石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (2): 325-340.doi: 10.11743/ogg20220207
徐亮1,2,3(), 杨威1,2(), 姜振学1,2, 陈冬霞1,4, 王耀华1,2, 鲁健康1,2, 赵明珠1,2, 李兰1,2
收稿日期:
2020-10-28
修回日期:
2022-01-20
出版日期:
2022-04-01
发布日期:
2022-03-11
通讯作者:
杨威
E-mail:2062198594@qq.com;yangw@cup.edu.cn
第一作者简介:
徐亮(1995—),男,助理工程师,非常规油气储层地质评价。E?mail: 基金项目:
Liang Xu1,2,3(), Wei Yang1,2(), Zhenxue Jiang1,2, Dongxia Chen1,4, Yaohua Wang1,2, Jiankang Lu1,2, Mingzhu Zhao1,2, Lan Li1,2
Received:
2020-10-28
Revised:
2022-01-20
Online:
2022-04-01
Published:
2022-03-11
Contact:
Wei Yang
E-mail:2062198594@qq.com;yangw@cup.edu.cn
摘要:
以川西坳陷须家河组陆相页岩为例,通过场发射扫描电镜与EDS能谱相结合的方法有效识别出固体沥青、镜质体和惰质体三大显微组分,以及油沥青、焦沥青、结构镜质体、无结构镜质体、镜屑体、丝质体、半丝质体、惰屑体、菌类体等显微亚组分。扫描电镜下不同类型有机质孔隙发育程度差异大,有机粘土复合体中的固体沥青孔隙最为发育,其次为单独片状分布的固体沥青,镜质体和惰质体孔隙发育较差,主要以残余原生孔隙为主。受显微组分生烃潜力差异的控制,从固体沥青、镜质体到惰质体,三者的碳元素质量百分比依次增大,生烃潜力依次变差,成孔能力也依次变差;受粘土矿物催化作用的控制,随着伊利石含量增加,粘土矿物的比催化活度增加,可促进伊利石附近的固体沥青大量发育孔隙。仿真地层热模拟实验表明,不同有机显微组分孔隙演化差异大:随成熟度增加,固体沥青发育大量蜂窝状孔隙,面孔率不断增大,后期由于生烃枯竭导致面孔率逐渐减小;而镜质体和惰质体的孔隙发育较差,其原生孔隙还随成熟度的增加迅速减少。但镜质体和惰质体中广泛发育的微裂缝连通了沥青孔和其他无机孔,形成了微观孔-缝网络系统,提高了页岩储层的储集和渗流能力。
中图分类号:
表1
四川盆地川西坳陷须五段页岩岩心样品基本数据"
样品编号 | 井号 | 深度/m | TOC/% | Ro/% | 干酪根类型 | 粘土矿物含量/% | 伊利石含量/% |
---|---|---|---|---|---|---|---|
HF-02 | 新页HF-1井 | 2 715.45 | 2.47 | 1.96 | Ⅲ型 | 51.48 | 21 |
HF-05 | 新页HF-1井 | 2 725.16 | 2.15 | 1.93 | Ⅲ型 | 45.26 | 18 |
HF-12 | 新页HF-2井 | 2 736.45 | 1.96 | 2.05 | Ⅲ型 | 53.96 | 26 |
HF-16 | 新页HF-2井 | 2 743.12 | 1.06 | 1.91 | Ⅲ型 | 65.68 | 39 |
LD-05 | 乐地1井 | 1 825.45 | 1.23 | 1.85 | Ⅲ型 | 72.78 | 29 |
LD-74 | 乐地1井 | 1 875.32 | 1.26 | 1.76 | Ⅲ型 | 58.16 | 25 |
LD-18 | 乐地1井 | 1 895.47 | 2.14 | 1.95 | Ⅲ型 | 54.23 | 23 |
表3
四川盆地川西坳陷须五段页岩不同有机质显微组分综合识别标志"
显微组分 | 亚组分 | 扫描电镜下特征 | EDS能谱特征(元素质量百分比/%) |
---|---|---|---|
镜质体 | 结构镜质体 | 黑色,网格状,具细胞结构,致密均匀无孔隙,突起较低 | C: 75 ~ 85 O: <10 |
无结构镜质体 | 黑色,条带状,无细胞结构,致密均匀,边缘发育少量孔隙,横断微裂缝,突起较低 | ||
镜屑体 | 黑色,呈星状、弧状以及角状,致密均匀,偶见椭圆形孔隙,突起较低 | ||
惰质体 | 丝质体 | 灰黑色,网格状,具细胞结构,胞腔大,偶见细密孔隙,突起高 | C: 80 ~ 90 O: >10 |
半丝质体 | 灰黑色,具残留丝质体结构,可见少量残余孔隙,突起高 | ||
惰屑体 | 灰黑色,与镜屑体相似,呈星状、弧状以及角状,突起高 | ||
菌类体 | 灰黑色,突起异常高,呈椭圆形,中部零星可见椭圆形收缩孔 | ||
固体沥青 | 油沥青 | 黑灰色,无固定形状,充填状,形似胶结物,突起极低,偶见收缩孔 | C: 50 ~ 60 |
焦沥青 | 黑灰色,无固定形状,充填状,形似胶结物,突起极低,蜂窝状孔隙 | O: <15 |
1 | 邹才能, 杨智, 王红岩, 等. “进源找油”:论四川盆地非常规陆相大型页岩油气田[J]. 地质学报, 2019, 93(7): 1551-1562. |
Zou Caineng, Yang Zhi, Wang Hongyan, et al. “Exploring petroleum inside source kitchen”: Jurassic unconventional continental giant shale oil & gas field in Sichuan basin, China[J]. Acta Geologica Sinica, 2019, 93(7): 1551-1562. | |
2 | 王香增, 高胜利, 高潮. 鄂尔多斯盆地南部中生界陆相页岩气地质特征[J]. 石油勘探与开发, 2014, 41(3): 294-304. |
Wang Xiangzeng, Gao Shengli, Gao Chao. Geological features of Mesozoic continental shale gas in south of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(3): 294-304. | |
