石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (5): 953-964.doi: 10.11743/ogg20200506
收稿日期:
2018-10-18
出版日期:
2020-10-28
发布日期:
2020-10-22
第一作者简介:
郭春涛(1981-),博士、讲师,沉积学。E-mail:基金项目:
Chuntao Guo1,2(), Haiqiang Song3, Jie Liang4, Lingmei Ni5
Received:
2018-10-18
Online:
2020-10-28
Published:
2020-10-22
摘要:
白云岩储层展布是塔里木盆地塔东地区深层白云岩油气藏勘探的关键问题。为认识塔里木盆地塔东低凸起米兰地区寒武系白云岩,选取典型井米兰1井,在岩心和镜下薄片观测的基础上,对各种类型的白云岩进行了稀土元素地球化学特征测试。结果表明,各类白云岩稀土元素含量均较低,且随着晶粒增大,总质量分数减小;不同类型白云岩的δEu异常显著不同,泥微晶、细晶、中晶和粗晶白云岩的δEu分别介于0.97~1.08,0.77~1.05,0.80~3.23,0.81~2.23;大部分样品δCe负异常,介于0.86~1.02。所有样品稀土元素PAAS配分模式分为3种类型,即δEu负异常型、δEu正异常型和δEu无异常型。在白云石化过程中,蒸发泵机制是米兰1井寒武系白云岩的基础成因,第一种白云岩后期还受到埋藏环境的影响,第二种后期还受到热液环境改造,第三种形成于回流渗透机制。白云岩储层的形成受多种条件的控制,其中有利的沉积环境是储层形成的先决条件,大规模白云石化是储层形成的基石,裂缝体系对储层有多重影响,而溶蚀作用是储层形成的关键。
中图分类号:
图2
塔东地区米兰1井寒武系白云岩岩心及显微镜下特征 a.埋深5 260.11 m,泥微晶白云岩,晶粒极细小,较均匀,缝洞内见鞍形白云石充填;b.埋深5 356.49 m,粉-细晶它形白云岩,表面脏,见缝合线,部分被沥青充填;c.埋深5 524.30 m,细-中晶它形白云岩,表面脏,见缝合线切割白云石颗粒;d.埋深5 356.60 m,细晶它形白云岩,镶嵌接触,见硅质充填;e.埋深5 253.41 m,中-粗晶半自形-它形白云岩,凹凸接触,雾心亮边结构;f.埋深5 254.34 m,中-粗晶半自形-自形白云岩,表面脏,见晶间孔,部分被沥青充填;g.埋深5 253.51 m,粗晶它形白云岩,凹凸接触,雾心亮边结构,见裂缝被方解石充填;h.埋深5 355.82 m,硅质粉-细晶白云岩,见硅化斑块,呈玉髓产出;i.埋深5 524.29 m,鞍形白云石,岩心;j.埋深5 324.88 m,粉晶白云岩,裂缝被白云石完全充填;k.埋深5 356.52 m,粉晶白云岩,发育热液溶蚀洞;l.埋深5 262.21 m,中-粗晶白云岩,边缘被有机酸溶蚀而参差不齐"
表1
塔东地区米兰1井寒武系白云岩稀土元素含量及参数"
样品编号 | 深度/m | 岩性 | 稀土元素含量/10-6 | ΣREE/10-6 | ΣLREE//10-6 | ΣHREE//10-6 | ΣLREE/ΣHREE | δCe | δEu | δPr | (La/Yb)N | ||||||||||||
La | Ce | Pr | Nd | Sm | Eu | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||||||||||
ML-01 | 5 252.66 | 粗晶白云岩 | 17.982 9 | 33.692 9 | 3.216 3 | 11.547 7 | 1.676 4 | 0.421 4 | 0.163 9 | 0.967 5 | 0.215 2 | 0.608 9 | 0.085 0 | 0.486 0 | 0.065 3 | 71.129 4 | 68.537 6 | 2.591 8 | 26.44 | 1.01 | 1.52 | 0.95 | 2.73 |
ML-02 | 5 523.96 | 中-粗晶白云岩 | 5.180 0 | 8.610 0 | 1.019 0 | 3.680 0 | 0.539 0 | 0.196 0 | 0.051 0 | 0.280 0 | 0.050 0 | 0.157 0 | 0.021 0 | 0.114 0 | 0.016 0 | 19.913 0 | 19.224 0 | 0.689 0 | 27.90 | 0.86 | 2.23 | 1.06 | 3.35 |
ML-03 | 5 524.67 | 中-粗晶白云岩 | 1.865 7 | 3.232 3 | 0.366 4 | 1.573 1 | 0.324 0 | 0.070 7 | 0.039 6 | 0.230 7 | 0.051 1 | 0.152 4 | 0.018 7 | 0.096 3 | 0.010 3 | 8.031 3 | 7.432 2 | 0.599 1 | 12.41 | 0.90 | 1.20 | 0.95 | 1.43 |
