | 19.80 | 13.20 | 66.68 | 52.88 | 0 | 28.84 | 18.27 |
J7 | 3 405.60 | 0.41 | 24.37 | 13.58 | 61.64 | 70.16 | 0 | 13.77 | 16.07 |
B1 | 3 274.15 | 0.63 | 20.04 | 9.14 | 70.19 | 79.95 | 0 | 12.72 | 7.33 |
B2 | 3 274.48 | 0.40 | 29.58 | 9.41 | 60.61 | 62.13 | 0 | 17.46 | 20.41 |
B3 | 3 274.75 | 0.45 | 38.89 | 9.68 | 50.98 | 62.07 | 0 | 37.07 | 0.86 |
B4 | 3 274.98 | 0.24 | 37.50 | 10.64 | 51.62 | 44.93 | 0 | 2.64 | 52.43 |
B5 | 3 277.27 | 0.30 | 23.67 | 12.10 | 63.93 | 67.49 | 0 | 17.67 | 14.84 |
B6 | 3 277.55 | 0.43 | 16.46 | 13.08 | 70.03 | 91.28 | 0 | 1.55 | 7.17 |
B7 | 3 277.81 | 0.33 | 27.20 | 9.87 | 62.60 | 80.72 | 0 | 3.92 | 15.36 |
1 | 罗情勇, 钟宁宁, 李美俊, 等. 前寒武纪—早古生代沉积岩显微组分分类、成因及演化[J]. 石油与天然气地质, 2023, 44(5): 1084-1101. |
LUO Qingyong, ZHONG Ningning, LI Meijun, et al. Classification, origins, and evolution of macerals in the Precambrian-Eopaleozoic sedimentary rocks[J]. Oil & Gas Geology, 2023, 44(5): 1084-1101. | |
2 | 周三栋, 刘大锰, 蔡益栋, 等. 低阶煤吸附孔特征及分形表征[J]. 石油与天然气地质, 2018, 39(2): 373-383. |
ZHOU Sandong, LIU Dameng, CAI Yidong, et al. Characterization and fractal nature of adsorption pores in low rank coal[J]. Oil & Gas Geology, 2018, 39(2): 373-383. | |
3 | 蔡益栋, 杨超, 李倩, 等. 煤层气储层相对渗透率试验及数值模拟技术研究进展[J]. 煤炭科学技术, 2023, 51(): 192-205. |
CAI Yidong, YANG Chao, LI Qian, et al. Research progress of relative permeability experiment and numerical simulation technique in coalbed methane reservoir[J]. Coal Science and Technology, 2023, 51(S1): 192-205. | |
4 | HAN Qiuchan, LIU Jingjing, HOWER J C, et al. Fire activities and their impacts on local ecosystems in the southern Ordos Basin during the Middle Jurassic: Evidence from pyrogenic PAHs and petrography of inertinite-rich coal[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 636: 111972. |
5 | LI Song, QIN Yong, TANG Dazhen, et al. A comprehensive review of deep coalbed methane and recent developments in China[J]. International Journal of Coal Geology, 2023, 279: 104369. |
6 | 代世峰, 唐跃刚, 姜尧发, 等. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅰ: 镜质体[J]. 煤炭学报, 2021, 46(6): 1821-1832. |
DAI Shifeng, TANG Yuegang, JIANG Yaofa, et al. An in-depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers, Ⅰ: Vitrinite[J]. Journal of China Coal Society, 2021, 46(6): 1821-1832. | |
7 | 蔡益栋, 贾丁, 邱峰, 等. 基于纳米压痕的煤岩微观力学特性及其影响因素剖析[J]. 煤炭学报, 2023, 48(2): 879-890. |
CAI Yidong, JIA Ding, QIU Feng, et al. Micromechanical properties of coal and its influencing factors based on nanoindentation[J]. Journal of China Coal Society, 2023, 48(2): 879-890. | |
8 | 邵龙义, 周家民, JONES T P, 等. 煤中惰质组及其古环境意义: 来自AI和大数据分析的启示[J]. 中国科学: 地球科学, 2024, 54(6): 1806-1829. |
