石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (1): 226-237.doi: 10.11743/ogg20230119
收稿日期:
2022-06-01
修回日期:
2022-11-03
出版日期:
2023-01-14
发布日期:
2023-01-13
通讯作者:
段太忠
E-mail:liuyf.syky@sinopec.com;duantz.syky@sinopec.com
第一作者简介:
刘彦锋(1986—),男,博士、副研究员,油气田开发地质。E-mail: 基金项目:
Yanfeng LIU(), Taizhong DUAN(), Yuan HUANG, Wenbiao ZHANG, Meng LI
Received:
2022-06-01
Revised:
2022-11-03
Online:
2023-01-14
Published:
2023-01-13
Contact:
Taizhong DUAN
E-mail:liuyf.syky@sinopec.com;duantz.syky@sinopec.com
摘要:
油气藏勘探开发逐步向深层化、复杂化方向发展,观测数据不足、分辨率低等资料难题突显,传统的地质建模方法无法适应技术需求。以深度学习为代表的智能化地质建模方法可以充分整合多尺度、多维度的数据信息以及专家认识,是地质建模技术发展的重要方向。在综合分析地层沉积模拟和深度学习地质建模技术优缺点的基础上,探索形成了沉积过程模拟驱动的深度学习地质建模方法。首先,基于综合地质分析开展沉积正演模拟,分析参数不确定性,通过参数扰动形成大规模地质模型作为训练样本库;其次,利用条件化生成对抗网络学习样本库中蕴含的地质模式和规律,其中生成网络以井-震等条件数据作为输入、地质模型作为输出;最后,利用训练后生成网络在实际条件数据上的应用,得到目标区块的地质模型。通过在四川盆地普光气藏主力区块典型地质剖面的测试应用,该方法的可行性得到了验证,并分析了训练样本库大小对模拟结果的影响。沉积模拟和深度学习相结合,弥补了训练样本不足的缺陷,间接实现了知识驱动的深度学习地质建模,具有重要的推广意义。
中图分类号:
表1
碳酸盐岩沉积模拟主要参数类型及分析方法"
参数类型 | 具体参数 | 分析方法 |
---|---|---|
可容空间类 | 构造沉降曲线 | 地层回剥法,地震资料解释 |
海平面曲线 | Haq曲线,岩石的水深指示曲线 | |
初始地形 | 标志层厚度,沉积微相对水深指示意义 | |
沉积物供给类 | 沉积物供给速率,最大产率 | 地层厚度,井上地层厚度序列 |
沉积物供给集中度,透光带厚度 | 物源方向初始地层厚度变化程度,高能相带厚度 | |
沉积物供给成分比例,产率下降系数 | 观测数据中岩性比例,岩性变化频率 | |
沉积物搬运剥蚀类 | 势能扩散系数 | 沿沉积物搬运方向的地层厚度变化 |
扩散系数变化因子 | 岩性纵向变化程度 | |
动能对流系数 | 沿沉积物搬运方向的岩性变化程度 | |
流体动能分布类 | 波浪能 | 水体流速相对大小 |
风能 | 高能和低能相带分布的突变程度 | |
地形消浪能 | 沉积相对水体能量的指示意义 |
表2
沉积反演模拟参数区间"
序号 | 参数 | 最小值 | 最大值 | 序号 | 参数 | 最小值 | 最大值 |
---|---|---|---|---|---|---|---|
1 | AmpSeaL1 | 40.000 | 120.000 | 22 | KEng2 | 1.000 | 3.000 |
2 | PerdSeaL1 | 500.000 | 1500.000 | 23 | KEng3 | 0.500 | 1.500 |
3 | AmpSeaL2 | 20.000 | 60.000 | 24 | bEng1 | 0.500 | 1.500 |
4 | PerdSeaL2 | 80.000 | 150.000 | 25 | bEng2 | 0.040 | 0.120 |
5 | PerdSeaL3 | 20.000 | 60.000 | 26 | bEng3 | 10.000 | 30.000 |
6 | LinEuElev3 | -55.000 | -10.000 | 27 | pPr1 | 0.350 | 1.000 |
7 | SubsidenceScale1 | 0.500 | 1.500 | 28 | KV1 | 5.000 | 15.000 |
8 | PDX2 | 40.000 | 120.000 | 29 | KV2 | 17.000 | 52.000 |
9 | PDX1 | 800.000 | 2200.000 | 30 | KV3 | 12.000 | 35.000 |
10 | KDX1 | 5.000 | 15.000 | 31 | KW1 | 0.007 | 0.022 |
11 | KDX2 | 25.000 | 750.000 | 32 | KW2 | 0.012 | 0.040 |
12 | Apord1 | 2.500 | 7.500 | 33 | KW3 | 0.007 | 0.022 |
13 | Apord2 | 15.000 | 45.000 | 34 | kR1 | 0.025 | 0.000 |
14 | Apord3 | 7.500 | 22.000 | 35 | kR2 | 0.020 | 0.060 |
15 | Kpord3 | 0.010 | 0.030 | 36 | kR3 | 0.007 | 0.020 |
16 | Kpord1 | 0.010 | 0.030 | 37 | kH1 | 0.030 | 0.090 |
17 | Kpord2 | 0.020 | 0.070 | 38 | kH2 | 0.100 | 0.300 |
18 | Wpord1 | 30.000 | 90.000 | 39 | kH3 | 0.030 | 0.090 |
19 | Wpord2 | 15.000 | 45.000 | 40 | WaveBase1 | 20.000 | 60.000 |