ML-04 | 5 358.11 | 中-粗晶白云岩 | 0.732 6 | 1.465 3 | 0.178 4 | 0.711 9 | 0.182 2 | 0.025 9 | 0.020 5 | 0.167 0 | 0.038 6 | 0.109 1 | 0.013 5 | 0.070 8 | 0.007 7 | 3.723 5 | 3.296 3 | 0.427 2 | 7.72 | 0.93 | 0.81 | 1.03 | 0.76 |
ML-05 | 5 656.70 | 中晶白云岩 | 2.394 0 | 4.474 5 | 0.495 7 | 1.519 0 | 0.300 9 | 0.067 6 | 0.040 4 | 0.281 7 | 0.064 0 | 0.183 1 | 0.020 9 | 0.090 6 | 0.012 0 | 9.944 4 | 9.251 7 | 0.692 7 | 13.36 | 0.95 | 1.18 | 1.11 | 1.95 |
ML-06 | 5 356.35 | 中晶白云岩 | 1.196 6 | 2.443 6 | 0.294 5 | 1.306 1 | 0.274 5 | 0.041 3 | 0.036 2 | 0.264 0 | 0.061 3 | 0.178 1 | 0.023 8 | 0.138 6 | 0.014 6 | 6.273 2 | 5.556 6 | 0.716 6 | 7.75 | 0.95 | 0.79 | 0.96 | 0.64 |
ML-07 | 5 260.86 | 细-中白云岩 | 3.393 7 | 6.073 6 | 0.698 0 | 2.580 4 | 0.478 0 | 0.105 3 | 0.046 1 | 0.320 0 | 0.072 2 | 0.201 8 | 0.027 6 | 0.154 5 | 0.017 8 | 14.169 0 | 13.329 0 | 0.840 0 | 15.87 | 0.91 | 1.34 | 1.04 | 1.62 |
ML-08 | 5 253.90 | 细-中白云岩 | 9.941 0 | 16.918 0 | 1.624 0 | 4.795 0 | 0.961 0 | 0.493 0 | 0.136 0 | 0.661 0 | 0.128 0 | 0.347 0 | 0.049 0 | 0.299 0 | 0.041 0 | 36.393 0 | 34.732 0 | 1.661 0 | 20.91 | 0.96 | 2.62 | 1.04 | 2.45 |
ML-09 | 5 523.29 | 细-中晶白云岩 | 3.090 0 | 5.020 0 | 0.470 0 | 1.440 0 | 0.230 0 | 0.140 0 | 0.030 0 | 0.170 0 | 0.040 0 | 0.110 0 | 0.015 0 | 0.080 0 | 0.010 0 | 10.845 0 | 10.390 0 | 0.455 0 | 22.84 | 0.94 | 3.23 | 1.01 | 2.85 |
ML-10 | 5 523.72 | 细-中晶白云岩 | 4.324 4 | 8.666 1 | 0.886 0 | 3.280 6 | 0.521 4 | 0.157 3 | 0.042 8 | 0.274 1 | 0.060 8 | 0.171 1 | 0.020 7 | 0.108 8 | 0.011 9 | 18.526 0 | 17.835 8 | 0.690 2 | 25.84 | 1.02 | 1.95 | 0.98 | 2.93 |
ML-11 | 5 324.71 | 细-中晶白云岩 | 1.210 0 | 2.746 1 | 0.323 2 | 1.387 8 | 0.293 9 | 0.047 5 | 0.036 1 | 0.270 3 | 0.067 8 | 0.186 8 | 0.027 7 | 0.160 8 | 0.022 9 | 6.780 9 | 6.008 5 | 0.772 4 | 7.78 | 1.01 | 0.88 | 0.97 | 0.56 |
ML-12 | 5 253.90 | 细-粗白云岩 | 8.345 0 | 15.641 0 | 1.523 0 | 4.153 0 | 0.865 0 | 0.218 0 | 0.097 0 | 0.549 0 | 0.101 0 | 0.296 0 | 0.046 0 | 0.263 0 | 0.039 0 | 32.136 0 | 30.745 0 | 1.391 0 | 22.10 | 1.01 | 1.44 | 1.08 | 2.34 |
ML-13 | 5 252.78 | 细-粗晶白云岩 | 8.145 0 | 14.357 0 | 1.692 0 | 5.748 0 | 1.270 0 | 0.401 0 | 0.147 0 | 0.691 0 | 0.137 0 | 0.407 0 | 0.063 0 | 0.358 0 | 0.057 0 | 33.473 0 | 31.613 0 | 1.860 0 | 17.00 | 0.89 | 1.77 | 1.10 | 1.68 |
