石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (6): 1640-1652.doi: 10.11743/ogg20240611
牟朋威1,2(), 李珮杰3, 姚艳斌1,2,4,5(), 刘大锰1,2,4, 马立民3, 孙晓晓1,2, 邱勇凯1,2
收稿日期:
2024-07-23
修回日期:
2024-08-31
出版日期:
2024-12-30
发布日期:
2024-12-31
通讯作者:
姚艳斌
E-mail:moupengwei@163.com;yyb@cugb.edu.cn
第一作者简介:
牟朋威(1996—),男,博士研究生,煤层气地质。E-mail: moupengwei@163.com。
基金项目:
Pengwei MOU1,2(), Peijie LI3, Yanbin YAO1,2,4,5(), Dameng LIU1,2,4, Limin MA3, Xiaoxiao SUN1,2, Yongkai QIU1,2
Received:
2024-07-23
Revised:
2024-08-31
Online:
2024-12-30
Published:
2024-12-31
Contact:
Yanbin YAO
E-mail:moupengwei@163.com;yyb@cugb.edu.cn
摘要:
鄂尔多斯盆地佳县地区是深部煤层气勘探开发新区。目前该区地应力研究程度较低,地应力与煤层物性发育特征关系不明确,限制了该区煤层气高效开发。基于测井和岩心测试资料,构建了基于组合弹簧模型的测井地应力计算模型,研究了本区地应力分布特征,提出了地应力对储层裂隙、孔隙度和渗透率等的控制作用。研究结果表明,佳县地区8#煤层地应力平面分布具有西高东低的特点。三向主应力具有垂向主应力(平均值56.72 MPa)>最大水平主应力(平均值41.08 MPa)>最小水平主应力(平均值37.77 MPa)特征,为正断型应力机制。侧压系数平均值为0.70,表明煤层整体处于拉张环境,有利于张性裂隙发育。煤层物性特征与各地应力参数的关系表明,研究区8#煤层物性发育特征是三向主应力综合作用的结果,水平主应力起主要控制作用,煤层孔隙度和渗透率随侧压系数增大和水平主应力差减小而呈减小趋势。研究区深部煤层气含气量测试结果表明,侧压系数和水平主应力差对煤层物性发育情况具有较好的指示作用,可用于有效地识别深部煤层气地质甜点区。
中图分类号:
1 | 郭旭升, 周德华, 赵培荣, 等. 鄂尔多斯盆地石炭系-二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2022, 43(5): 1013-1023. |
GUO Xusheng, ZHOU Dehua, ZHAO Peirong, et al. Progresses and directions of unconventional natural gas exploration and development in the Carboniferous-Permian coal measure strata, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1013-1023. | |
2 | 何发岐, 董昭雄. 深部煤层气资源开发潜力——以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质, 2022, 43(2): 277-285. |
HE Faqi, DONG Zhaoxiong. Development potential of deep coalbed methane: A case study in the Daniudi gas field, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(2): 277-285. | |
3 | 罗平亚, 朱苏阳. 中国建立千亿立方米级煤层气大产业的理论与技术基础[J]. 石油学报, 2023, 44(11): 1755-1763. |
LUO Pingya, ZHU Suyang. Theoretical and technical fundamentals of a 100 billion-cubic-meter-scale large industry of coalbed methane in China[J]. Acta Petrolei Sinica, 2023, 44(11): 1755-1763. | |
4 | 唐淑玲, 汤达祯, 杨焦生, 等. 鄂尔多斯盆地大宁—吉县区块深部煤储层孔隙结构特征及储气潜力[J]. 石油学报, 2023, 44(11): 1854-1866, 1902. |
TANG Shuling, TANG Dazhen, YANG Jiaosheng, et al. Pore structure characteristics and gas storage potential of deep coal reservoirs in Daning-Jixian block of Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(11): 1854-1866, 1902. | |
5 | 徐宏杰, 桑树勋, 易同生, 等. 黔西地区煤层埋深与地应力对其渗透性控制机制[J]. 地球科学, 2014, 39(11): 1507-1516. |
XU Hongjie, SANG Shuxun, YI Tongsheng, et al. Control mechanism of buried depth and in-situ stress for coal reservoir permeability in western Guizhou[J]. Earth Science, 2014, 39(11): 1507-1516. | |
