石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (5): 965-974.doi: 10.11743/ogg20200507
王斌1,2(), 赵永强2,3, 何生1, 郭小文1,*(), 曹自成3, 邓尚4, 吴鲜3, 杨毅1
收稿日期:
2020-04-27
出版日期:
2020-10-28
发布日期:
2020-10-22
通讯作者:
郭小文
E-mail:wangbin.syky@sinopec.com;guoxw@cug.edu.cn
第一作者简介:
王斌(1981-),男,博士研究生,高级工程师,油气成藏机理。E-mail:基金项目:
Bin Wang1,2(), Yongqiang Zhao2,3, Sheng He1, Xiaowen Guo1,*(), Zicheng Cao3, Shang Deng4, Xian Wu3, Yi Yang1
Received:
2020-04-27
Online:
2020-10-28
Published:
2020-10-22
Contact:
Xiaowen Guo
E-mail:wangbin.syky@sinopec.com;guoxw@cug.edu.cn
摘要:
在塔里木盆地顺北地区,顺北走滑断裂对断溶体油气藏具有重要的控制作用。对顺北5号断裂带北段奥陶系储层方解石脉的期次进行识别和划分,通过流体包裹体技术厘定油气成藏期,结合断裂活动性分析揭示走滑断裂对油气成藏期的控制作用。研究表明顺北5号断裂带北段奥陶系储层中发育3期方解石脉体,其中第2期方解石脉形成于志留纪末期。储层中沥青和流体包裹体发育特征揭示研究区存在两期油充注。第1期油充注发生于第2期方解石形成之前,推测是加里东晚期,后在海西早期遭到破坏。第2期充注时间为海西晚期—印支期,距今约260~230 Ma,为奥陶系断溶体油藏的主成藏期。顺北5号断裂带活动性研究结果,指示油气充注和破坏时间与顺北5号断裂活动时期具有很好的对应关系,说明顺北地区走滑断裂活动史是控制油气成藏时期的主要因素。
中图分类号:
图2
顺北5号断裂带北段奥陶系储层方解石脉发育特征 a,b.交代残余方解石C1,溶蚀边缘发育,暗红色阴极发光,SB5井,埋深7 425.3 m;c. C2方解石脉切割硅质团块,SB5井,埋深7 425.7 m;d, e, f. C2方解石脉,不发阴极光,沿C2边缘发育沥青裂缝,电镜下可见片状分布沥青,SB5井,埋深7 426.2 m;g,h.高角度裂缝充填C3方解石脉,发棕黄色阴极光,切割C2方解石脉,SB51井,埋深7 564.3 m;i,j.裂缝充填C2和C3两期方解石,SB5井,埋深7 427.1 m;k,l.高角度裂缝充填C3方解石脉,发棕黄色阴极光,SB5-1井,埋深7 468.9 m"
图3
顺北5号断裂带北段一间房组典型流体包裹体赋存产状 a. C1方解石脉愈合裂纹中的油包裹体,发蓝绿色荧光,SB5井,埋深7 425.3 m;b,c. C2方解石脉愈合裂纹中的油包裹体、沥青包裹体和黑色纯气相包裹体(透射光下),油包裹体发蓝绿色荧光,SB5井,埋深7 426.2 m;d. C2方解石脉中的原生盐水包裹体,SB5井,埋深7 426.2 m;e.穿C3方解石脉和围岩的愈合裂纹中的油包裹体,发蓝绿色荧光,SB51井,埋深7 564.3 m;f.穿C3方解石脉和围岩的愈合裂纹中的油包裹体和同期气包裹体,油包裹体发蓝绿色荧光,气包裹体不发荧光,SB5-1井,埋深7 468.9 m;g.高倍镜下C3方解石愈合裂纹中的油包裹体及伴生的同期盐水包裹体,SB5-1井,埋深7 468.9 m;h.高倍镜下C2方解石愈合裂纹中的油包裹体及伴生的同期盐水包裹体,SB5井,埋深7 426.2 m"
表1
流体包裹体均一温度和盐度数据"
井号 | 深度/m | 赋存产状 | 油包裹体 | 盐水包裹体 | ||||||||
大小/μm | 均一温度/℃ | 大小/μm | 均一温度/℃ | 盐度(NaCl)/% | ||||||||
范围 | 平均值 | 范围 | 平均值 | 范围 | 平均值 | |||||||
SB5 | 7 425.3~7 427.1 | HC1 | 4~9 | 47.8~101.7 | 65.6(12) | 3~10 | 85.5~123.6 | 97.3(16) | 2.6~8.7 | 6.2(10) | ||
HC2 | 3~11 | 47.9~101.4 | 69.5(16) | 3~10 | 88.3~127 | 104.1(35) | 2.1~13 | 6.6(22) | ||||
HC3 | 3~9 | 40.3~91.2 | 65.8(25) | 3~11 | 88.7~124.6 | 104.3(26) | 2.2~11.5 | 6.0(25) | ||||
PC2 | — | — | — | 5~16 | 77.0~91.1 | 82.5(7) | 11.8~14.9 | 13.4(7) | ||||
SB5-1 | 7 468.9~7 474.3 | HC1 | 5~15 | 56.7~83.1 | 68.5(10) | 3~9 | 85.7~114 | 101.1(9) | 3.4~9.6 | 6.0(7) | ||
HC2 | 4~16 | 48.5~89.6 | 61.4(30) | 5~12 | 85.3~125.1 | 105.8(16) | 6.3~10.1 | 8.4(10) | ||||