ML-14 | 5 289.13 | 细晶白云岩 | 8.264 6 | 16.003 2 | 1.993 5 | 8.277 9 | 1.741 9 | 0.269 7 | 0.202 8 | 1.308 7 | 0.243 8 | 0.752 3 | 0.101 4 | 0.660 1 | 0.096 0 | 39.915 9 | 36.550 8 | 3.365 1 | 10.86 | 0.91 | 0.87 | 1.01 | 0.92 |
ML-15 | 5 323.73 | 细晶白云岩 | 1.190 6 | 2.456 6 | 0.291 8 | 1.200 0 | 0.229 0 | 0.037 7 | 0.032 0 | 0.228 2 | 0.053 9 | 0.149 8 | 0.023 9 | 0.141 0 | 0.016 2 | 6.050 7 | 5.405 7 | 0.645 0 | 8.38 | 0.96 | 0.85 | 1.00 | 0.62 |
ML-16 | 5 355.97 | 细晶白云岩 | 1.328 9 | 2.992 3 | 0.393 2 | 1.680 6 | 0.330 8 | 0.051 8 | 0.043 0 | 0.294 1 | 0.070 1 | 0.198 9 | 0.026 4 | 0.140 2 | 0.015 3 | 7.565 6 | 6.777 6 | 0.788 0 | 8.60 | 0.95 | 0.83 | 1.02 | 0.70 |
ML-17 | 5 259.37 | 微-细晶白云岩 | 5.476 4 | 12.490 1 | 1.555 9 | 6.141 4 | 1.199 9 | 0.171 0 | 0.151 3 | 0.976 5 | 0.190 1 | 0.548 9 | 0.080 3 | 0.410 0 | 0.063 0 | 29.454 8 | 27.034 7 | 2.420 1 | 11.17 | 0.98 | 0.77 | 1.04 | 0.99 |
ML-18 | 5 356.49 | 微-细晶白云岩 | 1.596 0 | 3.202 0 | 0.383 0 | 1.513 0 | 0.308 0 | 0.060 0 | 0.062 0 | 0.348 0 | 0.077 0 | 0.213 0 | 0.032 0 | 0.171 0 | 0.027 0 | 7.992 0 | 7.062 0 | 0.930 0 | 7.59 | 0.94 | 0.82 | 1.02 | 0.69 |
ML-19 | 5 249.35 | 微-细晶白云岩 | 5.728 0 | 11.931 8 | 1.340 7 | 5.213 8 | 0.961 5 | 0.171 7 | 0.109 0 | 0.670 0 | 0.151 3 | 0.414 2 | 0.056 6 | 0.290 8 | 0.041 3 | 27.080 7 | 25.347 5 | 1.733 2 | 14.62 | 0.99 | 1.01 | 1.00 | 1.45 |
ML-20 | 5 249.83 | 微-细晶白云岩 | 8.858 3 | 16.884 2 | 1.893 0 | 6.445 0 | 1.187 3 | 0.233 2 | 0.154 3 | 0.939 3 | 0.219 2 | 0.615 1 | 0.098 7 | 0.576 7 | 0.076 6 | 38.180 9 | 35.501 0 | 2.679 9 | 13.25 | 0.95 | 1.04 | 1.07 | 1.13 |
ML-21 | 5 255.84 | 泥微晶白云岩 | 6.183 3 | 11.618 9 | 1.163 5 | 4.236 8 | 0.820 7 | 0.148 7 | 0.091 9 | 0.601 5 | 0.136 1 | 0.348 7 | 0.046 3 | 0.281 0 | 0.040 2 | 25.717 6 | 24.171 9 | 1.545 7 | 15.64 | 0.99 | 1.03 | 0.97 | 1.62 |
ML-22 | 5 250.81 | 泥微晶白云岩 | 7.434 4 | 16.694 4 | 1.934 4 | 7.109 0 | 1.434 9 | 0.245 9 | 0.162 2 | 1.070 2 | 0.223 9 | 0.593 5 | 0.071 7 | 0.406 0 | 0.061 2 | 37.441 7 | 34.853 0 | 2.588 7 | 13.46 | 1.01 | 0.97 | 1.04 | 1.35 |
ML-23 | 5 252.50 | 泥微晶白云岩 | 9.638 3 | 20.162 9 | 2.307 4 | 8.710 1 | 1.588 3 | 0.279 0 | 0.189 2 | 1.260 8 | 0.251 6 | 0.789 2 | 0.113 6 | 0.617 8 | 0.096 8 | 46.005 0 | 42.686 0 | 3.319 0 | 12.86 | 0.99 | 0.97 | 1.02 | 1.15 |
