石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (2): 379-392.doi: 10.11743/ogg20230210
王鹏威1(), 刘忠宝1, 张殿伟1, 李雄2, 杜伟1, 刘皓天2, 李鹏1, 王濡岳1
收稿日期:
2022-10-21
修回日期:
2023-01-09
出版日期:
2023-03-17
发布日期:
2023-03-17
第一作者简介:
王鹏威(1986—),男,博士、副研究员,非常规油气地质。E-mail:基金项目:
Pengwei WANG1(), Zhongbao LIU1, Dianwei ZHANG1, Xiong LI2, Wei DU1, Haotian LIU2, Peng LI1, Ruyue WANG1
Received:
2022-10-21
Revised:
2023-01-09
Online:
2023-03-17
Published:
2023-03-17
摘要:
有机质的丰度、显微组分及微观赋存方式等多种因素对海相页岩中有机质孔隙的发育具有重要控制作用,但相关研究目前仍较为缺乏。基于有机地球化学与有机岩石学分析、扫描电镜、有机质能谱测试等技术手段,对川东地区二叠系茅口组和吴家坪组过成熟海相页岩有机质丰度(TOC)、有机显微组分及有机质赋存方式开展系统对比分析,探讨了有机质富集对有机质孔隙发育的控制作用,并建立了有机质孔隙发育演化模式。研究结果表明:①吴家坪组和茅口组虽均具有“TOC高和原始组分以藻类体为主”的特征,但有机质的赋存方式存在差异。茅口组TOC相对较高,有机质以顺层富集和局部富集等方式赋存;吴家坪组TOC相对较低,有机组分中见结构镜质体和无结构镜质体,有机质以分散或局部富集等方式赋存。②有利的原始有机组分类型的存在是有机质孔隙发育的前提,藻类体等腐泥组分中发育丰富的有机质孔隙,而镜质体等腐殖组分中有机质孔隙不发育。TOC控制了有机质孔隙的发育程度,在一定范围内,TOC越高,有机质孔隙越发育。有机质赋存方式影响有机质孔隙的保存,分散型有机质赋存在脆性矿物格架之内,有机质孔隙保存好;局部富集型和顺层富集型有机质边缘无有效格架支撑,抗压实能力较弱,有机质孔隙保存条件差。
中图分类号:
1 | 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. |
JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10. | |
2 | 郭旭升. 南方海相页岩气 “二元富集” 规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218. |
GUO Xusheng. Rules of two-factor enrichment for marine shale gas in southern China——understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218. | |
3 | MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. |
4 | 宋岩, 高凤琳, 唐相路, 等. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报, 2020, 41(12): 1501-1512. |
SONG Yan, GAO Fenglin, TANG Xianglu, et al. Influencing factors of pore structure differences between marine and terrestrial shale reservoirs[J]. Acta Petrolei Sinica, 2020, 41(12): 1501-1512. | |
5 | ZHU Hongjian, JU Yiwen, QI Yu, et al. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel, 2018, 228: 272-289. |
6 | 腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699. |
TENG Geer, LU Longfei, YU Lingjie, et al. Formation, preservation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48(4): 687-699. | |
7 | 王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364. | |
8 | 刘忠宝, 高波, 胡宗全, 等. 高演化富有机质页岩储层特征及孔隙形成演化——以黔南地区下寒武统九门冲组为例[J]. 石油学报, 2017, 38(12): 1381-1389. |
LIU Zhongbao, GAO Bo, HU Zongquan, et al. Reservoir characteristics and pores formation and evolution of high maturated organic rich shale: A case study of Lower Cambrian Jiumenchong Formation, southern Guizhou area[J]. Acta Petrolei Sinica, 2017, 38(12): 1381-1389. | |
9 | 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30. |
MA Zhongliang, ZHENG Lunju, XU Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30. | |
10 | 王濡岳, 龚大建, 冷济高, 等. 黔北地区下寒武统牛蹄塘组页岩储层发育特征: 以岑巩区块为例[J]. 地学前缘, 2017, 24(6): 286-299. |
WANG Ruyue, GONG Dajian, LENG Jigao, et al. Developmental characteristics of the Lower Cambrian Niutitang shale reservoir in Northern Guizhou area: A case study in the Cengong Block[J]. Earth Science Frontiers, 2017, 24(6): 286-299. | |