HC3 | 5~16 | 42.9~79.9 | 62.4(25) | 3~15 | 87.3~113.8 | 96.0(33) | 5.7~10.1 | 7.5(24) | ||||
PC2 | — | — | — | 6~13 | 73.5~88.5 | 81.2(8) | 13.1~16.4 | 14.3(8) | ||||
SB51 | 7 561.1~7 568.6 | HC1 | 6~12 | 50.9~77.5 | 60.6(7) | 6~10 | 87.5~107.7 | 98.9(17) | 3.4~10.7 | 5.5(9) | ||
HC2 | 5~12 | 51.7~84.0 | 60.5(11) | 3~10 | 87.5~108.8 | 94.4(14) | 4.8~11.6 | 8.4(5) | ||||
HC3 | 5~11 | 44.1~61.6 | 54.2(8) | 5~11 | 88.0~119.9 | 98.5(15) | 3.4~11.8 | 5.4(9) |
1 | 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39 (02): 207- 216. |
Jiao Fangzheng . Discovery significance and prospect analysis of deep fault-karst carbonate hydrocarbon reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39 (2): 207- 216. | |
2 | 王玉伟, 陈红汉, 郭会芳, 等. 塔里木盆地顺1走滑断裂带超深储层油气充注历史[J]. 石油与天然气地质, 2019, 40 (05): 972- 989. |
Wang Yuwei , Chen Honghan , Guo Huifang , et al. Hydrocarbon charging history of the ultra-deep reservoir in Shun 1 strike-slip fault zone, Tarim Basin[J]. Oil & Gas Geology, 2019, 40 (05): 972- 989. | |
3 | 王昱翔, 王斌, 顾忆, 等. 塔里木盆地顺北地区中下奥陶统缝洞充填方解石地球化学特征及地质意义[J]. 石油实验地质, 2019, 41 (4): 583- 592+597. |
Wang Yuxiang , Wang Bin , Gu Yi , et al. Geochemical characteristics and geological significance of calcite filled fractures and caves in Middle-Lower Ordovician, northern Shuntuoguole area, Tarim Basin[J]. Petroleum Geology and Experiment, 2019, 41 (4): 583- 592+597. | |
4 |
Carlos R , Rafaela M , Karl R . Facies-related disgenesis and multiphase siderite cementation and dissolution in the reservoir sandstones of the Khatatba Formation, Egypt's western desert[J]. Journal of Sedimentary Research, 2001, 71 (3): 459- 472.
doi: 10.1306/2DC40955-0E47-11D7-8643000102C1865D |
5 |
Andersen T , Burke E A . Methane inclusions in shocked quartz from the Gardnos impact breccia, South Norway[J]. European Journal of Mineralogy, 1996, 8, 927- 936.
doi: 10.1127/ejm/8/5/0927 |
6 |
Eichhubl P , Boles J R . Focused fluid flow along faults in the Monterey Formation, coastal California[J]. Geological Society of America Bulletin, 2000, 112 (11): 1667- 1679.
doi: 10.1130/0016-7606(2000)112<1667:FFFAFI>2.0.CO;2 |
7 |
Becker S , Eichhubl P , Laubach S , et al. A 48 my history of fracture opening, temperature, and fluid pressure:Cretaceous Travis Peak Formation, East Texas basin[J]. Geological Society of America Bulletin, 2010, 122 (7-8): 1081- 1093.