3 | 陈果, 刘哿行, 李洪玺, 等. 四川盆地上三叠统须家河组陆相页岩气资源潜力分析[J]. 天然气技术与经济, 2019, 13(5): 21-29. |
Chen Guo, Liu Gehang, Li Hongxi, et al. Resource potential of continental shale gas in Upper Triassic Xujiahe Formation, Si⁃chuan Basin[J]. Natural Gas Technology and Economy, 2019, 13(5): 21-29. | |
4 | 田杨, 朱宏权, 叶素娟, 等. 川西坳陷源内油气成藏主控因素及模式——以孝泉-丰谷构造带须家河组五段为例[J/OL]. 地球科学: 1-15[2020-11-15]. . |
Tian Yang, Zhu Hongquan, Ye Sujuan, et al. Main controlling factors and models of hydrocarbon accumulation in the source of Western Sichuan Depression—Taking Xu 5th member of Xujiahe Formation in Xiaoquan⁃Fenggu structural belt as an example[J/OL]. Earth Science: 1-15[2020-11-15]. . | |
5 | 左如斯, 杨威, 王乾右, 等. 川西坳陷须家河组陆相页岩岩相控制下的微观储集特征[J]. 特种油气藏, 2019, 26(6): 22-28. |
Zuo Rusi, Yang Wei, Wang Qianyou, et al. Lithofacies⁃control microscopic reservoir characterization of the continental shale in the Xujiahe Formation of western Sichuan Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(6): 22-28. | |
6 | 张瀛涵, 李卓, 刘冬冬, 等. 松辽盆地长岭断陷沙河子组页岩岩相特征及其对孔隙结构的控制[J]. 石油实验地质, 2019, 41(1): 142-148. |
Zhang Yinghan, Li Zhuo, Liu Dongdong, et al. Lithofacies characteristics and impact on pore structure of the Shahezi Formation shale, Changling Fault Depression, Songliao Basin[J]. Petroleum Geology and Experiment, 2019, 41(1): 142-148. | |
7 | Gao F L, Song Y, Li Z, et al. Lithofacies and reservoir characteristics of the Lower Cretaceous continental Shahezi Shale in the Changling Fault Depression of Songliao Basin, NE China[J]. Marine and Petroleum Geology, 2018, 98: 401-421. |
8 | Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix⁃related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. |
9 | 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30. |
Ma Zhongliang, Zheng Lunju, Xu Xuhu, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic⁃rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30. | |
10 | 高玉巧, 蔡潇, 张培先, 等. 渝东南盆缘转换带五峰组—龙马溪组页岩气储层孔隙特征与演化[J]. 天然气工业, 2018, 38(12): 15-25. |
Gao Yuqiao, Cai Xiao, Zhang Peixian, et al. Pore characteristics and evolution of Wufeng⁃Longmaxi Fms shale gas reservoirs in the basin⁃margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12): 15-25. | |
11 | Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. |
12 | 纪文明, 宋岩, 姜振学, 等. 四川盆地东南部龙马溪组页岩微—纳米孔隙结构特征及控制因素[J]. 石油学报, 2016, 37(2): 182-195. |
Ji Wenming, Song Yan, Jiang Zhenxue, et al. Micro⁃nano pore structure characteristics and its control factors of shale in Longmaxi Formation, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(2): 182-195. | |
13 | Guo H J, He R L, Jia W L, et al. Pore characteristics of lacustrine shale within the oil window in the Upper Triassic Yanchang Formation, southeastern Ordos Basin, China[J]. Marine and Petroleum Geology, 2018, 91: 279-296. |