6 | CHEN Shida, TANG Dazhen, TAO Shu, et al. In-situ stress measurements and stress distribution characteristics of coal reservoirs in major coalfields in China: Implication for coalbed methane (CBM) development[J]. International Journal of Coal Geology, 2017, 182: 66-84. |
7 | 邹贤军, 陈亚琳. 四川盆地涪陵地区龙马溪组页岩横向各向同性地应力测井评价方法[J]. 天然气地球科学, 2018, 29(12): 1775-1780, 1808. |
ZOU Xianjun, CHEN Yalin. Geostress logging evaluation method of Longmaxi Formation shale in Fuling area based on transversely isotropic model, Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(12): 1775-1780, 1808. | |
8 | 范翔宇, 么勃卫, 张千贵, 等. 基于声波信号预测Kaiser应力点的水平地应力[J]. 西南石油大学学报(自然科学版), 2022, 44(2): 40-48. |
FAN Xiangyu, YAO Bowei, ZHANG Qiangui, et al. Study on the calculated method of horizontal in-situ stress based on the Kaiser stress point predicted by acoustic signal[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(2): 40-48. | |
9 | 陈世达, 汤达祯, 陶树, 等. 煤层气储层地应力场宏观分布规律统计分析[J]. 煤炭科学技术, 2018, 46(6): 57-63. |
CHEN Shida, TANG Dazhen, TAO Shu, et al. Statistic analysis on macro distribution law of geostress field in coalbed methane reservoir[J]. Coal Science and Technology, 2018, 46(6): 57-63. | |
10 | 常闯, 李松, 汤达祯, 等. 基于测井参数的煤储层地应力计算方法研究——以延川南区块为例[J]. 煤田地质与勘探, 2023, 51(5): 23-32. |
CHANG Chuang, LI Song, TANG Dazhen, et al. In-situ stress calculation for coal reservoirs based on log parameters: A case study of the southern Yanchuan Block[J]. Coal Geology & Exploration, 2023, 51(5): 23-32. | |
11 | 蔡美峰. 地应力测量原理和方法的评述[J]. 岩石力学与工程学报, 1993, 12(3): 275-283. |
CAI Meifeng. Review of principles and methods for rock stress measurement[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 12(3): 275-283. | |
12 | ZHAO Zheng, LIU Dameng, WANG Bo, et al. Comprehensive evaluation of in situ stress in the Daning-Jixian area and its control on the distribution of coal-measure gas[J]. Natural Resources Research, 2024, 33(1): 347-364. |
13 | JU Wei, JIANG Bo, QIN Yong, et al. The present-day in-situ stress field within coalbed methane reservoirs, Yuwang Block, Laochang Basin, South China[J]. Marine and Petroleum Geology, 2019, 102: 61-73. |
14 | ZHAO Junlong, TANG Dazhen, XU Hao, et al. Characteristic of in situ stress and its control on the coalbed methane reservoir permeability in the eastern margin of the Ordos Basin, China[J]. Rock Mechanics and Rock Engineering, 2016, 49(8): 3307-3322. |
15 | 孙良忠, 康永尚, 王金, 等. 地应力类型垂向转换及其对煤储层渗透率控制作用[J]. 高校地质学报, 2017, 23(1): 148-156. |
SUN Liangzhong, KANG Yongshang, WANG Jin, et al. Vertical transformation of in-situ stress types and its control on coalbed reservoir permeability[J]. Geological Journal of China Universities, 2017, 23(1): 148-156. | |
16 | 李松, 汤达祯, 许浩, 等. 应力条件制约下不同埋深煤储层物性差异演化[J]. 石油学报, 2015, 36(): 68-75. |