20 | Wpord3 | 35.000 | 100.000 | 41 | KL1 | 0.002 | 0.007 |
21 | KEng1 | 0.020 | 0.060 |
1 | 吴胜和, 李宇鹏. 储层地质建模的现状与展望[J]. 海相油气地质, 2007, 12(3): 53-60. |
WU Shenghe, LI Yupeng. Reservoir modeling: Current situation and development prospect[J]. Marine Origin Petroleum Geology, 2007, 12(3): 53-60. | |
2 | 张文彪, 段太忠, 刘彦锋, 等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报, 2019, 38(3): 264-275. |
ZHANG Wenbiao, DUAN Taizhong, LIU Yanfeng, et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information, 2019, 38(3): 264-275. | |
3 | 尹艳树, 张昌民, 李玖勇, 等. 多点地质统计学研究进展与展望[J]. 古地理学报, 2011, 13(2): 245-252. |
YIN Yanshu, ZHANG Changmin, LI Jiuyong, et al. Progress and prospect of multiple-point geostatistics[J]. Journal of Palaeogeography, 2011, 13(2): 245-252. | |
4 | 吴胜和, 李文克. 多点地质统计学——理论、应用与展望[J]. 古地理学报, 2005, 7(1): 137-144. |
WU Shenghe, LI Wenke. Multiple-point geostatistics: Theory, application and perspective[J]. Journal of Palaeogeography, 2005, 7(1): 137-144. | |
5 | 尹艳树, 吴胜和. 储层随机建模研究进展[J]. 天然气地球科学, 2006, 17(2): 210-216. |
YIN Yanshu, WU Shenghe. The progress of reservoir stochastic modeling[J]. Natural Gas Geoscience, 2006, 17(2): 210-216. | |
6 | 胡向阳, 郑文波, 游瑜春, 等. 四川盆地元坝长兴组礁滩相气藏概率体约束地质建模[J]. 石油与天然气地质, 2020, 41(1): 157-163. |
HU Xiangyang, ZHENG Wenbo, YOU Yuchun, et al. Probability body-constrained geomodeling of reef-shoal reservoir in Changxing Formation, Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(1): 157-163. | |
7 | 张文彪, 段太忠, 郑磊, 等. 基于浅层地震的三维训练图像获取及应用[J]. 石油与天然气地质, 2015, 36(6): 1030-1037. |
ZHANG Wenbiao, DUAN Taizhong, ZHENG Lei, et al. Generation and application of three-dimensional MPS training images based on shallow seismic data[J]. Oil & Gas Geology, 2015, 36(6): 1030-1037. | |
8 | 宋随宏, 史燕青, 侯加根. 基于生成对抗网络的储层地质建模方法研究进展[J]. 石油科学通报, 2022, 7(1): 34-49. |
SONG Suihong, SHI Yanqing, HOU Jiagen. Review of a generative adversarial networks (GANs)-based geomodelling method[J]. Petroleum Science Bulletin, 2022, 7(1): 34-49. | |
9 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Ghahramani Z, Welling M, Cortes C, eds. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, 2014. Cambridge: MIT press, 2014: 2672-2680. |
10 | 刘彦锋, 张文彪, 段太忠, 等. 深度学习油气藏地质建模研究进展[J]. 地质科技通报, 2021, 40(4): 235-241. |
LIU Yanfeng, ZHANG Wenbiao, DUAN Taizhong, et al. Progress of deep learning in oil and gas reservoirgeological modeling[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 235-241. | |
11 | ZHENG Qiang, ZENG Lingzao, KARNIADAKIS G E. Physics-informed semantic inpainting: Application to geostatistical modeling[J]. Journal of Computational Physics, 2020, 419: 109676. |