ML-24 | 5 658.19 | 泥微晶白云岩 | 2.502 5 | 4.980 1 | 0.561 2 | 2.086 2 | 0.357 6 | 0.076 4 | 0.055 4 | 0.390 7 | 0.094 0 | 0.264 5 | 0.039 0 | 0.169 0 | 0.023 5 | 11.600 1 | 10.564 0 | 1.036 1 | 10.20 | 0.97 | 1.04 | 1.02 | 1.09 |
ML-25 | 5 253.15 | 泥微晶白云岩 | 7.961 9 | 15.698 6 | 1.807 4 | 6.356 1 | 1.141 8 | 0.221 2 | 0.136 9 | 0.840 9 | 0.184 3 | 0.499 3 | 0.073 6 | 0.452 5 | 0.056 2 | 35.430 7 | 33.187 0 | 2.243 7 | 14.79 | 0.95 | 1.07 | 1.06 | 1.30 |
ML-26 | 5 258.72 | 泥微晶白云岩 | 2.911 3 | 6.092 3 | 0.677 8 | 2.565 9 | 0.478 0 | 0.092 4 | 0.056 5 | 0.324 5 | 0.074 4 | 0.219 1 | 0.027 4 | 0.143 2 | 0.018 3 | 13.681 1 | 12.817 7 | 0.863 4 | 14.85 | 1.00 | 1.08 | 1.01 | 1.50 |
ML-30 | 5 326.14 | 硅质中晶白云岩 | 1.438 0 | 3.251 1 | 0.377 7 | 1.515 9 | 0.348 1 | 0.047 1 | 0.038 6 | 0.252 7 | 0.061 7 | 0.182 6 | 0.026 4 | 0.140 2 | 0.019 1 | 7.699 2 | 6.977 9 | 0.721 3 | 9.67 | 1.02 | 0.77 | 1.00 | 0.76 |
ML-31 | 5 326.55 | 硅质中晶白云岩 | 0.745 2 | 1.589 8 | 0.192 3 | 0.789 4 | 0.173 2 | 0.025 1 | 0.018 4 | 0.139 8 | 0.035 2 | 0.101 0 | 0.013 1 | 0.078 3 | 0.010 1 | 3.910 9 | 3.515 0 | 0.395 9 | 8.88 | 0.97 | 0.85 | 1.01 | 0.70 |
1 | 王招明, 杨海军, 齐英敏, 等. 塔里木盆地古城地区奥陶系天然气勘探重大突破及其启示[J]. 天然气工业, 2014, 34 (1): 1- 9. |
Wang Zhaoming , Yang Haijun , Qi Yingmin , et al. Ordovician gas exploration breakthrough in the Gucheng Lower uplift of the Tarim Basin and its enlightenment[J]. Natural Gas Industry, 2014, 34 (1): 1- 9. | |
2 | 赵文智, 沈安江, 胡素云, 等. 塔里木盆地寒武-奥陶系白云岩储层类型与分布特征[J]. 岩石学报, 2012, 28 (3): 758- 768. |
Zhao Wenzhi , Shen Anjiang , Hu Suyun , et al. Types and distributional features of Cambrian-Ordovician dolostone reservoirs in Tarim Basin, northwestern China[J]. Acta Petrologica Sinica, 2012, 28 (3): 758- 768. | |
3 | 黄思静. 碳酸盐岩的成岩作用[M]. 北京: 地质出版社, 2010: 177- 180. |
Huang Sijing . Carbonate diagenesis[M]. Beijing: Geologyical Publishing House, 2010: 177- 180. | |
4 | 郑剑锋, 沈安江, 刘永福, 等. 塔里木盆地寒武-奥陶系白云岩成因及分布规律[J]. 新疆石油地质, 2011, 32 (6): 600- 604. |
Zheng Jianfeng , Shen Anjiang , Liu Yongfu , et al. Genesis and distribution of the Cambrian-Ordovician dolomite in Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32 (6): 600- 604. | |
5 | 陈代钊, 张艳秋, 周锡强, 等. 塔里木盆地西缘上寒武统下丘里塔格群热液白云岩改造时限:来自古地磁的约束[J]. 石油与天然气地质, 2020, 41 (1): 50- 58. |