doi: 10.1130/B30067.1 |
8 |
Mostafa F , Harrison T M , Grove M . In situ stable isotopic evidence for protracted and complex carbonate cementation in a petroleum reservoir, North Coles Levee, San Joaquin basin, California, USA[J]. Journal of Sedimentary Research, 2001, 71 (3): 444- 458.
doi: 10.1306/2DC40954-0E47-11D7-8643000102C1865D |
9 |
Li K , Cai C , He H , et al. Origin of palaeo-waters in the Ordovician carbonates in Tahe oilfield, Tarim Basin:constraints from fluid inclusions and Sr, C and O isotopes[J]. Geofluids, 2011, 11 (1): 71- 86.
doi: 10.1111/j.1468-8123.2010.00312.x |
10 |
Worden R H , Benshatwan M S , Potts G J . Basin-scale fluid movement patterns revealed by veins:Wessex Basin, UK[J]. Geofluids, 2016, 16 (1): 149- 174.
doi: 10.1111/gfl.12141 |
11 |
Dockrill B , Shipton Z K . Structural controls on leakage from a natural CO2 geologic storage site:central Utah, U.S.A[J]. Journal of Structural Geology, 2010, 32 (11): 1768- 1782.
doi: 10.1016/j.jsg.2010.01.007 |
12 |
Lander R H , Larese R E , Bonnell L M . Toward more accurate quartz cement models:The importance of euhedral versus noneuhedral growth rates[J]. AAPG Bulletin, 2008, 92 (11): 1537- 1564.
doi: 10.1306/07160808037 |
13 |
Olson J E , Laubach S E , Lander R H . Natural fracture characterization in tight gas sandstones:integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009, 93 (11): 1535- 1549.
doi: 10.1306/08110909100 |
14 | Morad S, Ros L F D, Nystuen J P, et al.Carbonate diagenesis and porosity evolution in sheet flood sandstones: evidence from the Lunde members(Triassic) in the Snorre oilfield, Norwegian North Sea[M].Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution.Blackwell Publishing Ltd.2009. |
15 | 胡文瑄, 金之钧, 张义杰, 等. 油气幕式成藏的矿物学和地球化学记录-以准噶尔盆地西北缘油藏为例[J]. 石油与天然气地质, 2006, 27 (4): 442- 450. |
Hu Wenxuan , Jin Zhijun , Zhang Yijie , et al. Mineralogy and geochemical records of episodic reservoiring of hydrocarbon:Example from the reservoirs in the northwest margin of Junggar basin[J]. Oil & Gas Geology, 2006, 27 (4): 442- 450. | |
16 |
Jin Z , Cao J , Hu W , et al. Episodic petroleum fluid migration in fault zones of the northwestern Junggar Basin(northwest China):Evidence from hydrocarbon-bearing zoned calcite cement[J]. AAPG Bulletin, 2008, 92 (9): 1225- 1243.
doi: 10.1306/06050807124 |
17 | 金振奎, 张响响, 邹元荣, 等. 黄弊坳陷千米桥地区奥陶系碳酸盐胶结物的形成序次[J]. 古地理学报, 2003, 5 (4): 426- 438. |
Jin Zhenkui , Zhang Xiangxiang , Zou Yuanrong , et al. Precipitation sequence of carbonate cement of the Ordovician in qianmiqiao area, Huanghua depression[J]. Acta palaeogeography, 2003, 5 (4): 426- 438. | |
18 | Burruss R C.Paleotemperatures from fluid inclusions: advances in theory and technique[M].Thermal history of sedimentary basins.Springer, New York, NY, 1989: 119-131. |
19 |
Fall A , Eichhubl P , Bodnar R J , et al. Natural hydraulic fracturing of tight-gas sandstone reservoirs, Piceance Basin[J]. Colorado.Geologi-cal Society of America Bulletin, 2015, 127 (1-2): 61- 75.
doi: 10.1130/B31021.1 |
20 |
Fall A , Eichhubl P , Cumella S P , et al. Testing the basin-centered gas accumulation model using fluid inclusion observations:Southern Piceance Basin, Colorado[J]. AAPG Bulletin, 2012, 96 (12): 2297- 2318.
doi: 10.1306/05171211149 |
21 |
Karlsen D A , Nedkvitne T , Larter S R , et al. Hydrocarbon composition of authigenic inclusions:application to elucidation of petroleum reservoir filling history[J]. Geochimica et Cosmochimica Acta, 1993, 57 (15): 3641- 3659.