12 | MOSSER L, DUBRULE O, BLUNT M J. Conditioning of three-dimensional generative adversarial networks for pore and reservoir-scale models[EB/OL]. (2018-02-15)[2022-01-03]. . |
13 | SONG Suihong, MUKERJI T, HOU Jiagen. Geological facies modeling based on progressive growing of generative adversarial networks (GANs)[J]. Computational Geosciences, 2021, 25(3): 1251-1273. |
14 | SONG Suihong, MUKERJI T, HOU Jiagen. GANSim: conditional facies simulation using an improved progressive growing of generative adversarial networks (GANs)[J]. Mathematical Geosciences, 2021, 53(7): 1413-1444. |
15 | NESVOLD E, MUKERJI T. Geomodeling using generative adversarial networks and a database of satellite imagery of modern river deltas[C]//Petroleum Geostatistics 2019, Florence, 2019. Bunnik: European Association of Geoscientists & Engineers, 2019: 1-5. |
16 | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
17 | KARNIADAKIS G E, KEVREKIDIS I G, LU Lu, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. |
18 | SLOSS L L. Stratigraphic models in exploration[J]. AAPG Bulletin, 1962, 46(7): 1050-1057. |
19 | HARBAUGH J W. Mathematical simulation of marine sedimentation with IBM 7090/7094 computers[M]//Merriam D F. Computer Contributions 1. Lawrence: Kansas Geological Survey, 1966: 1-52. |
20 | PAOLA C. Quantitative models of sedimentary basin filling[J]. Sedimentology, 2000, 47(S1): 121-178. |
21 | BURGESS P M. 14-A brief review of developments in stratigraphic forward modelling, 2000-2009[M]//Roberts D G, Bally A W. Regional Geology and Tectonics: Principles of Geologic Analysis. Boston: Elsevier Science, 2012: 378-404. |
22 | HUANG X, GRIFFITHS C M, LIU J. Recent development in stratigraphic forward modelling and its application in petroleum exploration[J]. Australian Journal of Earth Sciences, 2015, 62(8): 903-919. |
23 | ROSLI R, POPPELREITER M C, JAMALUDIN S N F. A review of stratigraphic foward models (Sfm) for carbonate platform[J]. International Journal of Engineering & Technology, 2018, 7(4.35): 143-147. |
24 | DUAN Taizhong. Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling[J]. Petroleum Science, 2017, 14(3): 484-492. |
25 |
刘彦锋, 段太忠, 龚伟, 等. 基于深度学习的沉积模拟代理模型构建与应用[J/OL]. 沉积学报: 1-16[2022-01-03]. . DOI:10.14027/j.issn.1000-0550.2021.152 .
doi: 10.14027/j.issn.1000-0550.2021.152 |
LIU Yanfeng, DUAN Taizhong, GONG Wei, et al. Construction and application of a proxy model for stratigraphic forward modeling based on deep learning[J/OL]. Acta Sedimentologica Sinica: 1-16[2022-01-03]. . DOI:10.14027/j.issn.1000-0550.2021.152 .
