石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (2): 477-488.doi: 10.11743/ogg20220219
• 方法技术 • 上一篇
王建丰1,2,3(), 杨超4, 柳宇柯5, 熊永强1,3()
收稿日期:
2020-11-19
修回日期:
2022-01-20
出版日期:
2022-04-01
发布日期:
2022-03-11
通讯作者:
熊永强
E-mail:wangjianfeng@gig.ac.cn;xiongyq@gig.ac.cn
第一作者简介:
王建丰(1992—),男,博士研究生。页岩微观力学性能和地球化学。E?mail: 基金项目:
Jianfeng Wang1,2,3(), Chao Yang4, Yuke Liu5, Yongqiang Xiong1,3()
Received:
2020-11-19
Revised:
2022-01-20
Online:
2022-04-01
Published:
2022-03-11
Contact:
Yongqiang Xiong
E-mail:wangjianfeng@gig.ac.cn;xiongyq@gig.ac.cn
摘要:
近年来,随着力学测试技术的不断发展,微观材料科学研究中广泛应用的纳米压痕技术被引入到页岩研究领域,成为测试页岩表面微观力学性质的重要手段。从微观视角去研究页岩的力学性能已成为当下的研究热点之一。为此,梳理了页岩样品的制备方法和压痕试验制度对测试结果的影响,详细论述了纳米压痕技术在页岩中微观力学和蠕变性能表征方面的应用现状,对其应用的优势和存在的问题进行了分析和讨论,并对发展趋势进行了展望。研究结果表明:①纳米压痕技术可以精确表征页岩整体以及基质组成相的力学性能;②通过研究保载阶段的位移-时间曲线可以获得页岩微观尺度的蠕变特征,深入理解微观下页岩蠕变变形机制;③测试流体/页岩相互作用下力学性能的演变特征,可以为实际页岩水力压裂或超临界二氧化碳压裂提供基础的实验数据。该技术实现了对页岩更精细化的观测,有助于从根本上认识页岩的力学行为,为页岩气勘探开发提供更可靠的理论依据。
中图分类号:
1 | 唐颖, 邢云, 李乐忠,等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘(中国地质大学(北京):北京大学), 2012, 19(5): 356-363. |
Tang Ying, Xing Yun, Li Lezhong, et al. Influence factors and evaluation methods of gas shale fracability[J]. Earth Science Frontiers(China University of Geoscience (Beijing):Peking University), 2012, 19(5):356-363. | |
2 | 袁俊亮, 邓金根, 张定宇,等. 页岩气储层可压裂性评价技术 [J]. 石油学报, 2013, 34(3): 523-527. |
Yuan Junliang, Deng Jingen, Zhang Dingyu, et al. Fracturing evaluation of shale gas reservoirs[J]. Acta petroleum Sinica, 2013, 34 (3): 523-527. | |
3 | 邹才能, 杨智, 朱如凯,等. 中国非常规油气勘探开发与理论技术进展 [J] . 地质学报, 2015, 89(6): 979-1007. |
Zou Caineng, Yang Zhi, Zhu Rukai, et al. Progress in China’s unconventional oil and gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89 (6): 979-1007. | |
4 | 王濡岳, 胡宗全, 董立,等. 页岩气储层表征评价技术进展与思考[J].石油与天然气地质, 2021, 42(1):54-65. |
Wang Ruyue, Hu Zongquan, Dong Li, et al. Advancement and trends of shale gas reservoir characterization and evaluation[J]. Oil & Gas Geology, 2021, 42(1):54-65. | |
5 | 蔡勋育, 赵培荣, 高波,等. 中国石化页岩气“十三五”发展成果与展望[J]. 石油与天然气地质, 2021, 42(1):16-27. |
Cai Xunyu, Zhao Peirong, Gao Bo, et al. Sinopec’s shale gas development achievements during the “Thirteenth Five⁃Year Plan” period and outlook for the future[J]. Oil & Gas Geology, 2021, 42(1):16-27. | |
6 | 马永生, 黎茂稳, 蔡勋育,等. 中国海相深层油气富集机理与勘探开发:研究现状、关键技术瓶颈与基础科学问题[J].石油与天然气地质, 2020, 41(4):655-672. |
Ma Yongsheng, Li Maowen, Cai Xunyu, et al. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology, 2020, 41(4):655-672. | |
7 | Mighani S, Bernabé Y, Boulenouar A, et al. Creep deformation in vaca Muerta Shale from nanoindentation to triaxial experiments[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(8): 7842-7868. |
8 | Yang C, Xiong Y Q, Wang J F, et al. Mechanical characterization of shale matrix minerals using phase⁃positioned nanoindentation and nano⁃dynamic mechanical analysis[J]. International Jour⁃nal of Coal Geology, 2020, 229,103571. |
9 | 柳宇柯. 高演化阶段页岩有机质纳米孔隙、化学结构与力学性能研究[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所), 2019. |
Liu Yuke. Nanopore development, chemical structure and mechanical properties of organic matter in highly matured shale[D]. Guangzhou:University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2019. | |
10 | Bandyopadhyay K. Seismic anisotropy: Geological causes and its implications to reservoir geophysics[D]. Palo Alto: Stanford University. 2009. |
11 | Bobko C, F⁃J Ulm. The nano⁃mechanical morphology of shale[J]. Mechanics of Materials, 2008, 40(4-5): 318-337. |