14 | Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter⁃hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. |
15 | 焦淑静, 张慧, 薛东川, 等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 2018, 37(2): 137-144. |
Jiao Shujing, Zhang Hui, Xue Dongchuan, et al. Morphological structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 137-144. | |
16 | 张慧, 焦淑静, 庞起发, 等. 中国南方早古生代页岩有机质的扫描电镜研究[J]. 石油与天然气地质, 2015, 36(4): 675-680. |
Zhang Hui, Jiao Shujing, Pang Qifa, et al. SEM observation of organic matters in the Eopaleozoic shale in South China[J]. Oil &.Gas Geology, 2015, 36(4): 675-680. | |
17 | 李智武, 刘树根, 林杰, 等. 川西坳陷构造格局及其成因机制[J]. 成都理工大学学报(自然科学版), 2009, 36(6): 645-653. |
Li Zhiwu, Liu Shugen, Lin Jie, et al. Structural configuration and its genetic mechanism of the West Sichuan depression in China[J]. Journal of Chengdu University of Technology(Science & Te⁃chnology Edition), 2009, 36(6): 645-653. | |
18 | 邹云. 川西坳陷合兴场、东泰、罗江地区构造演化及断裂活动期次[D]. 北京:中国地质大学(北京), 2010. |
Zou Yun. Tectonic evolution and fracture stage in Hexingchang, Dongtai and Luojiang Area of The Western Sichuan Depression[D]. Beijing: China University of Geosciences, 2010. | |
19 | 何鲤, 段勇, 罗潇, 等. 川西坳陷上三叠统层序地层划分新方案[J]. 天然气工业, 2007, 27(2): 6-11+145. |
He Li, Duan Yong, Luo Xiao, et al. New scheme of sequence stratigraphic division for Upper Triassic in Western Sichuan Depression[J]. Natural Gas Industry, 2007,27(2): 6-11+145. | |
20 | Connan J. Time⁃temperature relation in oil genesis[J]. AAPG Bulletin, 1974, 58(12): 2516-2521. |
21 | Waples D. Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration[J]. AAPG Bulletin, 1980, 64(6): 916-926. |
22 | 程克明, 王铁冠, 赵师庆, 等. 烃源岩的地球化学及演化特征[M]. 北京: 石油勘探开发研究院, 1989. |
Cheng Keming, Wang Tieguan, Zhao Shiqing, et al. Geochemistry and evolution characteristics of source rocks[M]. Beijing: Research Institute of Petroleum Exploration and Development, 1989. | |
23 | Jiang Y F, Zhao L, Zhou G Q, et al. Petrological, mineralogical, and geochemical compositions of Early Jurassic coals in the Yining Coalfield, Xinjiang, China[J]. International Journal of Coal Geology, 2015, 152, 47-67. |
24 | 张慧, 焦淑静, 李贵红, 等. 非常规油气储层的扫描电镜研究[M]. 北京: 地质出版社, 2016: 87-88. |
Zhang Hui, Jiao Shujing, Li Guihong, et al. Scanning electron microscopy study of unconventional oil and gas reservoirs[M]. Beijing: Geological Publishing House, 2016: 87-88. | |
25 | Mastalerz M, Drobniaka A, Stankiewicz A B. Origin, properties, and implications of solid bitumen in source⁃rock reservoirs: A review[J]. International Journal of Coal Geology, 2018, 195: 14- |
36 | |
26 | Jacob H. Disperse solid bitumen as an indicator for migration and maturity in prospecting for oil and gas[J]. Erdol Kohle, 1985, 38: 365-374. |
