石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (6): 1772-1788.doi: 10.11743/ogg20240620
王舵1,2(), 刘之的2,3(), 王成旺4, 刘天定5,6, 陈高杰4, 郝晋美5,6, 孙博文5,6
收稿日期:
2024-02-24
修回日期:
2024-09-04
出版日期:
2024-12-30
发布日期:
2024-12-31
通讯作者:
刘之的
E-mail:1218808185@qq.com;liuzhidi@xsyu.edu.cn
第一作者简介:
王舵(1996—),男,博士研究生,岩石力学及非常规测井评价、煤层气地质-工程一体化。E-mail: 1218808185@qq.com。
基金项目:
Duo WANG1,2(), Zhidi LIU2,3(), Chengwang WANG4, Tianding LIU5,6, Gaojie CHEN4, Jinmei HAO5,6, Bowen SUN5,6
Received:
2024-02-24
Revised:
2024-09-04
Online:
2024-12-30
Published:
2024-12-31
Contact:
Zhidi LIU
E-mail:1218808185@qq.com;liuzhidi@xsyu.edu.cn
摘要:
深部煤层气由于储层非均质性强、应力大、压力高和可改造性差,因此,其规模化开发要求对甜点开展精细评价。基于层次分析法(AHP法)提出了深部煤储层地质-工程甜点的12项评价指标,建立了测井评价模型,利用该模型对鄂尔多斯盆地DJ区块20余口井的深部煤储层甜点进行了评价。研究结果表明:①煤储层地质-工程甜点主控因素与产能施工压力比(Ip)存在良好的相关性。DJ区块深部煤储层的上部甜点类别普遍优于中、下部,上部主要为Ⅰ类甜点,中部为Ⅲ类甜点,下部为Ⅱ类甜点。②含气量和脆性指数分别是储层及工程品质的主控因素。③煤储层顶、底板发育较厚的灰岩和泥岩,煤储层与灰岩和泥岩的力学特性差异较大,能有效封隔压裂缝在煤储层中扩展。压裂工况和试气结果表明所构建的地质-工程甜点测井评价方法应用效果良好,可用于深部煤储层压裂射孔选段和测井优选评价。
中图分类号:
表1
DJ区块地质-工程甜点相关指标计算统计结果"
序号 | 储层品质相关指标 | Pear | Sig | 序号 | 工程品质相关指标 | Pear | Sig |
---|---|---|---|---|---|---|---|
1 | 煤体结构指数(Ics) | +0.807*** | 0 | 1 | 脆性指数(BI)/% | +0.801*** | 0 |
2 | 含气量(Vg)/(m3/t) | +0.844*** | 0 | 2 | 断裂韧性(Kic)/(MPa· | -0.712*** | 0.001 |
3 | 含气饱和度(Sg)/% | +0.545** | 0 | 3 | 弹性模量(EML)/MPa | -0.615** | 0.003 |
4 | 孔隙压力(p)/MPa | +0.637** | 0.002 | 4 | 切变模量(GML)/MPa | -0.596** | 0.009 |
5 | 孔隙结构指数(Psi) | +0.792*** | 0 | 5 | 体积模量(KML)/MPa | -0.588** | 0.010 |
6 | 有效厚度(He)/m | +0.507** | 0.001 | 6 | 泊松比(μ) | +0.439* | 0 |
7 | 埋深(Dep)/m | +0.625** | 0.006 | 7 | 抗压强度(Sc)/MPa | -0.474* | 0.002 |
8 | 裂缝发育指数(If) | +0.821*** | 0 | 8 | 抗拉强度(St)/MPa | -0.587** | 0.002 |
9 | 非均质性指数(Ihr) | -0.629** | 0.001 | 9 | 水平应力差异系数(Kh) | -0.698** | 0.002 |
10 | 孔隙度(Φ)/% | +0.550** | 0.018 | 10 | 侧压系数(λ) | +0.653** | 0 |
11 | 渗透率(K)/(10-3 μm2) | +0.531** | 0.023 | 11 | 煤储层与围岩应力差(Ylc)/MPa | +0.508** | 0.001 |
12 | 裂缝孔隙度(Φf)/% | +0.535** | 0.005 | 12 | 破裂压力(pf)/MPa | -0.496* | 0.036 |
13 | 裂缝渗透率(Kf)/(10-3 μm2) | +0.496* | 0.036 | 13 | 顶底板与煤储层弹性模量比(Erf) | +0.766*** | 0 |
14 | 固定碳含量(FC)/% | +0.331* | 0.040 | 14 | 闭合压力(pc)/MPa | -0.604** | 0.008 |
15 | 灰分含量(VASH)/% | -0.509** | 0.001 | 15 | 有效应力(σe)/MPa | -0.647** | 0.004 |
16 | 全烃含量(qt)/% | +0.602** | 0.038 | ||||
17 | 光电吸收截面指数(Pe)/(b/eV) | -0.477* | 0.045 | ||||
18 | 总有机碳含量(TOC)/% | +0.548** | 0.019 |
表4
DJ区块地质-工程甜点相关指标划分标准"