SHAO Longyi, ZHOU Jiamin, JONES T P, et al. Inertinite in coal and its geoenvironmental significance: Insights from AI and big data analysis[J]. Science China Earth Sciences, 2024, 54(6): 1806-1829. | |
9 | 邓泽, 王红岩, 姜振学, 等. 深部煤储层孔裂隙结构对煤层气赋存的影响——以鄂尔多斯盆地东缘大宁-吉县区块为例[J]. 煤炭科学技术, 2024, 52(8): 106-123. |
DENG Ze, WANG Hongyan, JIANG Zhenxue, et al. Influence of deep coal pore and fracture structure on occurrence of coalbed methane: A case study of Daning-Jixian Block in eastern margin of Ordos Basin[J]. Coal Science and Technology, 2024, 52(8): 106-123. | |
10 | SUN Fengrui, LIU Dameng, CAI Yidong, et al. A micro-macro coupled permeability model for gas transport in coalbed methane reservoirs[J]. Energy, 2023, 284: 128604. |
11 | 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452. |
JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452. | |
12 | 傅雪海, 齐琦, 程鸣, 等. 煤储层渗透率测试、模拟与预测研究进展[J]. 煤炭学报, 2022, 47(6): 2369-2385. |
FU Xuehai, QI Qi, CHENG Ming, et al. Review of research on test, simulation and prediction of coal reservoir permeability[J]. Journal of China Coal Society, 2022, 47(6): 2369-2385. | |
13 | MAXWELL K, RAJABI M, ESTERLE J. Automated classification of metamorphosed coal from geophysical log data using supervised machine learning techniques[J]. International Journal of Coal Geology, 2019, 214: 103284. |
14 | ZHAO Jier, GE Xinmin, FAN Yiren, et al. A genetic algorithm-driven support vector machine to discriminate the kerogen type using conventional geophysical logging data[J]. AAPG Bulletin, 2023, 107(11): 1837-1849. |
15 | 侯贤沐, 王付勇, 宰芸, 等. 基于机器学习和测井数据的碳酸盐岩孔隙度与渗透率预测[J]. 吉林大学学报(地球科学版), 2022, 52(2): 644-653. doi:10.13278/j.cnki.jjuese.20210151 . |
HOU Xianmu, WANG Fuyong, ZAI Yun, et al. Prediction of Carbonate Porosity and Permeability Based on Machine Learning and Logging Data[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 644-653. | |
16 | WANG Yingda, BLUNT M J, ARMSTRONG R T, et al. Deep learning in pore scale imaging and modeling[J]. Earth-Science Reviews, 2021, 215: 103555. |
17 | 段太忠, 张文彪, 何治亮, 等. 塔里木盆地顺北油田超深断溶体深度学习地质建模方法[J]. 石油与天然气地质, 2023, 44(1): 203-212. |
DUAN Taizhong, ZHANG Wenbiao, HE Zhiliang, et al. Deep learning-based geological modeling of ultra-deep fault-karst reservoirs in Shunbei Oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 203-212. | |
18 | 冯雪健, 沈永星, 周动, 等. 基于CT数字岩心深度学习的煤裂隙分布识别研究[J]. 煤炭科学技术, 2023, 51(8): 97-104. |
FENG Xuejian, SHEN Yongxing, ZHOU Dong, et al. Multi-scale distribution of coal fractures based on CT digital core deep learning[J]. Coal Science and Technology, 2023, 51(8): 97-104. | |
19 | 李美霖, 芮杰, 金飞, 等. 基于改进YOLOX的遥感影像目标检测算法[J]. 吉林大学学报(地球科学版),2023,53(4):1313-1322. |