27 | Curiale J A. Origin of solid bitumens, with emphasis on biological marker results[J].Organic Geochemistry,1986,10(1-3): 0-580. |
28 | Loucks R G, Reed R M. Abstract: Scanning⁃electron⁃microscope petrographic evidence for distinguishing organic⁃matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J]. Gcags Transactions, 2014, 3: 51-60. |
29 | 高凤琳. 陆相页岩储层特征及其对含气性的影响—以长岭断陷沙河子组页岩为例[D]. 北京:中国石油大学(北京), 2019. |
Gao Fenglin. Reservoir characteristics of continental shale and its influences on gas⁃bearing properties: A case study of Shahezi Sha⁃le in the Changling Fault Depression[D]. Beijing: China University of Petroleum, Beijing, 2019 | |
30 | 余和中, 谢锦龙, 王行信, 等. 有机粘土复合体与油气生成[J]. 地学前缘, 2006, 13(4): 274-281. |
Yu Hezhong, Xie Jinlong, Wang Xingxin, et al. Organoclay complexes in relation to petroleum generation[J]. Earth Science Frontiers, 2006, 13(4): 274-281. | |
31 | 蔡进功, 宋明水, 卢龙飞, 等. 烃源岩中有机黏粒复合体——天然的生烃母质[J]. 海洋地质与第四纪地质, 2013, 33(3): 123-131. |
Cai Jingong, Song Mingshui, Lu Longfei, et al. Organo⁃clay complexes in source rocks- a natural material for hydrocarbon generation[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 123-131. | |
32 | 高凤琳, 宋岩, 梁志凯, 等. 陆相页岩有机质孔隙发育特征及成因——以松辽盆地长岭断陷沙河子组页岩为例[J]. 石油学报, 2019, 40(9): 1030-1044. |
Gao Fenglin, Song Yan, Liang Zhikai, et al. Development characteristics of organic pore in the continental shale and its genetic mechanism: a case study of Shahezi Formation shale in the Changling fault depression of Songliao Basin[J]. Acta Petrolei Sinica, 2019, 40(9): 1030-1044. | |
33 | 焦淑静, 张慧, 薛东川. 三塘湖盆地芦草沟组页岩有机显微组分扫描电镜研究[J]. 电子显微学报, 2019, 38(3): 257-263. |
Jiao Shujing, Zhang Hui, Xue Dongchuan. SEM study on organic macerals of shale in Lucaogou Formation Santanghu Basin[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(3): 257-263. | |
34 | Sweeney J J, Burnham A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. The American Association of Petroleum Geologists Bulletin, 1990, 74(10): 1559-1570. |
35 | 孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763. |
Sun Yinsen, Guo Shaobin. Qualitative and quantitative characterization of shale microscopic pore characteristics based on image analysis technology[J]. Advances in Earth Science, 2016, 31(7): 751-763. | |
37 | 余徐润, 周亮, 荆彦平, 等. Image Pro Plus软件在小麦淀粉粒显微图像分析中的应用[J]. 电子显微学报, 2013, 32(4): 344-349. |
Yu Xurun, Zhou Liang, Jing Yanping, et al. Application of image⁃pro plus in analysis of wheat starch granule microscopic image[J]. Journal of Chinese Electron Microscopy Society, 2013, 32(4): 344-349. | |
38 | 吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176. |
Wu Songtao, Zhu Rukai, Cui Jinggang, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 167-176. | |