相关指标 甜点类型 | Vg/ /(m3/t) | If | Ics | Psi | p/MPa | Ihr | BI/% | Erf | Kic/ (MPa· | Kh | λ | St/MPa | RQI | CQI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ⅰ类甜点 | >19.74 | >0.674 | >1.66 | >0.11 | >20.74 | <8.99 | >57 | >3.84 | <0.17 | <0.07 | >0.55 | <1.38 | >0.65 | >0.62 |
Ⅱ类甜点 | 14.14 ~ 19.74 | 0.436 ~ 0.674 | 1.15 ~ 1.66 | 0.07 ~ 0.11 | 19.23 ~ 20.74 | 8.99 ~ 16.79 | 45 ~ 57 | 3.25 ~ 3.84 | 0.17 ~ 0.26 | 0.07 ~ 0.12 | 0.43 ~ 0.55 | 1.38 ~ 1.79 | 0.36 ~ 0.65 | 0.39 ~ 0.62 |
Ⅲ类甜点 | <14.14 | <0.436 | <1.66 | <0.07 | <19.23 | >16.79 | <45 | <3.25 | >0.26 | >0.12 | <0.43 | >1.79 | <0.36 | <0.39 |
1 | 王成旺, 甄怀宾, 陈高杰, 等. 大宁—吉县区块深部8号煤储层特征及可压裂性评价[J]. 中国煤炭地质, 2022, 34(2): 1-5. |
WANG Chengwang, ZHEN Huaibin, CHEN Gaojie, et al. Assessment of coal No.8 reservoir features and fracturability in Da’ning-Jixian block deep part[J]. Coal Geology of China, 2022, 34(2): 1-5. | |
2 | 聂志宏, 巢海燕, 刘莹, 等. 鄂尔多斯盆地东缘深部煤储层气生产特征及开发对策——以大宁—吉县区块为例[J]. 煤炭学报, 2018, 43(6): 1738-1746. |
NIE Zhihong, CHAO Haiyan, LIU Ying, et al. Development strategy and production characteristics of deep coalbed methane in the east Ordos Basin: Taking Daning-Jixian block for example[J]. Journal of China Coal Society, 2018, 43(6): 1738-1746. | |
3 | 余杰, 秦瑞宝, 梁建设, 等. 煤储层气 “甜点” 测井判别与产量预测——以沁水盆地柿庄南区块为例[J]. 新疆石油地质, 2017, 38(4): 482-487. |
YU Jie, QIN Ruibao, LIANG Jianshe, et al. Sweet spot ldentification with well-logging data and production prediction for coalbed methane: A case study from southern Shizhuang Block in Qinshui Basin[J]. Xinjiang Petroleum Geology, 2017, 38(4): 482-487. | |
4 | 张亚飞, 张松航, 邓志宇, 等. 基于层次分析灰色定权聚类的煤储层气开发甜点预测方法——以柿庄北区块为例[J]. 煤炭科学技术, 2024, 52(5): 166-175. |
ZHANG Yafei, ZHANG Songhang, DENG Zhiyu, et al. Sweet spot prediction method for coalbed methane development based on analytic hierarchy process grey weighted clustering: A case study of shizhuang North block[J]. Coal Science and Technology, 2024, 52(5): 166-175. | |
5 | 董银萍, 刘勇, 申有义, 等. 基于匹配追踪分解的流体活动因子预测煤储层气甜点区[J]. 煤田地质与勘探, 2018, 46(5): 90-96, 101. |
DONG Yinping, LIU Yong, SHEN Youyi, et al. Prediction of CBM sweet spots via matching trace decomposition-based fluid activity factor[J]. Coal Geology & Exploration, 2018, 46(5): 90-96, 101. | |
6 | HAMDANI A H, HAMDIANA D P, RAMADHAN W A. Well log and seismic application in delineating CBM sweet spot in Berau Basin, East Kalimantan[J]. AIP Conference Proceedings, 2013, 1554(1): 253-256. |
7 | LIU Zhidi, TANG Xiaoyan, LIU Hongzhuang, et al. Predicting the engineering sweet spot of coal-bed methane reservoirs: A case study from Central China[J]. Arabian Journal of Geosciences, 2022, 15(7): 638. |