LI Meilin, RUI Jie, JIN Fei, et al. Remote Sensing Image Target Detection Algorithm Based on Improved YOLOX[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(4): 1313-1322. | |
20 | ZHOU Qiang, LEI Zhengdong, CHEN Zhewei, et al. Shale oil production predication based on an empirical model-constrained CNN-LSTM[J]. Energy Geoscience, 2024, 5(2): 100252. |
21 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
22 | 刘彦锋, 段太忠, 黄渊, 等. 沉积过程模拟驱动下的深度学习地质建模方法[J]. 石油与天然气地质, 2023, 44(1): 226-237. |
LIU Yanfeng, DUAN Taizhong, HUANG Yuan, et al. Deep learning-based geological modeling driven by sedimentary process simulation[J]. Oil & Gas Geology, 2023, 44(1): 226-237. | |
23 | 董维强, 孟召平, 沈振, 等. 基于循环神经网络的煤层气井产气量预测方法研究[J]. 煤炭科学技术, 2021, 49(9): 176-183. |
DONG Weiqiang, MENG Zhaoping, SHEN Zhen, et al. Research on coalbed methane well gas production forecast method based on cyclic neural network[J]. Coal Science and Technology, 2021, 49(9): 176-183. | |
24 | 王培珍, 余晨, 薛子邯, 等. 基于迁移学习的煤岩壳质组显微组分识别模型[J]. 煤炭科学技术, 2022, 50(1): 220-227. |
WANG Peizhen, YU Chen, XUE Zihan, et al. Transfer learning based identification model for macerals of exinite in coal[J]. Coal Science and Technology, 2022, 50(1): 220-227. | |
25 | 李素华, 余洋, 李蓉, 等. 神经网络反演在火山岩储层预测中的应用[J]. 石油地球物理勘探, 2023, 58(2): 392-402. |
LI Suhua, YU Yang, LI Rong, et al. Application of neural network inversion in prediction of volcanic rock reservoir[J]. Oil Geophysical Prospecting, 2023, 58(2): 392-402. | |
26 | 斯扬, 蔡明俊, 张家良, 等. 基于自组织神经网络及K最近邻算法的储层渗流屏障定量识别方法[J]. 中国石油大学学报(自然科学版), 2023, 47(4): 35-47. |
SI Yang, CAI Mingjun, ZHANG Jialiang, et al. Quantitative identification method of reservoir flow barriers based on self-organizing neural network and K-nearest neighbor algorithm[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(4): 35-47. | |
27 | 林年添, 张栋, 张凯, 等. 地震油气储层的小样本卷积神经网络学习与预测[J]. 地球物理学报, 2018, 61(10): 4110-4125. |
LIN Niantian, ZHANG Dong, ZHANG Kai, et al. Predicting distribution of hydrocarbon reservoirs with seismic data based on learning of the small-sample convolution neural network[J]. Chinese Journal of Geophysics, 2018, 61(10): 4110-4125. | |
28 | 胡晋玮, 奚峥皓, 徐国忠, 等. 基于DeeplabV3+改进的煤岩显微组分组自动化测试模型[J]. 煤田地质与勘探, 2023, 51(10): 27-36. |
HU Jinwei, XI Zhenghao, XU Guozhong, et al. An improved automated testing model for maceral groups in coals based on DeeplabV3+[J]. Coal Geology & Exploration, 2023, 51(10): 27-36. | |
29 | 郭旭升, 周德华, 赵培荣, 等. 鄂尔多斯盆地石炭系-二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2022, 43(5): 1013-1023. |
GUO Xusheng, ZHOU Dehua, ZHAO Peirong, et al. Progresses and directions of unconventional natural gas exploration and development in the Carboniferous-Permian coal measure strata, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1013-1023. | |
