石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (1): 66-75.doi: 10.11743/ogg20210106
王红岩1,2(), 施振生1,2, 孙莎莎1,2, 张磊夫1,2
收稿日期:
2020-04-24
出版日期:
2021-02-28
发布日期:
2021-02-07
第一作者简介:
王红岩(1971-), 男, 博士、教授级高级工程师, 非常规油气地质。E-mail: 基金项目:
Hongyan Wang1,2(), Zhensheng Shi1,2, Shasha Sun1,2, Leifu Zhang1,2
Received:
2020-04-24
Online:
2021-02-28
Published:
2021-02-07
摘要:
深层页岩储层是页岩气勘探开发的重要接替领域。针对四川盆地及周缘龙马溪组一段深层页岩,系统开展了X-衍射全岩(XRD)、总有机碳(TOC)、大薄片及氩离子抛光大片成像研究。结果表明,相对于浅层页岩,深层页岩储层具有高硅质和低TOC含量、低粉砂纹层含量、高孔隙度和更有效的孔隙网络特征。由浅层至深层,页岩硅质含量由30%增至62%。相应地,碳酸盐含量由32%降至14.3%,粘土矿物含量由33%降至7.8%,TOC含量由7.1%降至4.25%。深层页岩储层发育条带状粉砂纹理,与浅层页岩相比,其粉砂纹层含量减少、单层厚度减薄。黑色页岩发育有机孔、无机孔和微裂缝,由浅层至深层,页岩总面孔率由1.6%增至10.8%,有机孔和无机孔均明显增加,且微裂缝占比由1%增至12%。深层页岩储层有机孔、无机孔和微裂缝相互连通,形成有效的孔隙网络。深层高硅质含量、高孔隙度和更有效的孔隙网络与生物成因硅有关,低TOC含量与远离物源有关,低粉砂纹层含量与水深较大有关。生物成因硅在成岩过程中可形成大量有机孔、无机孔和微裂缝,且其可有效保存孔隙。有机质的生成受营养物质供给影响,远离物源区营养供给较少。粉砂纹层主要由碳酸盐矿物组成,深层不利于碳酸盐的形成。
中图分类号:
表1
四川盆地及周缘志留系龙马溪组取样点及分析测试项目"
取样位置 | 层位 | 深度/m | TOC/% | XRD测试矿物含量/% | |||
粘土矿物 | 石英 | 长石 | 碳酸盐 | ||||
足202井 | 龙一1(1) | 3 890.75 | 4.13 | 17.4 | 66.7 | 5.1 | 7.0 |
足203井 | 龙一1(1) | 4 101.50 | 4.76 | 11.7 | 70.1 | 3.7 | 11.3 |
威201井 | 龙一1(1) | 1 541.78 | 5.16 | 14.3 | 66.2 | 2.7 | 14.5 |
威201井 | 龙一1(1) | 1 542.60 | 8.20 | 12.4 | 68.1 | 3.3 | 11.5 |
威202井 | 龙一1(1) | 2 571.28 | 7.10 | 14.4 | 71.2 | 1.6 | 11.7 |
自202井 | 龙一1(1) | 3 647.95 | 4.04 | 17.1 | 45.8 | 11.2 | 17.9 |
荣203井 | 龙一1(1) | 4 344.56 | 1.44 | 26.6 | 47.9 | 4.5 | 18.5 |
黄202井 | 龙一1(1) | 4 080.64 | 3.66 | 11.4 | 65.7 | 2.4 | 17.9 |
泸201井 | 龙一1(1) | 3 615.70 | 4.25 | 6.5 | 69.9 | 2.4 | 19.4 |
宁201井 | 龙一1(1) | 2 519.60 | 7.08 | 15.0 | 44.0 | 2.0 | 36.0 |
宁203井 | 龙一1(1) | 2 392.55 | 4.72 | 5.0 | 67.0 | 4.8 | 21.5 |
宁209井 | 龙一1(1) | 3 168.97 | 5.41 | 23.8 | 50.2 | 2.6 | 23.4 |
宁210井 | 龙一1(1) | 2 232.49 | 4.69 | 16.5 | 55.1 | 0.0 | 28.4 |
YS106井 | 龙一1(1) | 1 432.40 | 5.15 | — | — | — | — |
YS112井 | 龙一1(1) | 2 455.30 | 5.25 | 23.6 | 36.3 | 10.9 | 25.0 |
YS112井 | 龙一1(1) | 2 456.61 | 8.90 | 8.5 | 12.2 | 3.6 | 60.9 |
宝1井 | 龙一1(1) | 1 273.50 | — | 33.0 | 30.0 | 5.0 | 32.0 |
长宁双河剖面 | 龙一1(1) | — | 9.87 | 16.0 | 71.0 | 3.0 | 10.0 |
1 |
Chalmers G , Bustin R M . A multidisciplinary approach in determining the maceral (kerogen type) and mineralogical composition of Upper Cretaceous Eagle Ford Formation: Impact on pore development and pore size distribution[J]. International Journal of Coal Geology, 2017, 171, 93- 110.