8 | 刘高峰, 刘欢, 鲜保安, 等. 煤储层气开发地质“甜点区”模糊模式识别模型[J]. 石油勘探与开发, 2023, 50(4): 808-815. |
LIU Gaofeng, LIU Huan, XIAN Baoan, et al. Fuzzy pattern recognition model of geological sweetspot for coalbed methane development[J]. Petroleum Exploration and Development, 2023, 50(4): 808-815. | |
9 | 闫霞, 徐凤银, 聂志宏, 等. 深部微构造特征及其对煤储层气高产 “甜点区” 的控制——以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报, 2021, 46(8): 2426-2439. |
YAN Xia, XU Fengyin, NIE Zhihong, et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society, 2021, 46(8): 2426-2439. | |
10 | ZHAO Chengqiang, ZHOU Yubang, LI Yong, et al. Application of gradient structure tensor method in CBM fracture identification and sweet spot prediction[J]. Arabian Journal of Geosciences, 2019, 12(20): 641. |
11 | 桑树勋, 郑司建, 王建国, 等. 岩石力学地层新方法在深部煤储层气勘探开发 “甜点” 预测中的应用[J]. 石油学报, 2023, 44(11): 1840-1853. |
SANG Shuxun, ZHENG Sijian, WANG Jianguo, et al. Application of new rock mechanical stratigraphy in sweet spot prediction for deep coalbed methane exploration and development[J]. Acta Petrolei Sinica, 2023, 44(11): 1840-1853. | |
12 | 杨磊, 王建, 高博禹, 等. 利用测井信息评价煤储层气 “甜点” 技术与方法——以沁水盆地南部某区块为例[J]. 新疆有色金属, 2023, 46(1): 37-41. |
YANG Lei, WANG Jian, GAO Boyu, et al. Evaluation of coalbed methane “sweet spot” technology and methods using logging information: A case study of a certain block in the southern part of the Qinshui Basin[J]. Xinjiang Nonferrous Metals, 2023, 46(1): 37-41. | |
13 | 程建, 周小进, 刘超英, 等. 中西部大盆地重点勘探领域战略选区研究[J]. 石油实验地质, 2023, 45(2): 229-237. |
CHENG Jian, ZHOU Xiaojin, LIU Chaoying, et al. Strategic area selection and key exploration fields in central and western large basins[J]. Petroleum Geology and Experiment, 2023, 45(2): 229-237. | |
14 | 余海波. 东濮凹陷构造特征及古生界有利勘探区带评价[J]. 岩性油气藏, 2022, 34(6): 72-79. |
YU Haibo. Tectonic characteristics and favorable exploration zones of Paleozoic in Dongpu Sag[J]. Lithologic Reservoirs, 2022, 34(6): 72-79. | |
15 | 葛祥, 刘伟, 孙鑫, 等. 测控技术在深层、常压页岩气勘探开发中的应用[J]. 石油实验地质, 2023, 45(6): 1221-1230. |
GE Xiang, LIU Wei, SUN Xin, et al. Application of measurement and control technology in deep and normal pressure shale gas exploration and development[J]. Petroleum Geology and Experiment, 2023, 45(6): 1221-1230. | |
16 | 聂志宏, 时小松, 孙伟, 等. 大宁-吉县区块深层煤储层气生产特征与开发技术对策[J]. 煤田地质与勘探, 2022, 50(3): 193-200. |
NIE Zhihong, SHI Xiaosong, SUN Wei, et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration, 2022, 50(3): 193-200. | |