39 | Gao F, Song Y, Li Z, et al. Pore characteristics and dominant controlling factors of overmature shales: A case study of the Wangyinpu and Guanyintang Formations in the Jiangxi Xiuwu Basin[J]. Interpretation, 2018, 6(2): T393-T412. |
40 | Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale⁃gas systems: the Mississippian Barnett shale of north⁃central Texas as one model for thermogenic shale⁃gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. |
41 | Cander H. Sweet spots in shale gas and liquids plays: prediction of fluid composition and reservoir pressure[R]. Search and Discovery Article 40936, 2012. |
42 | Tissot B P, Welte D H. Petroleum formation and occurrence[M]. Berlin: Springer⁃Verlag, 1984. |
43 | 敖卫华, 黄文辉, 姚艳斌. 鄂尔多斯盆地北部煤系有机显微组分特征与生烃潜力[J]. 吉林大学学报: 地球科学版, 2011, 41(): 91-97. |
Ao Weihua, Huang Wenhui, Yao Yanbin. Macerals’ characteristics and hydrocarbon generation potential of coal⁃bearing series in the northern Ordos Basin[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(S1): 91-97. | |
44 | 赵文智, 王兆云, 张水昌, 等. 有机质“接力成气”模式的提出及其在勘探中的意义[J]. 石油勘探与开发, 2005, 32(2): 1-7. |
Zhao Wenzhi, Wang Zhaoyun, Zhang Shuichang, et al. Successive generation of natural gas from organic materials and its significance in future exploration[J]. Petroleum Exploration and Development, 2005, 32(2): 1-7. | |
45 | 刘伟,王振奇,叶琳,等.渤中坳陷优质烃源岩有机质丰度下限标准[J].断块油气田,2020,27(6):725-728. |
Liu Wei, Wang Zhenqi, Ye Lin,et al.Lower limit standard of organic matter abundance of high quality source rocks in Bozhong Depression[J]. Fault‑Block Oil and Gas Field,2020,27(6):725-728. | |
46 | 鹿坤,李长春,周峰,等.东濮凹陷北部低有机质丰度烃源岩高效成藏机理[J].断块油气田,2021,28(4):470-474. |
Lu Kun, Li Changchun, Zhou Feng,et al.Mechanism of high efficient reservoir formation of low abundance source rocks in the north of Dongpu Depression[J].Fault‑Block Oil and Gas Field,2021,28(4):470-474. | |
47 | 邱振,韦恒叶,刘翰林,等.异常高有机质沉积富集过程与元素地球化学特征[J].石油与天然气地质,2021,42(4):931-948. |
Qiu Zhen, Wei Hengye, Liu Hanlin,et al.Accumulation of sediments with extraordinary high organic matter content:Insight gained through geochemical characterization of indicative elements[J].Oil & Gas Geology,2021,42(4):931-948. | |
48 | 杨雨, 罗冰, 张本健, 等. 四川盆地下寒武统筇竹寺组烃源岩有机质差异富集机制与天然气勘探领域[J]. 石油实验地质, 2021, 43(4): 611-619. |
Yang Yu, Luo Bing, Zhang Benjian, et al. Differential mechanisms of organic matter accumulation of source rocks in the Lower Cambrian Qiongzhusi Formation and implications for gas exploration fields in Sichuan Basin[J].Petroleum Geology &Experiment,2021, 43(4): 611-619. | |
49 | 鲍芳, 俞凌杰, 芮晓庆, 等. 页岩中有机质孔隙非均质性的微观结构及电镜—拉曼联用研究[J]. 石油实验地质, 2021, 43(5): 871-879. |
Bao Fang, Yu Lingjie, Rui Xiaoqing, et al. Microstructure and SEM‑Raman study of organic matter pore heterogeneity in shale[J].Petroleum Geology &Experiment, 2021, 43(5): 871-879. | |