doi: 10.1016/j.coal.2017.01.004 |
2 | 洪剑, 唐玄, 张聪, 等. 中扬子地区龙马溪组页岩有机质孔隙发育特征及控制因素-以湖南省永顺地区永页3井为例[J]. 石油与天然气地质, 2020, 41 (5): 1060- 1072. |
Hong Jian , Zhang Cong , Huang Huang , et al. Characteristics and controlling factors of organic-matter pores in Longmaxi Formation shale, Middle Yangtze Region: A case study of Well YY3[J]. Oil & Gas Geology, 2020, 41 (5): 1060- 10722. | |
3 | 刘文平, 张成林, 高贵冬, 等. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J]. 石油学报, 2017, 38 (2): 175- 184. |
Liu Wenping , Zhang Chenglin , Gao Guidong , et al. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2017, 38 (2): 175- 184. | |
4 |
Mathia E J , Bowen L , Thomas K M , et al. Evolution of porosity and pore type in organic-rich, calcareous, lower Toarcian Posidonia Shale[J]. Marine and Petroleum Geology, 2016, 75, 117- 139.
doi: 10.1016/j.marpetgeo.2016.04.009 |
5 |
Katz B J , Arango I . Organic porosity: A geochemist's view of the current state of understanding[J]. Organic Geochemistry, 2018, 123, 1- 16.
doi: 10.1016/j.orggeochem.2018.05.015 |
6 |
Löhr S C , Baruch E T , Hall P A , et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87, 119- 132.
doi: 10.1016/j.orggeochem.2015.07.010 |
7 |
Pommer M , Milliken K . Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99 (9): 1713- 1744.
doi: 10.1306/03051514151 |
8 | 张廷山, 杨洋, 龚其森, 等. 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素[J]. 地质学报, 2014, 88 (9): 1728- 1740. |
Zhang Tingshan , Yang Yang , Gong Qisen , et al. Characteristics and mechanisms of the Micro-pores in the Early Palaeozoic marine shale, southern Sichuan Basin[J]. Acta Geologica Sinica, 2014, 88 (9): 1728- 1740. | |
9 | 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28 (12): 1781- 1796. |
Zou Caineng , Zhao Qun , Dong Dazhong , et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28 (12): 1781- 1796. | |
10 |
Melchin M J , Mitchell C E , Holmden C , et al. Environmental changes in the Late Ordovician-early Silurian: Review and new insights from black shales and nitrogen isotopes[J]. Geological Society of America Bulletin, 2013, 125 (11-12): 1635- 1670.
doi: 10.1130/B30812.1 |
11 | 蒋裕强, 董大忠, 漆麟, 等. 页岩气储层的基本特征及其评价[J]. 天然气工业, 2010, 30 (10): 7- 12. |
Jiang Yuqiang , Dong Dazhong , Qi Lin , et al. Basic features and evaluation of shale gas reservoir[J]. Natural Gas Industry, 2010, 30 (10): 7- 12. | |
12 | 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47 (1): 193- 201. |
Guo Xusheng , Li Yuping , Borjigen Tenger , et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47 (1): 193- 201. | |
13 |
Zou Caineng , Qiu Zhen , Poulton S W , et al. Ocean euxinia and climate change"double whammy" drove the Late Ordovician mass extinction[J]. Geology, 2018, 46 (6): 535- 538.