17 | LI Yang, YANG Jianghao, PAN Zhejun, et al. Unconventional natural gas accumulations in stacked deposits: A discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China[J]. Acta Geologica Sinica(English Edition), 2019, 93(1): 111-129. |
18 | 王以城. 鄂尔多斯盆地东缘大宁-吉县地区山西组页岩沉积相与储层特征研究[D]. 西安: 西北大学, 2022. |
WANG Yicheng. Shanxi shale sedimentary facies and reservoirs characteristics in Daning-Jixian area of east margin of Ordos Basin[D]. Xi'an: Northwest University, 2022. | |
19 | 李曙光, 王成旺, 王红娜, 等. 大宁-吉县区块深层煤储层气成藏特征及有利区评价[J]. 煤田地质与勘探, 2022, 50(9): 59-67. |
LI Shuguang, WANG Chengwang, WANG Hongna, et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coal Geology & Exploration, 2022, 50(9): 59-67. | |
20 | 刘之的, 杨秀春, 陈彩红, 等. 鄂东气田煤储层气储层测井综合评价方法研究[J]. 测井技术, 2013, 37(3): 289-293. |
LIU Zhide, YANG Xiuchun, CHEN Caihong, et al. Comprehensive log evaluation for coalbed methane reservoir in eastern block of Ordos Basin[J]. Well Logging Technology, 2013, 37(3): 289-293. | |
21 | 郭旭升, 周德华, 赵培荣, 等. 鄂尔多斯盆地石炭系-二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2022, 43(5): 1013-1023. |
GUO Xusheng, ZHOU Dehua, ZHAO Peirong, et al. Progresses and directions of unconventional natural gas exploration and development in the Carboniferous-Permian coal measure strata, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1013-1023. | |
22 | 刘成林, 刘新菊, 张洪军, 等. 鄂尔多斯盆地安塞地区页岩油地质-工程一体化技术实践[J]. 石油与天然气地质, 2022, 43(5): 1238-1248. |
LIU Chenglin, LIU Xinju, ZHANG Hongjun, et al. Application of an integrated geology-reservoir engineering approach to shale oil development in Ansai area, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1238-1248. | |
23 | 白斌, 戴朝成, 侯秀林, 等. 松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价[J]. 石油与天然气地质, 2023, 44(4): 846-856. |
BAI Bin, DAI Chaocheng, HOU Xiulin, et al. Geological heterogeneity of shale sequence and evaluation of shale oil sweet spots in the Qingshankou Formation, Songliao Basin[J]. Oil & Gas Geology, 2023, 44(4): 846-856. | |
24 | 印森林, 陈旭, 杨毅, 等. 细粒沉积岩典型低阻油层成因及甜点分布[J]. 石油与天然气地质, 2023, 44(4): 946-961. |
YIN Senlin, CHEN Xu, YANG Yi, et al. Origin and sweet spots of typical low-resistivity oil reservoirs of fine-grained sedimentary rocks[J]. Oil & Gas Geology, 2023, 44(4): 946-961. | |
25 | 张鉴, 张成林, 赵圣贤, 等. 多元非线性矿物解释模型在页岩分析中的应用[J]. 断块油气田, 2023, 30(2): 222-229. |
ZHANG Jian, ZHANG Chenglin, ZHAO Shengxian, et al. Application of interpretation models of multivariate non-linear mineral in shale formation analysis[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 222-229. | |