LI Song, TANG Dazhen, XU Hao, et al. Evolution of physical differences in various buried depth of coal reservoirs under constraint of stress[J]. Acta Petrolei Sinica, 2015, 36(S1): 68-75. | |
17 | 叶建平, 史保生, 张春才. 中国煤储层渗透性及其主要影响因素[J]. 煤炭学报, 1999, 24(2): 8-12. |
YE Jianping, SHI Baosheng, ZHANG Chuncai. Coal reservoir permeability and its controlled factors in China[J]. Journal of China Coal Society, 1999, 24(2): 8-12. | |
18 | 李国永, 姚艳斌, 王辉, 等. 鄂尔多斯盆地神木-佳县区块深部煤层气地质特征及勘探开发潜力[J]. 煤田地质与勘探, 2024, 52(2): 70-80. |
LI Guoyong, YAO Yanbin, WANG Hui, et al. Deep coalbed methane resources in the Shenmu-Jiaxian block, Ordos Basin, China: Geological characteristics and potential for exploration and exploitation[J]. Coal Geology & Exploration, 2024, 52(2): 70-80. | |
19 | 张和伟, 申建, 李可心, 等. 鄂尔多斯盆地临兴西区深煤层地应力场特征及应力变化分析[J]. 地质与勘探, 2020, 56(4): 809-818. |
ZHANG Hewei, SHEN Jian, LI Kexin, et al. Characteristics of the in-situ stress field and stress change of deep coal seams in the western Linxing area, Ordos Basin[J]. Geology and Exploration, 2020, 56(4): 809-818. | |
20 | 廖新武, 刘奇, 李超, 等. 渤中25-1低渗透油田地应力分布特征及对开发的影响[J]. 地质力学学报, 2015, 21(1): 30-37. |
LIAO Xinwu, LIU Qi, LI Chao, et al. Distribution of the present stress in low permeability oilfield of Bozhong 25-1 and its effect on development[J]. Journal of Geomechanics, 2015, 21(1): 30-37. | |
21 | 杨红, 许亮, 何衡, 等. 利用测井、压裂资料求取储层地应力的方法[J]. 断块油气田, 2014, 21(4): 509-512. |
YANG Hong, XU Liang, HE Heng, et al. Method for obtaining ground stress of reservoir using logging and fracturing data[J]. Fault-Block Oil and Gas Field, 2014, 21(4): 509-512. | |
22 | 邢力仁, 柳迎红, 王存武, 等. 基于测井信息的煤层气区块地应力预测与综合评价[J]. 煤炭科学技术, 2018, 46(10): 216-221. |
XING Liren, LIU Yinghong, WANG Cunwu, et al. Geostress prediction and comprehensive evaluation based on logging information in coalbed methane block[J]. Coal Science and Technology, 2018, 46(10): 216-221. | |
23 | 徐珂. 南堡凹陷高尚堡油藏现今地应力研究[D]. 青岛: 中国石油大学(华东), 2019. |
XU Ke. Current in-situ stress of Gaoshangpu reservoir, Nanpu Sag, Bohai Bay Basin, China[D]. Qingdao: China University of Petroleum(East China), 2019. | |
24 | 尹帅, 刘翰林, 何建华, 等. 动静态地质力学方法约束的致密油砂岩地应力综合评估[J]. 地球科学进展, 2023, 38(12): 1285-1296. |
YIN Shuai, LIU Hanlin, HE Jianhua, et al. Comprehensive evaluation of geo-stress in tight oil sandstone under constraints of dynamic-static geomechanical methods[J]. Advances in Earth Science, 2023, 38(12): 1285-1296. | |
25 | ANDERSON E M. The dynamics of faulting and dyke formation with applications to Britain[M]. 2nd ed. Edinburgh: Oliver and Boyd, 1951. |
26 | 高秋菊, 宋亮, 刘显太, 等. 致密油藏储层地应力预测及微地震监测[M]. 青岛: 中国海洋大学出版社, 2020. |