12 | Emmanuel S, Day⁃Stirrat R J. A framework for quantifying size dependent deformation of nano⁃scale pores in mudrocks[J]. Journal of Applied Geophysics, 2012, 86, 29-35. |
13 | Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. |
14 | Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20. |
15 | 林兰英, 秦理哲, 傅峰. 微观力学表征技术的发展及其在木材科学领域中的应用[J]. 林业科学, 2015, 51(2): 121-8. |
Lin Lanying, Qin Lizhe, Fu Feng. Development of micromechanical technology and application on wood science[J]. Scientia Silvae Sinicae, 2015, 51 (2): 121-8. | |
16 | Constantinides G, F⁃J Ulm. The nanogranular nature of C-S-H [J]. Journal of the Mechanics and Physics of Solids, 2007,55(1): 64-90. |
17 | F⁃J Ulm, Vandamme M, Bobko C, et al. Statistical indentation techniques for hydrated nanocomposites: Concrete, bone, and shale[J]. Journal of the American Ceramic Society, 2007, 90(9): 2677-2692. |
18 | Zhu W, Hughes J J, Bicanic N, et al. Nanoindentation mapping of mechanical properties of cement paste and natural rocks[J]. Materials Characterization, 2007, 58(11-12): 1189-1198. |
19 | Deirieh A, Ortega J A, Ulm F J, et al. Nanochemomechanical assessment of shale: A coupled WDS⁃indentation analysis[J]. Acta Geotechnica, 2012, 7(4): 271-295. |
20 | Bennett K C, Berla L A, Nix W D, et al. Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales[J]. Acta Geotechnica,2015, 10(1): 1-14. |
21 | Alstadt K N, Katti K S, Katti D R. Nanoscale morphology of kerogen and in situ nanomechanical properties of Green River Oil Shale[J]. Journal of Nanomechanics and Micromechanics, 2015, 6(1): 04015003. |
22 | Liu K, Ostadhassan M, Bubach B. Applications of nano⁃indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks[J]. Journal of Natural Gas Science and Engineering, 2016, 35, 1310-1319. |
23 | Zeszotarski J C, Chromik R R. Vinci R P,et al. Imaging and mechanical property measurements of kerogen via nanoindentation[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4113-4119. |
24 | Sorelli L, Constantinides G, F⁃J Ulm, et al. The nano⁃mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques[J]. Cement and Concrete Research, 2008, 38(12): 1447-1456. |
25 | Veytskin Y B, Tammina V K, Bobko C P, et al. Micromechanical characterization of shales through nanoindentation and energy dispersive x⁃ray spectrometry[J]. Geomechanics for Energy & the Environment, 2017, 9: 21-35. |
26 | Kumar V, Curtis M E, Gupta N, et al. Estimation of elastic properties of organic matter in Woodford Shale through nanoindentation measurement[C]//SPE Canadian Unconventional Resources Conference. Calgary:SPE,2012: 162778. |
27 | Kumar V, Sondergeld C H, Rai C S. Nano to macro mechanical characterization of shale[C]//SPE annual technical conference and exhibition. San Antonin: SPE,2012: 159804. |
28 | Zargari S, Prasad M, Mba K C, et al. Organic maturity, elastic properties, and textural characteristics of self resourcing reservoirs [J]. Geophysics, 2013, 78(4):D223-D235. |
29 | Zargari S, Wilkinson T M, Packard C E, et al. Effect of thermal maturity on elastic properties of kerogen[J]. Geophysics, 2016, 81(2):M17-M22. |
30 | Abedi S, Slim M, F⁃J Ulm. Nanomechanics of organic⁃rich shales: The role of thermal maturity and organic matter content on texture[J]. Acta Geotechnica, 2016, 1-13. |
31 | Gupta I, Sondergeld C, Rai C. Applications of nanoIndentation for reservoir characterization in shales[C]//52nd US Rock Mechanics/Geomechanics Symposium. OnePetro: 2018. |
32 | Liu K, Ostadhassan M, Bubach B, et al. Nano⁃dynamic mechanical analysis (nano⁃DMA) of creep behavior of shales: Bakken ca⁃se study[J]. Journal of Materials Science, 2017, 53(6): 4417-4432. |