26 | 张玉涛, 杨杰, 李亚清, 等. 煤自燃特征温度与微观结构变化及关联性分析[J]. 煤炭科学技术, 2023, 51(4): 80-87. |
ZHANG Yutao, YANG Jie, LI Yaqing, et al. Correlation analysis between characteristic temperature and microstructure of coal spontaneous combustion[J]. Coal Science and Technology, 2023, 51(4): 80-87. | |
27 | 王雪, 张新荣, 刘嘉康, 等. 松嫩平原现代浅水湖泊藻类组合与水体、底泥的耦合关系[J]. 石油实验地质, 2023, 45(1): 80-88. |
WANG Xue, ZHANG Xinrong, LIU Jiakang, et al. Coupled relationship between algal assemblages and water, surface sediments in modern shallow lakes of the Songnen Plain[J]. Petroleum Geology and Experiment, 2023, 45(1): 80-88. | |
28 | 唐昱哲, 柴辉, 王红军, 等. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158. |
TANG Yuzhe, CHAI Hui, WANG Hongjun, et al. Characteristics and new prediction methods of Jurassic subsalt carbonate reservoirs in the eastern right bank of Amu Darya, Central Asia[J]. Lithologic Reservoirs, 2023, 35(6): 147-158. | |
29 | 刘之的, 赵靖舟, 时保宏, 等. 煤储层气储层 “三品质” 测井定量评价方法研究——以鄂尔多斯盆地东缘韩城矿区为例[J]. 天然气地球科学, 2015, 26(5): 966-978. |
LIU Zhide, ZHAO Jingzhou, SHI Baohong, et al. Study on the method of quantitative evaluation for “three qualities” of CBM reservoir using logging data: A case study from the hancheng mine at the eastern edge of the ordos basin[J]. Natural Gas Geoscience, 2015, 26(5): 966-978. | |
30 | 臧艳彬, 王瑞和, 王子振, 等. 利用Eaton法计算地层孔隙压力的不确定性分析[J]. 西南石油大学学报(自然科学版), 2012, 34(4): 55-61. |
ZANG Yanbin, WANG Ruihe, WANG ZI Zhen, et al. Evaluation of uncertainties for pore-pressure taking eaton method as an example[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(4): 55-61. | |
31 | 孙建孟, 张颖, 王跃祥, 等. 基于测井资料的地层压力预测方法研究进展[J]. 测井技术, 2023, 47(2): 119-128. |
SUN Jianmeng, ZHANG Ying, WANG Yuexiang, et al. Research progress in formation pressure prediction methods based on logging data[J]. Well Logging Technology, 2023, 47(2): 119-128. | |
32 | 郭东明. 欠压实理论在随钻地层压力预测中的应用——以X油田A1-1构造为例[J]. 石油地质与工程, 2021, 35(3): 80-83, 88. |
GUO Dongming. Application of under compaction theory in formation pressure prediction while drilling-By taking A1-1 structure of X Oilfield as an example[J]. Petroleum Geology and Engineering, 2021, 35(3): 80-83, 88. | |
33 | 张美玲, 牟立伟, 蔺建华. 地层主应力综合计算方法及其在套损预测中的应用[J]. 地球物理学进展, 2016, 31(3): 1281-1288. |
ZHANG Meiling, MU Liwei, LIN Jianhua. Comprehensive calculation method of formation principal stress and its application in prediction of casing damage[J]. Progress in Geophysics, 2016, 31(3): 1281-1288. | |
34 | 周丽艳, 罗少成, 林伟川, 等. 基于孔隙结构综合评价指数的致密砂岩储层分类方法[J]. 测井技术, 2022, 46(6): 707-713. |