50 | 张士万, 孟志勇, 郭战峰, 等. 涪陵地区龙马溪组页岩储层特征及其发育主控因素[J]. 天然气工业, 2014, 34(12): 16-24. |
Zhang Shiwan, Meng Zhiyong, Guo Zhanfeng, et al. Characteristics and major controlling factors of shale reservoirs in the Longmaxi Fm, Fuling area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 16-24. | |
51 | 高玉巧,蔡潇,何希鹏,等.渝东南盆缘转换带五峰组—龙马溪组页岩压力体系与有机孔发育关系[J].吉林大学学报(地球科学版),2020,50(2):662-674. |
Gao Yuqiao, Cai Xiao, He Xipeng, et al. Relationship between shale pressure system and organic pore development of Wufeng‑ Longmaxi Formation in marginnal conversion zone of Southeastern Chongqing Basin[J]. Journal of Jilin University(Earth Science Edition),2020,50(2):662-674. | |
52 | 祝庆敏, 卢龙飞, 潘安阳, 等. 湘西地区下寒武统牛蹄塘组页岩沉积环境与有机质富集[J]. 石油实验地质, 2021, 43(5): 797-809. |
Zhu Qingmin, Lu Longfei, Pan Anyang, et al. Sedimentary environment and organic matter enrichment of the Lower Cambrian Niutitang Formation shale, western Hunan Province, China[J].Petroleum Geology &Experiment,2021, 43(5): 797-809. | |
53 | 陆亚秋,梁榜,王超,等.四川盆地涪陵页岩气田江东区块下古生界深层页岩气勘探开发实践与启示[J].石油与天然气地质,2021,42(1):241-250. |
Lu Yaqiu, Liang Bang, Wang Chao,et al.Shale gas exploration and development in the Lower Paleozoic Jiangdong block of Fuling gas field,Sichuan Basin[J].Oil & Gas Geology,2021,42(1):241-250. | |
54 | 聂海宽,张柏桥,刘光祥,等.四川盆地五峰组-龙马溪组页岩气高产地质原因及启示——以涪陵页岩气田JY6-2HF为例[J].石油与天然气地质,2020,41(3):463-473. |
Nie Haikuan, Zhang Baiqiao, Liu Guangxiang,et al.Geological factors contributing to high shale gas yield in the Wufeng‑Longmaxi Fms of Sichuan Basin:A case study of Well JY6‑2HF in Fuling shale gas field[J].Oil & Gas Geology,2020,41(3):463-473. | |
55 | 田鹤,曾联波,徐翔,等.四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J].石油与天然气地质,2020,41(3):474-483. |
Tian He, Zeng Lianbo, Xu Xiang,et al.Characteristics of natural fractures in marine shale in Fuling area,Sichuan Basin,and their influence on shale gas[J].Oil & Gas Geology,2020,41(3):474-483. | |
56 | 王行信, 蔡进功, 包于进. 粘土矿物对有机质生烃的催化作用[J]. 海相油气地质, 2006, 11(3): 27-38. |
Wang Xingxin, Cai Jingong, Bao Yujin. Catalysis of clay mineral to organic matter in hydrocarbon genesis[J]. Marine Origin Petroleum Geology, 2006, 11(3): 27-38. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[7] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[8] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[9] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[10] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[11] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[12] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[13] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[14] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[15] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||