Chen Daizhao , Zhang Yanqiu , Zhou Xiqiang , et al. Timing of hydrothermal alteration on the Lower Qiulitag Group dolomites of the Upper Cambrian, western margin of Tarim Basin:Palaeomagnetic constraint[J]. Oil & Gas Geology, 2020, 41 (1): 50- 58. | |
6 | 黄擎宇.塔里木盆地中央隆起区寒武-奥陶系白云石化作用及白云岩储层成因研究[D].四川成都:成都理工大学, 2014. |
Huang Qingyu.Dolomitization and origin of the Cambrian-Ordovician-dolomite reservoirs in the Central Uplift, Tarim[D].Chengdu, Sichuan: Chengdu University of Technology, 2014. | |
7 | 贺训云, 寿建峰, 沈安江, 等. 白云岩地球化学特征及成因:以鄂尔多斯盆地靖西马五段中组合为例[J]. 石油勘探与开发, 2014, 41 (3): 1- 9. |
He Xunyun , Shou Jianfeng , Shen Anjiang , et al. Geochemicalcharacteristics and origin of the dolomite:A case study from the middle assemblage of Majiagou formation member 5th of the west of Jinbian gas field, Ordos Basin, North China[J]. Petroleum Exploration and Development, 2014, 41 (3): 1- 9. | |
8 | 胡文瑄, 朱井泉, 王小林, 等. 塔里木盆地柯坪地区寒武系微生物白云岩特征、成因及意义[J]. 石油与天然气地质, 2014, 35 (6): 860- 869. |
Hu Wenxuan , Zhu Jingquan , Wang Xiaolin , et al. Characteristics, origin and geological implications of the Cambrian microbial dolomite in Keping area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35 (6): 860- 869. | |
9 | 赵宗举, 罗家洪, 张运波, 等. 塔里木盆地寒武纪层序岩相古地理[J]. 石油学报, 2011, 32 (6): 37- 48. |
Zhao Zongju , Luo Jiahong , Zhang Yunbo , et al. Lithofacies paleogeography of Cambrian sequences in the Tarim Basin[J]. Acta Petrolei Sinica, 2011, 32 (6): 37- 48. | |
10 | 冯子辉, 李强, 张亚金, 等. 古城低凸起奥陶系油气成藏条件与分布规律[J]. 大庆石油地质与开发, 2019, 38 (5): 87- 93. |
Feng Zihui , Li Qiang , Zhang Yajin , et al. Accumulating conditions and distribution laws of Ordovician hydrocarbon in Gucheng Low Uplift[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38 (5): 87- 93. | |
11 | 郭春涛, 李德武, 陈树民. 塔里木盆地古城地区上寒武统白云岩稀土元素地球化学特征及成因模式[J]. 石油实验地质, 2017, 39 (5): 666- 674. |
Guo Chuntao , Li dewu , Chen Shumin . Geochemical characteristics and genetic model of rare earth elements in the Upper Cambrian dolomites in Gucheng area, Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39 (5): 666- 674. | |
12 | 郑见超, 李斌, 刘羿伶, 等. 塔里木盆地下寒武统玉尔吐斯组烃源岩热演化模拟分析[J]. 油气藏评价与开发, 2018, 8 (6): 7- 12. |
Zheng Jianchao , Li Bin , Liu Yiling , et al. Study on thermal evolution modeling of lower Cambrian Yuertusi source rock, Tarim Basin[J]. Reservoir Evaluation and Development, 2018, 8 (6): 7- 12. | |