33 | Mighani S, Taneja S, Sondergeld C H, et al. Nanoindentation creep measurements on shale[C]//49th US Rock Mechanics/Geomechanics Symposium. San Francisco: ARMA,2015: 148. |
34 | Sharma P, Prakash R, Abedi S. Effect of temperature on nano⁃and microscale creep properties of organic⁃rich shales[J]. Journal of Petroleum Science and Engineering, 2019, 175, 375-388. |
35 | Shi X, Jiang S, Yang L, et al. Modeling the viscoelasticity of shale by nanoindentation creep tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127, 104210. |
36 | Wang J, Liu Y, Yang C, et al. Modeling the viscoelastic behavior of quartz and clay minerals in shale by nanoindentation creep tests[J].Geofluids, 2022, 2860077. |
37 | Kumar V, Sondergeld C, Rai C S. Effect of mineralogy and organic matter on mechanical properties of shale[J]. Interpretation, 2015, 3(3): SV9-SV15. |
38 | 时贤, 蒋恕, 卢双舫 等. 利用纳米压痕实验研究层理性页岩岩石力学性质——以渝东南酉阳地区下志留统龙马溪组为例[J].石油勘探与开发,2019,46(1):155-164. |
Shi Xian, Jiang Shu, Lu Shuangfang, et al. Investigation of mechanical properties of bedded shale by nanoindentation tests: A case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing, China[J]. Petroleum Exploration and Development, 2019, 46(1): 155-164. | |
39 | Shukla P, Kumar V, Curtis M, et al. Nanoindentation studies on shales[C]//47th Us Rock Mechanics/Geomechanics Symposium. San Francisco: ARMA, 2013: 578. |
40 | Vandamme M, Ulm FJ. Nanogranular origin of concrete creep[J]. Proceedings of the National Academy of Sciences, 2009, 106(26): 10552-10557. |
41 | Kim J⁃Y, Lee J⁃J, Lee Y⁃H, et al. Surface roughness effect in instrumented indentation: A simple contact depth model and its verification[J]. Journal of Materials Research, 2011, 21(12): 2975-2978. |
42 | Abedi S, Slim M, Hofmann R, et al. Nanochemo⁃mechanical signature of organic⁃rich shales: A coupled indentation-EDX analysis[J]. Acta Geotechnica, 2016, 11(3): 559-572. |
43 | 刘圣鑫, 王宗秀, 张林炎,等. 基于纳米压痕的页岩微观力学性质分析[J].实验力学, 2018, 33(6): 957-68. |
Liu Shengxin, Wang zongxiu, Zhang Linyan, et al. Micromecha⁃nics properties analysis of shale based on nano⁃indentation[J]. Journal of Experimental mechanics, 2018, 33(6): 957-12. | |
44 | Ulm F J, Abousleiman Y. The nanogranular nature of shale[J]. Acta Geotechnica, 2006, 1(2): 77-88. |
45 | Liu K, Ostadhassan M, Bubach B, et al. Statistical grid nanoindentation analysis to estimate macro⁃mechanical properties of the Bakken Shale[J]. Journal of Natural Gas Science and Engineering, 2018, 53, 181-190. |
46 | Miller M, Bobko C, Vandamme M, et al. Surface roughness criteria for cement paste nanoindentation[J]. Cement and Concrete Research, 2008, 38(4): 467-476. |
47 | Institution B S. Metallic materials-Instrumented indentation test for hardness and materials parameters-Part 1: Test method-verifi⁃cation and calibration of testing machines [S]. Geneva :ISO, 2002:14577-1. |
48 | Larsson P L, Giannakopoulos A E, Sderlund E, et al. Analysis of Berkovich indentation[J]. International Journal of Solids & Struc⁃tures, 1996, 33(2): 221-248. |
49 | Liu K, Ostadhassan M, Bubach B. Application of nanoindentation to characterize creep behavior of oil shales[J]. Journal of Petroleum Science and Engineering, 2018, 167, 729-736. |
50 | Li C, Ostadhassan M, Abarghani A, et al. Multi⁃scale evaluation of mechanical properties of the Bakken Shale [J]. Journal of Materials Science, 2018, 54(3): 2133-2151. |
51 | 曾庆辉, 钱玲, 刘德汉,等. 富有机质的黑色页岩和油页岩的有机岩石学特征与生、排烃意义[J]. 沉积学报, 2006, (1): 113-122. |