30 | 张雷, 边利恒, 侯伟, 等. 深部煤储层孔隙结构特征及其勘探意义——以鄂尔多斯盆地东缘大宁—吉县区块为例[J]. 石油学报, 2023, 44(11): 1867-1878. |
ZHANG Lei, BIAN Liheng, HOU Wei, et al. Pore structure characteristics and exploration significance of deep coal reservoirs: A case study of Daning-Jixian block in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(11): 1867-1878. | |
31 | 赵喆, 徐旺林, 赵振宇, 等. 鄂尔多斯盆地石炭系本溪组煤岩气地质特征与勘探突破[J]. 石油勘探与开发, 2024, 51(2): 234-247, 259. |
ZHAO Zhe, XU Wanglin, ZHAO Zhenyu, et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2024, 51(2): 234-247, 259. | |
32 | 徐亮, 杨威, 姜振学, 等. 四川盆地川西坳陷三叠系须家河组页岩有机孔演化及成因[J]. 石油与天然气地质, 2022, 43(2): 325-340. |
XU Liang, YANG Wei, JIANG Zhenxue, et al. Evolution and genesis of organic pores in Triassic Xujiahe Formation shale, western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 325-340. | |
33 | 丁文龙, 许长春, 久凯, 等. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144. |
DING Wenlong, XU Changchun, Kai JIU, et al. The research progress of shale fractures[J]. Advances in Earth Science, 2011, 26(2): 135-144. | |
34 | 杜涛, 曲希玉, 王清斌, 等. 渤中19-6凝析气田孔店组砂砾岩储层压实成岩裂缝垂向演化特征[J]. 吉林大学学报(地球科学版), 2023, 53(1): 17-29. |
DU Tao, QU Xiyu, WANG Qingbin, et al. Vertical Evolution Characteristics of Compaction Diagenetic Fractures in Glutenite Reservoirs of Kongdian Formation in Bozhong 19-6 Condensate Gas Field[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(1): 17-29. | |
35 | 李松, 汤达祯, 许浩, 等. 应力条件制约下不同埋深煤储层物性差异演化[J]. 石油学报, 2015, 36(): 68-75. |
LI Song, TANG Dazhen, XU Hao, et al. Evolution of physical differences in various buried depth of coal reservoirs under constraint of stress[J]. Acta Petrolei Sinica, 2015, 36(S1): 68-75. | |
36 | 武鹏飞, 梁卫国, 廉浩杰, 等. 大尺寸煤岩组合体水力裂缝越界形成缝网机理及试验研究[J]. 煤炭学报, 2018(5): 1381-1389. |
WU Pengfei, LIANG Weiguo, LIAN Haojie, et al. Mechanism and experimental investigation of the formation of hydro-fracture system by fracturing through the interface of large-size coal-rock[J]. Journal of China Coal Society, 2018(5): 1381-1389. | |
37 | 刘云鹏, 邓辉, 黄润秋. 板裂结构岩石力学试验及破裂断口细观形貌特征分析[J]. 岩石力学与工程学报, 2015, 34(): 3852-3861. |
LIU Yunpeng, DENG Hui, HUANG Runqiu. Mechanical test of slab-rent structure rock and mesoscopic morphology analysis of rupture surface[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3852-3861. | |
38 | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016. Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. |
39 | 封强, 潘保芝, 韩立国. 基于卷积降噪自编码器和Softmax回归的微地震定位方法[J]. 地球物理学报, 2023, 66(7): 3076-3085. |