13 | 刘策, 张义杰, 李洪辉, 等. 塔里木盆地古城地区中下奥陶统白云化流体性质厘定-来自稀土元素的证据[J]. 矿物岩石地球化学通报, 2017, 36 (4): 602- 610. |
Liu Ce , Zhang Yijie , Li Honghui , et al. Nature of dolomitizing fluids of Middle-Low Ordovician dolomites in the Gucheng area, Tarim Basin:Evidence from rare earth elements geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36 (4): 602- 610. | |
14 | 邵龙义, 韩俊, 马峰, 等. 塔里木盆地东部寒武系白云岩储层及相控特征[J]. 沉积学报, 2010, 28 (5): 953- 961. |
Shao Longyi , Han Jun , Ma Feng , et al. Characteristics of the Cambrian dolomite reservoirs and their facies controlling inEastern Tarim Basin[J]. Acta Sedimentologica Sinica, 2010, 28 (5): 953- 961. | |
15 | 刘永福, 殷军, 孙雄伟, 等. 塔里木盆地东部寒武系沉积特征及优质白云岩储层成因[J]. 天然气地球科学, 2008, 19 (1): 126- 132. |
Liu Yongfu , Yin Jun , Sun Xiongwei , et al. Cambrian sedimentary characteristics and origin of high-quality dolomite reservoirs in eastern Tarim Basin[J]. Natural Gas Geoscience, 2008, 19 (1): 126- 132. | |
16 | Warren J . Dolomite:Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52 (1/3): 1- 81. |
17 | 赵文智, 沈安江, 乔占峰, 等. 白云岩成因类型、识别特征及储集空间成因[J]. 石油勘探与开发, 2018, 45 (6): 909- 921. |
Zhao Wenzhi , Shen Anjiang , Qiao Zhanfeng , et al. The genetic types and distinguished characteristics of dolostone and the origin of dolostone reservoirs[J]. Petroleum Exploration and Development, 2018, 45 (6): 909- 921. | |
18 | 胡文瑄, 陈琪, 王小林, 等. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式[J]. 石油与天然气地质, 2010, 31 (6): 810- 818. |
Hu Wenxuan , Chen Qi , Wang Xiaolin , et al. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs[J]. Oil & Gas Geology, 2010, 31 (6): 810- 818. | |
19 | 赵宗举, 吴兴宁, 潘文庆, 等. 塔里木盆地奥陶纪层序岩相古地理[J]. 沉积学报, 2009, 27 (5): 39- 56. |
Zhao Zongju , Wu xingning , Pan Wenqing , et al. Sequcence lithofacies paleogeography of Ordovician in Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27 (5): 39- 56. | |
20 |
Bau M , Dulski P . Distribution of Yttrium and rare-earth elements in the Penge and Kuruman Iron-formations, Transvaal supergroup, South Africa[J]. Precambrian Research, 1996, 79, 37- 55.
doi: 10.1016/0301-9268(95)00087-9 |
21 |
Frimmel H E . Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258, 338- 353.