doi: 10.1016/0016-7037(93)90146-N |
22 | Parnell J . Potential of palaeofluid analysis for understanding oil charge history[J]. Geofluids, 2010, 10 (1-2): 73- 82. |
23 | 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25 (1): 102- 111. |
Qi Lixin . The Characteristics and Enlightenment of Ultra-deep carbonate reservoir controlled by fault-zone-architecture related dissolution in Shunbei, Tarim Basin[J]. China Petroleum Exploration, 2020, 25 (1): 102- 111. | |
24 |
Deng S , Li H , Zhang Z , et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103 (1): 109- 137.
doi: 10.1306/06071817354 |
25 | 邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40 (5): 990- 998. |
Deng Shang , Li Huili , Han Jun , et al. Characteristics of the middle segment of the Shunbei 5 strike-slip fault zone in the Tarim Basin and the geological significance[J]. Oil & Gas Geology, 2019, 40 (5): 990- 998. | |
26 | 方欣欣, 甘华军, 姜华, 等. 利用石油包裹体微束荧光光谱判别塔北碳酸盐岩油气藏油气充注期次[J]. 地球科学(中国地质大学学报), 2012, 37 (03): 580- 586. |
Fang Xinxin , Gan Huajun , Jiang Hua , et al. Analyzing hydrocarbon-charging periods of carbonate reservoir in North Tarim by micro fluorescence spectrum of petroleum inclusions[J]. Earth Science(Journal of China University of Geosciences), 2012, 37 (03): 580- 586. | |
27 | 张鼐, 赵瑞华, 张蒂嘉, 等. 塔中Ⅰ号带奥陶系烃包裹体荧光特征与成藏期[J]. 石油与天然气地质, 2010, 31 (01): 63- 68. |
Zhang Nai , Zhao Ruihua , Zhang DIjia , et al. Fluorescence characteristics of the Ordovician hydrocarbon inclusions in the Tazhong-1 slope-break zone and the timing of hydrocarbon accumulation[J]. Oil & Gas Geology, 2010, 31 (01): 63- 68. | |
28 | 李纯泉, 陈红汉, 刘惠民. 利用油包裹体微束荧光光谱判识油气充注期次[J]. 地球科学(中国地质大学学报), 2010, 35 (04): 657- 662. |
Li Chunquan , Chen Honghan , Liu Huimin . Identification of hydrocarbon charging events by using micro-beam fluorescence spectra of petroleum inclusions[J]. Earth Science(Journal of China University of Geosciences), 2010, 35 (04): 657- 662. | |
29 | 陈红汉. 单个油包裹体显微荧光特性与热成熟度评价[J]. 石油学报, 2014, 35 (03): 584- 590. |
Chen Honghan . Microspectrofluorimetric characterization and thermal maturity assessment of individual oil inclusion[J]. Acta Petrolei Sinica, 2014, 35 (03): 584- 590. | |
30 | Goldstein R H . Fluid inclusions in sedimentary and diagenetic systems[J]. Lithos, 2001, 55 (1): 159- 193. |
31 |
Feng Y , Chen H H , He S , et al. Fluid inclusion evidence for a coupling response between hydrocarbon charging and structural movements in Yitong Basin, Northeast China[J]. Journal of Geochemical Exploration, 2010, 106, 84- 89.
doi: 10.1016/j.gexplo.2010.01.009 |
32 |
Caja M A , Permanyer A , Marfil R , et al. Fluid flow record from fracture-fill calcite in the Eocene limestones from the South-Pyrenean Basin(NE Spain) and its relationship to oil shows[J]. Journal of geochemical exploration, 2006, 89 (1-3): 27- 32.
doi: 10.1016/j.gexplo.2005.11.009 |
33 | 池国祥, 卢焕章. 流体包裹体组合对测温数据有效性的制约及数据表达方法[J]. 岩石学报, 2008, 24 (9): 1945- 1953. |
Chi Gongxiang , Lu Huanzhang . Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage(FIA) concept[J]. Acta Petrologica Sinica, 2008, 24 (9): 1945- 1953. | |
34 |
Wang B , Feng Y , Zhao Y , et al. Determination of hydrocarbon charging history by diagenetic sequence and fluid inclusions:A case study of the Kongquehe Area in the Tarim Basin[J]. Acta Geologica Sinica(English Edition), 2015, 89 (03): 876- 886.
doi: 10.1111/1755-6724.12485 |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[8] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[9] | 李勇, 朱治同, 吴鹏, 申陈州, 高计县. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
[10] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[11] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[12] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[13] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[14] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
[15] | 李斌, 赵星星, 邬光辉, 韩剑发, 关宝珠, 沈春光. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||