11 | 吉利明, 吴远东, 贺聪, 等. 富有机质泥页岩高压生烃模拟与孔隙演化特征[J]. 石油学报, 2016, 37(2): 172-181. |
JI Liming, WU Yuandong, HE Cong, et al. High-pressure hydrocarbon-generation simulation and pore evolution characteristics of organic-rich mudstone and shale[J]. Acta Petrolei Sinica, 2016, 37(2): 172-181. | |
12 | 刘文平, 张成林, 高贵冬, 等. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J]. 石油学报, 2017, 38(2): 175-184. |
LIU Wenping, ZHANG Chenglin, GAO Guidong, et al. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2017, 38(2): 175-184. | |
13 | 王鹏威, 张亚雄, 刘忠宝, 等. 四川盆地东部涪陵地区自流井组陆相页岩储层微裂缝发育特征及其对页岩气富集的意义[J]. 天然气地球科学, 2021, 32(11): 1724-1734. |
WANG Pengwei, ZHANG Yaxiong, LIU Zhongbao, et al. Microfracture development at Ziliujing lacustrine shale reservoir and its significance for shale-gas enrichment at Fuling area in eastern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(11): 1724-1734. | |
14 | 王鹏威, 刘忠宝, 金之钧, 等. 川西南地区下寒武统筇竹寺组页岩气纵向差异富集主控因素[J]. 地球科学, 2019, 44(11): 3628-3638. |
WANG Pengwei, LIU Zhongbao, JIN Zhijun, et al. Main control factors of shale gas differential vertical enrichment in Lower Cambrian Qiongzhusi Formation, southwest Sichuan Basin, China[J]. Earth Science, 2019, 44(11): 3628-3638. | |
15 | 腾格尔, 秦建中, 付小东, 等. 川东北地区上二叠统吴家坪组烃源岩评价[J]. 古地理学报, 2010, 12(3): 334-345. |
TENG Geer, QIN Jianzhong, FU Xiaodong, et al. Hydrocarbon source rocks evaluation of the Upper Permian Wujiaping Formation in northeastern Sichuan area[J]. Journal of Palaeogeography, 2010, 12(3): 334-345. | |
16 | 王鹏威, 刘忠宝, 李雄, 等. 川东红星地区上二叠统吴家坪组页岩成烃成储条件差异及其地质意义[J]. 石油与天然气地质, 2022, 45 (5): 1102-1114. |
WANG Pengwei, LIU Zhongbao, LI Xiong, et al. Development of the Upper Permian Wujiaping shale in Hongxing area,eastern Sichuan Basin,and its significance to shale gas enrichment [J]. Oil & Gas Geology, 2022, 45 (5): 1102-1114. | |
17 | 曹清古, 刘光祥, 张长江, 等. 四川盆地晚二叠世龙潭期沉积环境及其源控作用分析[J]. 石油实验地质, 2013, 35(1): 36-41. |
CAO Qinggu, LIU Guangxiang, ZHANG Changjiang, et al. Sedimentary environment and its controlling on source rocks during Late Permian in Sichuan Basin[J]. Petroleum Geology & Experiment, 2013, 35(1): 36-41. | |
18 | 陈建平, 李伟, 倪云燕, 等. 四川盆地二叠系烃源岩及其天然气勘探潜力(二)——烃源岩地球化学特征与天然气资源潜力[J]. 天然气工业, 2018, 38(6): 33-45. |
CHEN Jianping, LI Wei, NI Yunyan, et al. The Permian source rocks in the Sichuan Basin and its natural gas exploration potential (part 2): Geochemical characteristics of source rocks and latent capacity of natural gas resources[J]. Natural Gas Industry, 2018, 38(6): 33-45. | |
19 | 冯庆来, 刘本培, 叶玫. 中国南方古特提斯阶段的构造古地理格局[J]. 地质科技情报, 1996, 15(3): 1-6. |
FENG Qinglai, LIU Benpei, YE Mei. Tectonic palaeogeographic pattern of palaeotethyan stage in South China[J]. Geological Science and Technology Information, 1996, 15(3): 1-6. | |