doi: 10.1130/G40121.1 |
14 | 王世谦. 页岩气资源开采现状、问题与前景[J]. 天然气工业, 2017, 37 (6): 115- 130. |
Wang Shiqian . Shale gas exploitation: Status, issues and prospects[J]. Natural Gas Industry, 2017, 37 (6): 115- 130. | |
15 | 刘宝珺, 许效松, 潘杏南. 中国南方古大陆沉积地壳演化与成矿[M]. 北京: 科学出版社, 1993: 1- 134. |
Liu Baojun , Xu Xiaosong , Pan Xingnan . Evolution and mineralization of earth crust of paleocontinent in South China[M]. Beijing: Science Press, 1993: 1- 134. | |
16 | 施振生, 董大忠, 王红岩, 等. 含气页岩不同纹层及组合储集层特征差异性及其成因-以四川盆地下志留统龙马溪组一段典型井为例[J]. 石油勘探与开发, 2020, 47 (4): 829- 840. |
Shi Zhensheng , Dong Dazhong , Wang Hongyan , et al. Reservoir cha-racteristics and genetic mechanism of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China[J]. Petroleum Exploraton and Development, 2020, 47 (4): 829- 840. | |
17 | 施振生, 邱振, 董大忠, 等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018, 45 (2): 339- 348. |
Shi Zhensheng , Qiu Zhen , Dong Dazhong , et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45 (2): 339- 348. | |
18 | 董大忠, 施振生, 孙莎莎, 等. 黑色页岩微裂缝发育控制因素-以长宁双河剖面五峰组-龙马溪组为例[J]. 石油勘探与开发, 2018, 45 (5): 763- 774. |
Dong Dazhong , Shi Zhensheng , Sun Shasha , et al. Factors controlling microfractures in black shales: A case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe profile, Chang-ning area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45 (5): 763- 774. | |
19 | 赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 2016, 27 (3): 470- 487. |
Zhao Shengxian , Yang Yueming , Zhang Jian , et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27 (3): 470- 487. | |
20 | 冯增昭. 沉积岩石学[M]. 北京: 石油工业出版社, 1993: 1- 368. |
Feng Zengzao . Sedimentary Petrology[M]. Beijing: Petroleum Industry Press, 1993: 1- 368. | |
21 | 赵杏媛, 杨威, 罗俊成. 塔里木盆地粘土矿物[M]. 湖北武汉: 中国地质大学出版社, 2001: 1- 293. |
Zhao Xingyuan , Yang Wei , Luo Juncheng . Clay Minerals of the Tarim Basin[M]. Wuhan: China University of Geosciences Press, 2001: 1- 368. | |
22 | Tucker M E , Wright V P . Carbonate sedimentology[M]. Oxford: Blackwell, 1990: 1- 482. |
23 | 赵建华, 金之均, 金振奎, 等. 四川盆地五峰组-龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27 (2): 377- 386. |
Zhao Jianhua , Jin Zhijun , Jin Zhenkui , et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27 (2): 377- 386. | |
24 |
刘江涛, 李永杰, 张元春, 等. 焦石坝五峰组-龙马溪组页岩硅质生物成因的证据及其地质意义[J]. 中国石油大学学报(自然科学版), 2017, 41 (1): 34- 41.
doi: 10.3969/j.issn.1673-5005.2017.01.004 |
Liu Jiangtao , Li Yongjie , Zhang Yuanchun , et al. Evidence of biogenic silica of Wufeng-Longmaxi Formation shale in Jiaoshiba area and its geological significance[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41 (1): 34- 41.
doi: 10.3969/j.issn.1673-5005.2017.01.004 |
|
25 | 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组-龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25 (4): 226- 236. |
Lu Longfei , Qin Jianzhong , Shen Baojian , et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze reion and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25 (4): 226- 236. | |
26 |
Brunton FR , Dixon OA . Siliceous sponge-microbe biotic associations and their recurrence through the phanerozoic as reef mound constructors[J]. Palaios, 1994, 9, 370- 387.
doi: 10.2307/3515056 |
27 | 范方显. 古生物学教授[M]. 东营: 石油大学出版社, 1994: 1- 287. |
Fan Fangxian . Paleontology Tutorial[M]. Dongying: Petroleum University Press, 1994: 1- 287. | |
28 |
Tyson R V . Sedimentation rate, dilution, preservation and total organic carbon: some results of a modeling study[J]. Organic Geochemistry, 2001, 32, 333- 339.