ZHOU Liyan, LUO Shaocheng, LIN Weichuan, et al. Classification method of tight sandstone reservoir based on comprehensive evaluation index of pore structure[J]. Well Logging Technology, 2022, 46(6): 707-713. | |
35 | 何发岐, 董昭雄. 深部煤储层气资源开发潜力——以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质, 2022, 43(2): 277-285. |
HE Faqi, DONG Zhaoxiong. Development potential of deep coalbed methane: A case study in the Daniudi Gas Field, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(2): 277-285. | |
36 | 黄沛铭. 库车坳陷博孜-大北区带超深致密砂岩储层裂缝特征与定量预测[D]. 徐州: 中国矿业大学, 2023. |
HUANG Peiming. Characteristics and quantitative prediction of fractures in ultra-deep tight sandstone reservoirs, Bozi-Dabei zone, Kuqa Depression[D]. Xuzhou: China University of Mining and Technology, 2023. | |
37 | 曾治平, 刘震, 马骥, 等. 深层致密砂岩储层可压裂性评价新方法[J]. 地质力学学报, 2019, 25(2): 223-232. |
ZENG Zhiping, LIU Zhen, MA Ji, et al. A new method for fracrability evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics, 2019, 25(2): 223-232. | |
38 | 李功权. 数字油藏理论与实践[M]. 武汉: 中国地质大学出版社, 2014: 214. |
LI Gongquan. Digital reservoir theory and practice[M]. Wuhan: China University of Geosciences Press, 2014: 214. | |
39 | 范宜仁, 魏周拓, 陈雪莲. 基于测井资料的地层应力计算及其影响因素研究[J]. 测井技术, 2009, 33(5): 415-420. |
FAN Yiren, WEI Zhoutuo, CHEN Xuelian. Study on formation stress calculation and its influential factors based on logging data[J]. Well Logging Technology, 2009, 33(5): 415-420. | |
40 | 金衍, 陈勉, 张旭东. 利用测井资料预测深部地层岩石断裂韧性[J]. 岩石力学与工程学报, 2001, 20(4): 454-456. |
JIN Yan, CHEN Mian, ZHANG Xudong. Determination of fracture toughness for deep well rock with geophysical logging data[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(4): 454-456. | |
41 | KESHAVARZ A, BADALYAN A, CARAGEORGOS T, et al. Enhancement of CBM well fracturing through stimulation of cleat permeability by ultra-fine particle injection[J]. The APPEA Journal, 2014, 54(1): 155-166. |
42 | 赵毅鑫, 赵良辰, 杨东辉, 等. 基于改进组合弹簧模型的矿井地应力场计算方法[J]. 采矿与岩层控制工程学报, 2024, 6(1): 103-116. |
ZHAO Yixin, ZHAO Liangchen, YANG Donghui, et al. Calculation of mine in-situ stress field based on the improved composite spring model[J]. Journal of Mining and Strata Control Engineering, 2024, 6(1): 103-116. | |
43 | 高向东, 孙昊, 王延斌, 等. 临兴地区深部煤储层地应力场及其对压裂缝形态的控制[J]. 煤炭科学技术, 2022, 50(8): 140-150. |
GAO Xiangdong, SUN Hao, WANG Yanbin, et al. In-situ stress field of deep coal reservoir in Linxing area and its control on fracturing crack[J]. Coal Science and Technology, 2022, 50(8): 140-150. | |