GAO Qiuju, SONG Liang, LIU Xiantai, et al. Prediction of in-situ stress and microseismic monitoring in tight oil reservoirs[M]. Qingdao: China Ocean University Press, 2020. | |
27 | 陈宝宁, 王宁. 异常流体压力研究进展与方法实践[J]. 油气地质与采收率, 2001, 8(1): 35-37. |
CHEN Baoning, WANG Ning. Research advance and method practice of anomalous fluid pressure[J]. Petroleum Geology and Recovery Efficiency, 2001, 8(1): 35-37. | |
28 | 许玉强, 何保伦, 王䶮舒, 等. 深度学习与Eaton法联合驱动的地层孔隙压力预测方法[J]. 中国石油大学学报(自然科学版), 2023, 47(6): 50-59. |
XU Yuqiang, HE Baolun, WANG Yanshu, et al. A novel prediction method of formation pore pressure driven by deep learning and Eaton method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(6): 50-59. | |
29 | 刘彦飞. 韩城地区深/浅部煤层气开发地质条件与产能对比研究[D]. 北京: 中国地质大学(北京), 2016. |
LIU Yanfei. A comparative study on the development geologic conditions and productivity of deep and shallow CBM wells in Hancheng area[D]. Beijing: China University of Geosciences(Beijing), 2016. | |
30 | 尹帅, 丁文龙, 王濡岳, 等. 海陆过渡相致密砂岩储层Biot系数自适应预测方法研究[J]. 石油物探, 2016, 55(6): 861-868. |
YIN Shuai, DING Wenlong, WANG Ruyue, et al. A new prediction method of Biot coefficient for marine-land transition phase tight sandstone reservoir based on the self-adapt method[J]. Geophysical Prospecting for Petroleum, 2016, 55(6): 861-868. | |
31 | 余雄鹰, 王越之, 李自俊. 声波法计算水平主地应力值[J]. 石油学报, 1996, 17(3): 59-63. |
YU Xiongying, WANG Yuezhi, LI Zijun. Calculation of horizontal principal in-situ stress with acoustic wave method[J]. Acta Petrolei Sinica, 1996, 17(3): 59-63. | |
32 | 周广照, 谢元德, 陈庆, 等. 沁水盆地南部海陆过渡相煤系地层横波波速预测[J]. 大庆石油地质与开发, 2017, 36(4): 128-136. |
ZHOU Guangzhao, XIE Yuande, CHEN Qing, et al. Prediction of the shear wave velocity for the sea-land transitional facies coal measure strata in South Qinshui Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(4): 128-136. | |
33 | 姜波, 汪吉林, 屈争辉, 等. 大宁—吉县地区地应力特征及其对煤储层渗透性的影响[J]. 地学前缘, 2016, 23(3): 17-23. |
JIANG Bo, WANG Jilin, QU Zhenghui, et al. The stress characteristics of the Daning-Jixian area and its influence on the permeability of the coal reservoir[J]. Earth Science Frontiers, 2016, 23(3): 17-23. | |
34 | 高向东, 孙昊, 王延斌, 等. 临兴地区深部煤储层地应力场及其对压裂缝形态的控制[J]. 煤炭科学技术, 2022, 50(8): 140-150. |
GAO Xiangdong, SUN Hao, WANG Yanbin, et al. In-situ stress field of deep coal reservoir in Linxing area and its control on fracturing crack[J]. Coal Science and Technology, 2022, 50(8): 140-150. | |
35 | 陈世达, 汤达祯, 侯伟, 等. 深部煤层气地质条件特殊性与储层工程响应[J]. 石油学报, 2023, 44(11): 1993-2006. |
CHEN Shida, TANG Dazhen, HOU Wei, et al. Geological particularity and reservoir engineering response of deep coalbed methane[J]. Acta Petrolei Sinica, 2023, 44(11): 1993-2006. | |