doi: 10.1016/j.chemgeo.2008.10.033 |
22 |
Haas J R , Shock E L , Sassani D C . Rare earth elements in hydrothermal systems:estimates of standard partial molal thermodynamic prope-rties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 1995, 59 (21): 4329- 4350.
doi: 10.1016/0016-7037(95)00314-P |
23 |
Webb G E , Kamber B S . Rare earth elements in Holocene reefal microbialites:A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64, 1557- 1565.
doi: 10.1016/S0016-7037(99)00400-7 |
24 | 邵红梅, 卢曦, 李国蓉, 等. 热液作用对塔东地区寒武系碳酸盐岩储集层的影响[J]. 新疆石油地质, 2015, 36 (3): 277- 282. |
Shao Hongmei , Lu Xi , Li Guorong , et al. Hydrothermal process and its effect on Cambrian carbonate reservoirs in Tadong area[J]. Xinjiang Petroleum Geology, 2015, 36 (3): 277- 282. | |
25 | 刘伟, 黄擎宇, 王坤, 等. 深埋藏阶段白云石化作用及其对储层的影响——以塔里木盆地下古生界白云岩为例[J]. 天然气地球科学, 2016, 27 (5): 772- 779. |
Liu Wei , Huang Qingyu , Wang Kun , et al. Dolomization and influence on reservoir development in deep-burial stage:A case study of Lower Paleozoic in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27 (5): 772- 779. | |
26 | 朱井泉, 吴仕强, 王国学, 等. 塔里木盆地寒武-奥陶系主要白云岩类型及孔隙发育特征[J]. 地学前缘, 2008, 15 (2): 67- 79. |
Zhu Jingquan , Wu Shiqiang , Wang Guoxue , et al. Types and porosity characteristics of the Cambrian-Ordovician dolostones in Tarim basin[J]. EarthScience Frontiers, 2008, 15 (2): 67- 79. | |
27 | 胡广成, 鲍志东, 刘桂珍, 等. 黔北地区下三叠统茅草铺组白云岩成因[J]. 大庆石油地质与开发, 2018, 37 (2): 9- 14. |
Hu Guangcheng , Bao Zhidong , Liu Guizhen , et al. Origins of the dolomite in Lower Triassic Maocaopu Formation of North Guizhou[J]. Petroleum Geology & Oilfield Development in Daqing, 2018, 37 (2): 9- 14. | |
28 | 赵文智, 沈安江, 郑剑锋, 等. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学:地球科学, 2014, 44 (9): 1925- 1939. |
Zhao Wenzhi , Shen Anjiang , Zheng Jianfeng , et al. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos basins and its implication to reservoir prediction[J]. Science China:Earth Sciences, 2014, 44 (9): 1925- 1939. | |
29 | 沈安江, 郑剑锋, 潘文庆, 等. 塔里木盆地下古生界白云岩储层类型及特征[J]. 海相油气地质, 2009, 14 (4): 1- 9. |
Shen Anjiang , Zheng Jianfeng , Pan Wenqing , et al. Types and the characteristics of Lower Paleozoic dolostone reservoirs in Tarim Basin[J]. Marine Origin Petroleum Geology, 2009, 14 (4): 1- 9. | |
30 | 刘波, 朱翀, 张正红, 等. 塔中地区上奥陶统良里塔格组白云石化作用成因机理[J]. 天然气工业, 2017, 37 (3): 37- 47. |
Liu Bo , Zhu Chong , Zhang Zhenghong , et al. Genetic mechanism of dolomitization in the Upper Ordovician Lianglitage Fm in the Central Tarim Basin[J]. Natural Gas Industry, 2017, 37 (3): 37- 47. | |
31 | 曾臻, 屈大鹏, 李文成, 等. 涪陵地区茅口组热液白云岩储层预测研究[J]. 石油地质与工程, 2019, 33 (6): 38- 42. |
Zeng Zhen , Qu Dapeng , Li Wencheng , et al. Prediction of hydrothermal dolomite reservoirs in Maokou formation in Fuling area[J]. Petroleum Geology & Engineering, 2019, 33 (6): 38- 42. | |
32 | 任影, 钟大康, 高崇龙, 等. 川东寒武系龙王庙组白云岩地球化学特征、成因及油气意义[J]. 石油学报, 2016, 37 (9): 1102- 1115. |
Ren Ying , Zhong Dakang , Gao Chonglong , et al. Geochemical characteristics, genesis and hudrocarbon significance of dolomite in the Cambrian Longwangmiaoformation, eastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37 (9): 1102- 1115. | |
33 | 陈思聪, 傅恒. 塔中地区奥陶系碳酸盐岩储层发育主控因素[J]. 天然气勘探与开发, 2015, 38 (4): 1- 4. |
Chen Sichong , Fu Heng . Main factors affecting the development of Ordovician carbonate-rock reservoirs, Central Tarim Basin[J]. Natural Gas Exploration & Development, 2015, 38 (4): 1- 4. | |
34 |
Davies G R , Smith L B JR . Structurally controlled hydrothermal dolomite reservoir facies:an overview[J]. AAPG Bulletin, 2006, 90 (11): 1641- 1690.