Zeng Qinghui, Qian Ling, Liu Dehan, et al. Organic petrological study on hydrocarbon generation and expulsion from organic rich black shale and oil shale[J]. Acta sedimentogical sinica, 2006,(1): 113-122. | |
52 | Tian H, Pan L, Xiao X, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong thrust fold belt, southwestern China using low pressure N2 adsorption and FE⁃SEM methods[J]. Marine and Petroleum Geology, 2013, 48, 8-19. |
53 | 王飞宇, 关晶, 冯伟平,等. 过成熟海相页岩孔隙度演化特征和游离气量[J].石油勘探与开发, 2013, 40(6): 764-768. |
Wang Feiyu, Guan Jing, Feng Weiping, et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 764-768. | |
54 | Ahmadov R, Vanorio T, Mavko G. Confocal laser scanning and atomic⁃force microscopy in estimation of elastic properties of the organic⁃rich Bazhenov Formation[J]. The Leading Edge, 2009, 28(1): 18-23. |
55 | Eliyahu M, Emmanuel S, Day⁃Stirrat R J, et al. Mechanical prope⁃rties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology, 2015, 59, 294-304. |
56 | Emmanuel S, Eliyahu M, Day⁃Stirrat R J, et al. Impact of thermal maturation on nano⁃scale elastic properties of organic matter in shales[J]. Marine and Petroleum Geology, 2016, 70, 175-84. |
57 | Prasad M, Mba K C, McEvoy T E, et al. Maturity and impedance analysis of organic‑rich shales[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(5): 533-543. |
58 | Okiongbo K S, Aplin A C, Larter S R. Changes in typeⅡkerogen density as a function of maturity⁃evidence from the Kimmeri⁃dge clay formation[J]. Energy & Fuels, 2005,19(6):2495-2499. |
59 | Slim M, Abedi S, Bryndzia L T, et al. Role of organic matter on nanoscale and microscale creep properties of source rocks[J]. Journal of Engineering Mechanics, 2019, 145(1): 04018121. |
60 | Sone H, Zoback M D. Time⁃dependent deformation of shale gas reservoir rocks and its long⁃term effect on the in situ state of stress [J]. International Journal of Rock Mechanics & Miningences, 2014, 69, 120-132. |
61 | Shi X, Jiang S, Wang Z, et al. Application of nanoindentation technology for characterizing the mechanical properties of shale before and after supercritical CO2 fluid treatment[J]. Journal of CO2 Utilization, 2020, 37, 158-172. |
62 | Akrad O, Miskimins J, Prasad M.The effects of fracturing fluids on shale rock mechanical properties and proppant embedment[C]//SPE Annual Technical Conference and Exhibition.Denver:SPE, 2011: 146658. |
63 | Corapcioglu H, Miskimins J L, Prasad M. Fracturing fluid effects on young’s modulus and embedment in the niobrara formation[C]//SPE Annual Technical Conference and Exhibition.Amsterdam: SPE, 2014: 170835-MS. |
64 | Yang Z, Wang L, Chen Z, et al. Micromechanical characterization of fluid/shale interactions by means of nanoindentation[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(2): 405-417. |
65 | Lu Y, Li Y, Wu Y, et al. Characterization of Shale Softening by Large Volume⁃Based Nanoindentation[J]. Rock Mechanics and Rock Engineering, 2019, 53(3): 1393-409. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[7] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[8] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[9] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[10] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[11] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[12] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[13] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[14] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
[15] | 米立军, 徐建永, 李威. 渤海海域页岩油资源潜力[J]. 石油与天然气地质, 2023, 44(6): 1366-1377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||