44 | 钱鸣高,石平五,许家林, 等. 矿山压力与岩层控制[M]. 2版. 徐州: 中国矿业大学出版社, 2010: 44. |
QIAN Minggao, SHI Pingwu, XU Jialin, et al. Mine pressure and rock formation control[M]. 2nd ed. Xuzhou: China University of Mining and Technology Press, 2010: 44. | |
45 | 陈同刚, 汪启年, 朱将波, 等. 煤储层及其顶、底板岩石力学性质对水力压裂裂缝延伸的控制[J]. 华东地质, 2018, 39(3): 212-217. |
CHEN Tonggang, WANG Qinian, ZHU Jiangbo, et al. Control of mechanical properties of coal seam and its roof and floor rocks over the crack extension during hydraulic fracturing[J]. East China Geology, 2018, 39(3): 212-217. | |
46 | 任官宝, 陈雷, 计玉冰, 等. 昭通东北地区五峰组—龙马溪组龙一1亚段页岩岩相类型及其储层特征[J]. 石油实验地质, 2023, 45(3): 443-454. |
REN Guanbao, CHEN Lei, JI Yubing, et al. Shale lithofacies types and reservoir characteristics from Ordovician Wufeng Formation to the first sub-member of the first member of Silurian Longmaxi Formation, Northeast Zhaotong area[J]. Petroleum Geology and Experiment, 2023, 45(3): 443-454. |
[1] | 刘大锰, 王子豪, 陈佳明, 邱峰, 朱凯, 高羚杰, 周柯宇, 许少博, 孙逢瑞. 基于ResNet残差神经网络识别的深部煤层显微组分和微裂缝分类[J]. 石油与天然气地质, 2024, 45(6): 1524-1536. |
[2] | 李亚辉. 鄂尔多斯盆地大牛地气田深层中煤阶煤层气勘探实践及产能新突破[J]. 石油与天然气地质, 2024, 45(6): 1555-1566. |
[3] | 何发岐, 雷涛, 齐荣, 徐兵威, 李晓慧, 张茹. 鄂尔多斯盆地大牛地气田深部煤层气勘探突破及其关键技术[J]. 石油与天然气地质, 2024, 45(6): 1567-1576. |
[4] | 牛小兵, 张辉, 王怀厂, 虎建玲, 吴陈君, 赵伟波, 潘博. 鄂尔多斯盆地中、东部石炭系本溪组煤储层纵向非均质性特征及成因[J]. 石油与天然气地质, 2024, 45(6): 1577-1589. |
[5] | 李明瑞, 史云鹤, 范立勇, 戴贤铎, 荆雪媛, 张沂. 鄂尔多斯盆地上古生界本溪组8#煤岩煤岩气与致密砂岩气主要气藏特征对比[J]. 石油与天然气地质, 2024, 45(6): 1590-1604. |
[6] | 侯雨庭, 周国晓, 黄道军, 王彦卿, 焦鹏帅. 鄂尔多斯盆地纳林河地区煤岩气成藏地质特征[J]. 石油与天然气地质, 2024, 45(6): 1605-1616. |
[7] | 黄道军, 周国晓, 杨兆彪, 顾俊雨, 荆雪媛, 王嘉楠. 鄂尔多斯盆地深部煤岩气井产出气-水地球化学特征及其地质响应[J]. 石油与天然气地质, 2024, 45(6): 1617-1627. |
[8] | 赵石虎, 刘曾勤, 申宝剑, 罗兵, 陈刚, 陈新军, 张嘉琪, 万俊雨, 刘子驿, 刘友祥. 鄂尔多斯盆地东北部斜坡区深层煤层气地质特征与勘探潜力[J]. 石油与天然气地质, 2024, 45(6): 1628-1639. |
[9] | 牟朋威, 李珮杰, 姚艳斌, 刘大锰, 马立民, 孙晓晓, 邱勇凯. 鄂尔多斯盆地佳县地区深部煤层地应力特征及其对储层物性的控制[J]. 石油与天然气地质, 2024, 45(6): 1640-1652. |
[10] | 陈平, 李维, 周义军, 裴文瑞, 于小伟, 韩伟, 梁国平, 路鹏程, 王雷. 鄂尔多斯盆地乌审旗古隆起与中央古隆起形成演化及其对油气的控制作用[J]. 石油与天然气地质, 2024, 45(6): 1653-1664. |
[11] | 于洲, 周进高, 罗晓容, 李永洲, 于小伟, 谭秀成, 吴东旭. 鄂尔多斯盆地东部奥陶系马家沟组四段神木-志丹低古隆起的发现及油气勘探意义[J]. 石油与天然气地质, 2024, 45(5): 1383-1399. |
[12] | 张琴, 邱振, 赵群, 董大忠, 刘雯, 孔维亮, 庞正炼, 高万里, 蔡光银, 李永洲, 李星涛, 林文姬. 海-陆过渡相与海相页岩气“甜点段”差异特征与形成机理[J]. 石油与天然气地质, 2024, 45(5): 1400-1416. |
[13] | 吕文雅, 安小平, 刘艳祥, 李德生, 曾联波, 皇甫展鸿, 唐英航, 张克宁, 张玉银. 致密砂岩储层注水诱导裂缝动态识别及演化特征[J]. 石油与天然气地质, 2024, 45(5): 1431-1446. |
[14] | 解馨慧, 邓虎成, 胡蓝霄, 李勇, 毛金昕, 刘佳杰, 张鑫, 李柏洋. 湖相细粒沉积岩颗粒微观力学特征及类型划分[J]. 石油与天然气地质, 2024, 45(4): 1079-1088. |
[15] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||