doi: 10.1016/S0146-6380(00)00161-3 |
29 | Pederson T F , Calvert S E . Anoxia Vs productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks[J]. AAPG Bulletin, 1990, 74 (4): 454- 466. |
30 |
Canfield DE . Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments[J]. Deep-Sea Research, 1989, 36 (1): 121- 138.
doi: 10.1016/0198-0149(89)90022-8 |
31 |
Hedges J I , Keil R G . Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49, 81- 115.
doi: 10.1016/0304-4203(95)00008-F |
32 | 朱筱敏. 沉积岩石学(第四版)[M]. 北京: 石油工业出版社, 2008: 1- 219. |
Zhu Xiaomin . Sedimentary Petrology (The 4th Edition)[M]. Beijing: Petroleum Industry Press, 2008: 1- 219. | |
33 | Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 201, 95(12): 2031-2059. |
34 |
Lazar O R , Bohacs K M , Macquaker J H S , et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85, 230- 246.
doi: 10.2110/jsr.2015.11 |
35 |
Lambert A M , Kelts K R , Marshall N F . Measurements of density underflows from Walensee, Switzerland[J]. Sedimentology, 1976, 23 (1): 87- 105.
doi: 10.1111/j.1365-3091.1976.tb00040.x |
36 |
O'Brien N R . Significance of lamination of Toarcian (Lower Jurassic) shales from Yorkshire, Great Britain[J]. Sedimentary Geology, 1990, 67, 25- 34.
doi: 10.1016/0037-0738(90)90025-O |
37 |
Macquaker J H S , Keller M A , Davies S J . Algal blooms and "marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of Sedimentary Research, 2010, 80, 934- 942.
doi: 10.2110/jsr.2010.085 |
38 |
Piper D J W . Turbidite origin of some laminated mudstones[J]. Geological Magazine, 1972, 109 (2): 115- 126.
doi: 10.1017/S0016756800039509 |
39 |
Yawar Z , Schieber J . On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360, 22- 34.
doi: 10.1016/j.sedgeo.2017.09.001 |
40 |
刘传联, 徐金鲤, 汪品先. 藻类勃发-湖相油源岩形成的一种重要机制[J]. 地质论评, 2001, 47 (2): 207- 210.
doi: 10.3321/j.issn:0371-5736.2001.02.015 |
Liu Chuanlian , Xu Jinli , Wang Pinxian . Algal blooms: the primary mechanism in the formation of lacustrine petroleum source rocks[J]. Geological Review, 2001, 47 (2): 207- 210.
doi: 10.3321/j.issn:0371-5736.2001.02.015 |
|
41 | 秦亚超. 生物硅早期成岩作用研究进展[J]. 地质论评, 2010, 56 (1): 89- 98. |
Qin Yachao . Research progress in early diagenesis of biogenic silica[J]. Gological Review, 2010, 56 (1): 89- 98. | |
42 |
Pommer M , Milliken K . Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99 (9): 1713- 1744.
doi: 10.1306/03051514151 |
43 | Schieber J . Common themes in the formation and preservation of intrinsic porosity in shales and mudstones-illustrated with examples across the Phanerozoic[J]. SPE-132370, 2010, 1, 1- 10. |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[3] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[4] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[5] | 黎瑞, 杨娇, 柴愈坤, 王华, 戴建文, 邓永辉, 孙爽, 马肖琳, 田腾飞. 大角度波浪控制下的浪成砂坝新模式[J]. 石油与天然气地质, 2024, 45(2): 530-541. |
[6] | 陈昌, 邱楠生, 高荣锦, 周晓龙, 孙永河, 杨琳琳, 付健. 渤海湾盆地辽河坳陷西部冷家—雷家地区中-深层超压成因及其对油气成藏的影响[J]. 石油与天然气地质, 2024, 45(1): 130-141. |
[7] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[8] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[9] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[10] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[11] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[12] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[13] | 施振生, 赵圣贤, 周天琪, 孙莎莎, 袁渊, 张成林, 李博, 祁灵. 海相含气页岩水平层理类型、成因及其页岩气意义[J]. 石油与天然气地质, 2023, 44(6): 1499-1514. |
[14] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[15] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||