doi: 10.1306/05220605164 |
35 | 王晓丽, 林畅松, 焦存礼, 等. 塔里木盆地中上寒武统白云岩储层类型及发育模式[J]. 岩性油气藏, 2018, 30 (1): 63- 74. |
Wang Xiaoli , Lin Chuangsong , Jiao Cunli , et al. Dolomite reservoir types and development models of Middle-Upper Cambrian in Tarim Basin[J]. Lithologic Reservoirs, 2018, 30 (1): 63- 74. | |
36 | 程丽娟, 李忠, 刘嘉庆, 等. 塔里木盆地巴楚-塔中地区寒武系盐下白云岩储层成岩作用及物性特征[J]. 石油与天然气地质, 2020, 41 (2): 316- 327. |
Cheng Lijuan , Li Zhong , Liu Jiaqing , et al. Diagenesis and physical properties of subsalt dolomite reservoirs of the Cambrian, Bachu-Tazhong areas, Tarim Basin[J]. Oil & Gas Geology, 2020, 41 (2): 316- 327. | |
37 | 孙海涛, 张玉银, 柳慧林, 等. 四川盆地东部下寒武统龙王庙组白云岩类型及其成因[J]. 石油与天然气地质, 2018, 39 (2): 318- 329. |
Sun Haitao , Zhang Yuyin , Liu Huilin , et al. Typological analysis and genetic mechanism of dolomite in the Lower Cambrian Longwangmiao formation, eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (2): 318- 329. | |
38 | 朱可丹, 张友, 林彤, 等. 基于CT成像的白云岩储层孔喉非均质性分析——以塔东古城地区奥陶系GC601井鹰三段为例[J]. 石油与天然气地质, 2020, 41 (4): 862- 873. |
Zhu Kedan , Zhang You , Lin Tong , et al. Pore-throat heterogeneity in dolomite reservoirs based on CT imaging:A case study of the 3rd member of the Ordovician Yingshan Formation in Well GC601 in Gucheng area, eastern Tarim Basin[J]. Oil & Gas Geology, 2020, 41 (4): 862- 873. | |
39 | 黄擎宇, 胡素云, 潘文庆, 等. 塔里木盆地巴楚地区寒武系储层特征及主控因素[J]. 天然气地球科学, 2016, 27 (6): 982- 993. |
Huang Qingyu , Hu Suyun , Pan Wenqing , et al. Characteristics and controlling factors of the Cambrian carbonate reservoirs in Bachu area, Tarim Basin, NW China[J]. Natrual Gas Geoscience, 2016, 27 (6): 982- 993. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[8] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[9] | 翟常博, 林良彪, 尤东华, 刘冯斌, 刘思雨. 川西南地区中二叠统茅口组一段沉积微相特征及有机质富集模式[J]. 石油与天然气地质, 2024, 45(2): 440-456. |
[10] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[11] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[12] | 侯佳凯, 张志遥, 师生宝, 朱光有. 全二维气相色谱技术在石油地球化学中的应用进展[J]. 石油与天然气地质, 2024, 45(2): 565-580. |
[13] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[14] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[15] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||