36 | BROWN E T, HOEK E. Trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4): 211-215. |
37 | 刘大锰, 周三栋, 蔡益栋, 等. 地应力对煤储层渗透性影响及其控制机理研究[J]. 煤炭科学技术, 2017, 45(6): 1-8, 23. |
LIU Dameng, ZHOU Sandong, CAI Yidong, et al. Study on effect of geo-stress on coal permeability and its controlling mechanism[J]. Coal Science and Technology, 2017, 45(6): 1-8, 23. | |
38 | 涂志民, 王兴刚, 车延前, 等. 三塘湖盆地低阶煤煤层气成藏主控因素[J]. 新疆石油地质, 2021, 42(6): 683-689. |
TU Zhimin, WANG Xinggang, CHE Yanqian, et al. Controlling factors on CBM accumulation in low-rank coal in Santanghu Basin[J]. Xinjiang Petroleum Geology, 2021, 42(6): 683-689. | |
39 | LI Song, QIN Yong, TANG Dazhen, et al. A comprehensive review of deep coalbed methane and recent developments in China[J]. International Journal of Coal Geology, 2023, 279: 104369. |
40 | 邓泽, 王红岩, 姜振学, 等. 深部煤储层孔裂隙结构对煤层气赋存的影响——以鄂尔多斯盆地东缘大宁-吉县区块为例[J]. 煤炭科学技术, 2024, 52(8): 106-123. |
DENG Ze, WANG Hongyan, JIANG Zhenxue, et al. Influence of deep coal pore and fracture structure on occurrence of coalbed methane: A case study of Daning-Jixian Block in eastern margin of Ordos Basin[J]. Coal Science and Technology, 2024, 52(8): 106-123. | |
41 | 曾联波, 巩磊, 宿晓岑, 等. 深层-超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1): 1-14. |
ZENG Lianbo, GONG Lei, SU Xiaocen, et al. Natural fractures in deep to ultra-deep tight reservoirs: Distribution and development[J]. Oil & Gas Geology, 2024, 45(1): 1-14. | |
42 | 杨延辉, 孟召平, 陈彦君, 等. 沁南—夏店区块煤储层地应力条件及其对渗透性的影响[J]. 石油学报, 2015, 36(z1): 91-96. |
YANG Yanhui, MENG Zhaoping, CHEN Yanjun, et al. Geo-stress conditions of coal reservoirs in Qinnan-Xiadian block and its influences on permeability[J]. Acta Petrolei Sinica, 2015, 36(z1): 91-96. | |
43 | 李鑫, 魏永恒, 王文峰, 等. 库拜煤田阿艾矿区煤储层地应力特征及其对储层物性的制约[J]. 新疆大学学报(自然科学版中英文), 2022, 39(6): 727-735, 746. |
LI Xin, WEI Yongheng, WANG Wenfeng, et al. In-situ stress characters of CBM reservoir in the flexure basin of Kubai coalfield and its constraints on reservoir physical properties[J]. Journal of Xinjiang University(Natural Science Edition in Chinese and English), 2022, 39(6): 727-735, 746. | |
44 | 唐书恒. 煤储层渗透性影响因素探讨[J]. 中国煤田地质, 2001, 13(1): 28-30, 86. |
TANG Shuheng. Probe into the influence factors on permeability of coal reservoirs[J]. Coal Geology of China, 2001, 13(1): 28-30, 86. | |
45 | 文卓, 康永尚, 邓泽, 等. 中国含煤盆地浅—中深部现今地应力特点和分布规律[J]. 地质论评, 2019, 65(3): 729-742. |
WEN Zhuo, KANG Yongshang, DENG Ze, et al. Characteristics and distribution of current in-situ stress at shallow—Medium depth in coal-bearing basins in China[J]. Geological Review, 2019, 65(3): 729-742. | |
46 | 杨兆中, 杨苏, 张健, 等. 800m以深直井煤储层压裂特征分析[J]. 煤炭学报, 2016, 41(1): 100-104. |