doi: 10.14027/j.issn.1000-0550.2021.152 |
|
26 | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016. |
27 | HARSHVARDHAN G M, GOURISARIA M K, PANDEY M, et al. A comprehensive survey and analysis of generative models in machine learning[J]. Computer Science Review, 2020, 38: 100285. |
28 | ZHANG Tuanfeng, TILKE P, DUPONT E, et al. Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks[J]. Petroleum Science, 2019, 16(3): 541-549. |
29 | CHAN S, ELSHEIKH A H. Parametric generation of conditional geological realizations using generative neural networks[J]. Computational Geosciences, 2019, 23(5): 925-952. |
30 | GAO Xiaoyang, HE Wenxiang, HU Yong. Modeling of meandering river deltas based on the conditional generative adversarial network[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107352. |
31 | MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014-11-06)[2022-01-03]. . |
32 | HUANG Huimin, LIN Lanfen, TONG Ruofeng, et al. UNet 3+: A full-scale connected UNet for medical image segmentation[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, 2020. Piscataway: IEEE, 2020: 1055-1059. |
33 | POMAR L. Ecological control of sedimentary accommodation: Evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 175(1/4): 249-272. |
34 | POMAR L, HAQ B U. Decoding depositional sequences in carbonate systems: Concepts vs experience[J]. Global and Planetary Change, 2016, 146: 190-225. |
35 | POMAR L. Chapter 12-Carbonate systems[M]//Scarselli N, Adam J, Chiarella D, et al. Regional Geology and Tectonics: Volume 1: Principles of Geologic Analysis. 2nd ed. Amsterdam: Elsevier, 2020: 235-311. |
36 | 段太忠, 王光付, 廉培庆, 等. 油气藏定量地质建模方法与应用[M]. 北京: 石油工业出版社, 2019. |
DUAN Taizhong, WANG Guangfu, LIAN Peiqing, et al. Quantitative geological modeling method and application of oil and gas reservoir[M]. Beijing: Petroleum Industry Press, 2019. | |
37 | 马永生, 蔡勋育. 四川盆地川东北区二叠系-三叠系天然气勘探成果与前景展望[J]. 石油与天然气地质, 2006, 27(6): 741-750. |
MA Yongsheng, CAI Xunyu. Exploration achievements and prospects of the Permian-Triassic natural gas in northeastern Sichuan Basin[J]. Oil & Gas Geology, 2006, 27(6): 741-750. | |
38 | 姜贻伟, 刘红磊, 杨福涛, 等. 震控储层建模方法及其在普光气田的应用[J]. 天然气工业, 2011, 31(3): 14-17, 106. |
JIANG Yiwei, LIU Honglei, YANG Futao, et al. Seismic-constrained reservoir modeling and its application in the Puguang gas field[J]. Natural Gas Industry, 2011, 31(3): 14-17, 106. | |
39 | 马永生, 储昭宏. 普光气田台地建造过程及其礁滩储层高精度层序地层学研究[J]. 石油与天然气地质, 2008, 29(5): 548-556. |
MA Yongsheng, CHU Zhaohong. Building-up process of carbonate platform and high-resolution sequence stratigraphy of reservoirs of reef and oolitic shoal facies in Puguang gas field[J]. Oil & Gas Geology, 2008, 29(5): 548-556. | |
40 | 马永生, 蔡勋育, 郭旭升, 等. 普光气田的发现[J]. 中国工程科学, 2010, 12(10): 14-23. |
MA Yongsheng, CAI Xunyu, GUO Xusheng, et al. The discovery of Puguang gas field[J]. Strategic Study of CAE, 2010, 12(10): 14-23. |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[3] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[4] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[5] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[6] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[7] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[8] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[9] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[10] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[11] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
[12] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[13] | 刘昇, 范存辉, 张本健, 张亚, 王尉, 罗冰, 白晓亮. 四川盆地东部中二叠统茅口组孤峰段展布特征及其油气地质意义[J]. 石油与天然气地质, 2023, 44(4): 993-1008. |
[14] | 吴冬, 邓虎成, 熊亮, 曹凯旋, 董晓霞, 赵勇, 魏力民, 王同, 马若龙. 四川盆地及其周缘下寒武统麦地坪组-筇竹寺组层序充填和演化模式[J]. 石油与天然气地质, 2023, 44(3): 764-777. |
[15] | 王濡岳, 胡宗全, 赖富强, 刘粤蛟, 邬忠虎, 何建华, 邹冠贵, 王鹏威, 李治昊. 川东北地区下侏罗统自流井组大安寨段陆相页岩脆性特征及其控制因素[J]. 石油与天然气地质, 2023, 44(2): 366-378. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||