1 |
王卫星, 谭嘉玉. 基于分数阶微分和形态学多级合成的岩石节理裂隙图像分割[J]. 计算机应用, 2010, 30 (4): 929- 931.
|
|
Wang Weixing , Tan Jiayu . Rock joint image segmentation based on fractional differential and multi-grade combination in mathematical morphology[J]. Journal of Computer Applications, 2010, 30 (4): 929- 931.
|
2 |
Yang X , Zhang G , Lu J , et al. A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises[J]. IEEE Transactions on Fuzzy Systems, 2011, 19 (1): 105- 115.
doi: 10.1109/TFUZZ.2010.2087382
|
3 |
Zhang Y , Fu L Y , Zhang L , et al. Finite difference modeling of ultrasonic propagation (coda waves) in digital porous cores with un-split convolutional PML and rotated staggered grid[J]. Journal of Applied Geophysics, 2014, 104 (5): 75- 89.
|
4 |
陈本廷, 周骛, 蔡小舒, 等. 基于K-均值聚类的岩芯偏振显微图像粒径分析[J]. 上海理工大学学报, 2016, 38 (4): 341- 345, 351.
|
|
Chen Benting , Zhou Wu , Cai Xiaoshu , et al. New method for the segmentation of polarizing microscope image of rock core based on K-means cluster algorithm[J]. University of Shanghai for Science and Technology, 2016, 38 (4): 341- 345, 351.
|
5 |
叶润青, 牛瑞卿, 张良培. 基于多尺度分割的岩石图像矿物特征提取及分析[J]. 吉林大学学报(地球科学版), 2011, 41 (4): 1253- 1261.
|
|
Ye Runqing , Niu Ruiqing , Zhang Liangpei . Mineral features extraction and analysis based om multiresolution segmentation of petrographic images[J]. Journal of Jilin University(Earth Science Edition), 2011, 41 (4): 1253- 1261.
|
6 |
姚军, 赵秀才, 衣艳静, 等. 储层岩石微观结构性质的分析方法[J]. 中国石油大学学报(自然科学版), 2007, 31 (1): 80- 86.
|
|
Yao Jun , Zhao Xiucai , Yi Yanjing , et al. Analysis methods for reservoir rock's microstructure[J]. Journal of China University of Petroleum, 2007, 31 (1): 80- 86.
|
7 |
Li Z , Teng Q , He X , et al. Sparse representation-based volumetric super-resolution algorithm for 3D CT images of reservoir rocks[J]. Journal of Applied Geophysics, 2017, 144, 69- 77.
doi: 10.1016/j.jappgeo.2017.04.013
|
8 |
Wang Y D, Armstrong, Mostaghimi P. Super resolution convolutional Neural Network Models for enhancing resolution of rock Micro-CT Images[EB/OL]. 2019. arXiv: 1904.07470[cs. CV]. https://arxiv.org/abs/1904.07470.
|
9 |
Ye Liu , C Guo , J Cao , et al. A new resolution enhancement method for sandstone thin-section images using perceptual GAN[J]. Journal of Petroleum Science and Engineering, 2020, 195 (2): 107921.
|
10 |
Chao Dong , Chen Change Loy , Kaiming He , et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans Pattern Anal Mach Intell, 2016, 38 (2): 295- 307.
doi: 10.1109/TPAMI.2015.2439281
|
11 |
Chao D, Chen C L, Tang X, et al. Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision, Springer, Amsterdam, 2016.
|
12 |
Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, 2016, 1646-1654.
|
13 |
Yu J, Fan Y, Yang J, et al. Wide activation for efficient and accurate image super-resolution[EB/OL]. 2018 arXiv: 1808.08718v1[cs. CV]. https://arxiv.org/abs/1808.08718v1.
|
14 |
Christian Ledig, Theis L, Husz'ar F, et al. Photo-realistic single image super resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017.
|
15 |
Guo Y, Chen J, Wang J, et al. Closed-loop Matters: Dual regression networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020.
|
16 |
Zhou Yuemei, Wu Gaochang, Fu Ying, et al. Cross-MPI: Cross-scale stereo for image super-resolution using multiplane images[EB/OL]. 2011. arXiv: 2011.14631[cs. CV]. https://arxiv.org/abs/2011.14631
|
17 |
Jolicoeur Martineau A. The relativistic discriminator: a key element missing from standard GAN[EB/OL]. 2018 arXiv: 1807.00734[cs. LG]. https://arxiv.org/abs/1807.00734.
|
18 |
Zhang L , Zhang L , Mou X , et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20 (8): 2378- 2386.
|
19 |
Xue W , Zhang L , Mou X , et al. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2014, 23 (2): 684- 695.
|