FENG Qiang, PAN Baozhi, HAN Liguo. Microseismic source location method based on convolutional denoising auto-encoder and Softmax regression[J]. Chinese Journal of Geophysics, 2023, 66(7): 3076-3085. | |
40 | HU Song, WANG Xiaochang, WANG Jin, et al. Quantitative evaluation of fracture porosity from dual laterlog based on deep learning method[J]. Energy Geoscience, 2023, 4(2): 100064. |
41 | 杨博, 田继军, 冯烁, 等. 准噶尔盆地东部中侏罗世煤中记录的古野火事件[J]. 煤炭科学技术, 2022, 50(7): 261-270. |
YANG Bo, TIAN Jijun, FENG Shuo, et al. Wildfires recorded in Middle Jurassic coals in Eastern of Junggar Basin in Xinjiang, China[J]. Coal Science and Technology, 2022, 50(7): 261-270. | |
42 | 孔强夫, 杨才, 李浩, 等. 基于图论聚类和最小临近算法的岩性识别方法——以四川盆地西部雷口坡组碳酸盐岩储层为例[J]. 石油与天然气地质, 2020, 41(4): 884-890. |
KONG Qiangfu, YANG Cai, LI Hao, et al. A lithology recognition method based on multi-resolution graph-based clustering and K-nearest neighbor: A case study from the Leikoupo Formation carbonate reservoirs in western Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(4): 884-890. |
[1] | 郭旭升, 赵培荣, 申宝剑, 刘曾勤, 罗兵, 赵石虎, 张嘉琪, 贺甲元, 付维署, 魏海鹏, 刘炯, 陈新军, 叶金诚. 中国深层煤层气地质特征与勘探实践[J]. 石油与天然气地质, 2024, 45(6): 1511-1523. |
[2] | 李勇, 郭涛, 刘欣妍, 彭苏萍. 中国低煤阶煤层气资源潜力及发展方向[J]. 石油与天然气地质, 2024, 45(6): 1537-1554. |
[3] | 李亚辉. 鄂尔多斯盆地大牛地气田深层中煤阶煤层气勘探实践及产能新突破[J]. 石油与天然气地质, 2024, 45(6): 1555-1566. |
[4] | 何发岐, 雷涛, 齐荣, 徐兵威, 李晓慧, 张茹. 鄂尔多斯盆地大牛地气田深部煤层气勘探突破及其关键技术[J]. 石油与天然气地质, 2024, 45(6): 1567-1576. |
[5] | 牛小兵, 张辉, 王怀厂, 虎建玲, 吴陈君, 赵伟波, 潘博. 鄂尔多斯盆地中、东部石炭系本溪组煤储层纵向非均质性特征及成因[J]. 石油与天然气地质, 2024, 45(6): 1577-1589. |
[6] | 李明瑞, 史云鹤, 范立勇, 戴贤铎, 荆雪媛, 张沂. 鄂尔多斯盆地上古生界本溪组8#煤岩煤岩气与致密砂岩气主要气藏特征对比[J]. 石油与天然气地质, 2024, 45(6): 1590-1604. |
[7] | 侯雨庭, 周国晓, 黄道军, 王彦卿, 焦鹏帅. 鄂尔多斯盆地纳林河地区煤岩气成藏地质特征[J]. 石油与天然气地质, 2024, 45(6): 1605-1616. |
[8] | 黄道军, 周国晓, 杨兆彪, 顾俊雨, 荆雪媛, 王嘉楠. 鄂尔多斯盆地深部煤岩气井产出气-水地球化学特征及其地质响应[J]. 石油与天然气地质, 2024, 45(6): 1617-1627. |
[9] | 赵石虎, 刘曾勤, 申宝剑, 罗兵, 陈刚, 陈新军, 张嘉琪, 万俊雨, 刘子驿, 刘友祥. 鄂尔多斯盆地东北部斜坡区深层煤层气地质特征与勘探潜力[J]. 石油与天然气地质, 2024, 45(6): 1628-1639. |
[10] | 牟朋威, 李珮杰, 姚艳斌, 刘大锰, 马立民, 孙晓晓, 邱勇凯. 鄂尔多斯盆地佳县地区深部煤层地应力特征及其对储层物性的控制[J]. 石油与天然气地质, 2024, 45(6): 1640-1652. |
[11] | 陈平, 李维, 周义军, 裴文瑞, 于小伟, 韩伟, 梁国平, 路鹏程, 王雷. 鄂尔多斯盆地乌审旗古隆起与中央古隆起形成演化及其对油气的控制作用[J]. 石油与天然气地质, 2024, 45(6): 1653-1664. |
[12] | 王舵, 刘之的, 王成旺, 刘天定, 陈高杰, 郝晋美, 孙博文. 鄂尔多斯盆地DJ区块深部煤储层地质-工程甜点测井评价技术[J]. 石油与天然气地质, 2024, 45(6): 1772-1788. |
[13] | 于洲, 周进高, 罗晓容, 李永洲, 于小伟, 谭秀成, 吴东旭. 鄂尔多斯盆地东部奥陶系马家沟组四段神木-志丹低古隆起的发现及油气勘探意义[J]. 石油与天然气地质, 2024, 45(5): 1383-1399. |
[14] | 张琴, 邱振, 赵群, 董大忠, 刘雯, 孔维亮, 庞正炼, 高万里, 蔡光银, 李永洲, 李星涛, 林文姬. 海-陆过渡相与海相页岩气“甜点段”差异特征与形成机理[J]. 石油与天然气地质, 2024, 45(5): 1400-1416. |
[15] | 吕文雅, 安小平, 刘艳祥, 李德生, 曾联波, 皇甫展鸿, 唐英航, 张克宁, 张玉银. 致密砂岩储层注水诱导裂缝动态识别及演化特征[J]. 石油与天然气地质, 2024, 45(5): 1431-1446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||