YANG Zhaozhong, YANG Su, ZHANG Jian, et al. Fracturing characteristics analysis of 800 meters deeper coalbed methane vertical wells[J]. Journal of China Coal Society, 2016, 41(1): 100-104. | |
47 | 闵超, 代博仁, 石咏衡, 等. 基于聚类匹配的煤层气压裂效果主控因素识别[J]. 特种油气藏, 2022, 29(4): 135-141. |
MIN Chao, DAI Boren, SHI Yongheng, et al. Identification of main controlling factors of coalbed methane fracturing effect based on cluster matching[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 135-141. | |
48 | 姚艳斌, 王辉, 杨延辉, 等. 煤层气储层可改造性评价——以郑庄区块为例[J]. 煤田地质与勘探, 2021, 49(1): 119-129. |
YAO Yanbin, WANG Hui, YANG Yanhui, et al. Evaluation of the hydro-fracturing potential for coalbed methane reservoir: A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration, 2021, 49(1): 119-129. | |
49 | 陈世达, 汤达祯, 陶树. 原位地应力约束下煤储层自封闭作用及其成藏效应[J]. 煤炭学报, 2021, 46(8): 2466-2478. |
CHEN Shida, TANG Dazhen, TAO Shu. Self-sealing of coals and CBM accumulation effect constrained by in situ stress[J]. Journal of China Coal Society, 2021, 46(8): 2466-2478. |
[1] | 刘大锰, 王子豪, 陈佳明, 邱峰, 朱凯, 高羚杰, 周柯宇, 许少博, 孙逢瑞. 基于ResNet残差神经网络识别的深部煤层显微组分和微裂缝分类[J]. 石油与天然气地质, 2024, 45(6): 1524-1536. |
[2] | 李亚辉. 鄂尔多斯盆地大牛地气田深层中煤阶煤层气勘探实践及产能新突破[J]. 石油与天然气地质, 2024, 45(6): 1555-1566. |
[3] | 何发岐, 雷涛, 齐荣, 徐兵威, 李晓慧, 张茹. 鄂尔多斯盆地大牛地气田深部煤层气勘探突破及其关键技术[J]. 石油与天然气地质, 2024, 45(6): 1567-1576. |
[4] | 牛小兵, 张辉, 王怀厂, 虎建玲, 吴陈君, 赵伟波, 潘博. 鄂尔多斯盆地中、东部石炭系本溪组煤储层纵向非均质性特征及成因[J]. 石油与天然气地质, 2024, 45(6): 1577-1589. |
[5] | 李明瑞, 史云鹤, 范立勇, 戴贤铎, 荆雪媛, 张沂. 鄂尔多斯盆地上古生界本溪组8#煤岩煤岩气与致密砂岩气主要气藏特征对比[J]. 石油与天然气地质, 2024, 45(6): 1590-1604. |
[6] | 侯雨庭, 周国晓, 黄道军, 王彦卿, 焦鹏帅. 鄂尔多斯盆地纳林河地区煤岩气成藏地质特征[J]. 石油与天然气地质, 2024, 45(6): 1605-1616. |
[7] | 黄道军, 周国晓, 杨兆彪, 顾俊雨, 荆雪媛, 王嘉楠. 鄂尔多斯盆地深部煤岩气井产出气-水地球化学特征及其地质响应[J]. 石油与天然气地质, 2024, 45(6): 1617-1627. |
[8] | 赵石虎, 刘曾勤, 申宝剑, 罗兵, 陈刚, 陈新军, 张嘉琪, 万俊雨, 刘子驿, 刘友祥. 鄂尔多斯盆地东北部斜坡区深层煤层气地质特征与勘探潜力[J]. 石油与天然气地质, 2024, 45(6): 1628-1639. |
[9] | 陈平, 李维, 周义军, 裴文瑞, 于小伟, 韩伟, 梁国平, 路鹏程, 王雷. 鄂尔多斯盆地乌审旗古隆起与中央古隆起形成演化及其对油气的控制作用[J]. 石油与天然气地质, 2024, 45(6): 1653-1664. |
[10] | 王舵, 刘之的, 王成旺, 刘天定, 陈高杰, 郝晋美, 孙博文. 鄂尔多斯盆地DJ区块深部煤储层地质-工程甜点测井评价技术[J]. 石油与天然气地质, 2024, 45(6): 1772-1788. |
[11] | 于洲, 周进高, 罗晓容, 李永洲, 于小伟, 谭秀成, 吴东旭. 鄂尔多斯盆地东部奥陶系马家沟组四段神木-志丹低古隆起的发现及油气勘探意义[J]. 石油与天然气地质, 2024, 45(5): 1383-1399. |
[12] | 张琴, 邱振, 赵群, 董大忠, 刘雯, 孔维亮, 庞正炼, 高万里, 蔡光银, 李永洲, 李星涛, 林文姬. 海-陆过渡相与海相页岩气“甜点段”差异特征与形成机理[J]. 石油与天然气地质, 2024, 45(5): 1400-1416. |
[13] | 吕文雅, 安小平, 刘艳祥, 李德生, 曾联波, 皇甫展鸿, 唐英航, 张克宁, 张玉银. 致密砂岩储层注水诱导裂缝动态识别及演化特征[J]. 石油与天然气地质, 2024, 45(5): 1431-1446. |
[14] | 解馨慧, 邓虎成, 胡蓝霄, 李勇, 毛金昕, 刘佳杰, 张鑫, 李柏洋. 湖相细粒沉积岩颗粒微观力学特征及类型划分[J]. 石油与天然气地质, 2024, 45(4): 1079-1088. |
[15] | 李一波, 陈耀旺, 赵金洲, 王志强, 魏兵, Valeriy Kadet. 超临界二氧化碳与页岩相互作用机制[J]. 石油与天然气地质, 2024, 45(4): 1180-1194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||