20 | 王鹏威, 刘光祥, 刘忠宝, 等. 川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩气富集条件及主控因素[J]. 天然气地球科学, 2022, 33(3): 431-440. |
WANG Pengwei, LIU Guangxiang, LIU Zhongbao, et al. Shale gas enrichment conditions and controlling factors of Upper Permian Longtan Formation transitional shale in southeast Sichuan to northwest Guizhou[J]. Natural Gas Geoscience, 2022, 33(3): 431-440. | |
21 | 卢龙飞, 蔡进功, 刘文汇, 等. 泥岩与沉积物中粘土矿物吸附有机质的三种赋存状态及其热稳定性[J]. 石油与天然气地质, 2013, 34(1): 16-26. |
LU Longfei, CAI Jingong, LIU Wenhui, et al. Occurrence and thermostability of absorbed organic matter on clay minerals in mudstones and muddy sediments[J]. Oil & Gas Geology, 2013, 34(1): 16-26. | |
22 | 张毅. 上扬子北缘晚二叠世大隆组有机质类型、分布规律及赋存控制因素[D]. 武汉: 中国地质大学, 2017: 92. |
ZHANG Yi. Forms and distribution characteristics of organic matter and controlling factors on organic matter accumulation in the latest Permian Dalong Formation, northern margin of upper Yangtze[D]. Wuhan: China University of Geosciences, 2017: 92. | |
23 | 张永刚, 蔡进功, 许卫平, 等. 泥质烃源岩中有机质富集机制[M]. 北京: 石油工业出版社, 2007: 75-76. |
ZHANG Yonggang, CAI Jingong, XU Weiping, et al. Enrichment mechanism of organic matter in argillaceous source rocks[M]. Beijing: Petroleum Industry Press, 2007: 75-76. | |
24 | 陈曼霏, 何生, 易积正, 等. 涪陵页岩气田平桥区块页岩气储层有机质孔发育特征[J]. 石油学报, 2019, 40(4): 423-433. |
CHEN Manfei, HE Sheng, YI Jizheng, et al. Development characteristics of organic pore in shale gas reservoir of Wufeng Formation Member 1of Longmaxi Formation in Pingqiao Block, Fuling shale gas field[J]. Acta Petrolei Sinica, 2019, 40(4): 423-433. | |
25 | ARDAKANI O H, SANEI H, GHANIZADEH A, et al. Do all fractions of organic matter contribute equally in shale porosity? A case study from Upper Ordovician Utica Shale, southern Quebec, Canada[J]. Marine and Petroleum Geology, 2018, 92: 794-808. |
26 | 单长安, 张廷山, 梁兴, 等. 富镜质组和富惰质组高阶煤纳米孔隙结构特征[J]. 石油学报, 2020, 41(6): 723-736. |
SHAN Changan, ZHANG Tingshan, LIANG Xing, et al. Nanopore structure characteristics of high-rank vitrinite-and inertinite-coal[J]. Acta Petrolei Sinica, 2020, 41(6): 723-736. | |
27 | 刘忠宝, 胡宗全, 刘光祥, 等. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素[J]. 石油与天然气地质, 2021, 42(1): 136-145. |
LIU Zhongbao, HU Zongquan, LIU Guangxiang, et al. Pore characteristics and controlling factors of continental shale reservoirs in the Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 136-145. | |
28 | 高凤琳, 宋岩, 梁志凯, 等. 陆相页岩有机质孔隙发育特征及成因——以松辽盆地长岭断陷沙河子组页岩为例[J]. 石油学报, 2019, 40(9): 1030-1044. |
GAO Fenglin, SONG Yan, LIANG Zhikai, et al. Development characteristics of organic pore in the continental shale and its genetic mechanism: A case study of Shahezi Formation shale in the Changling fault depression of Songliao Basin[J]. Acta Petrolei Sinica, 2019, 40(9): 1030-1044. | |
29 | KO L T, LOUCKS R G, ZHANG Tongwei, et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722. |
30 | 康广星, 徐学敏, 汪双清, 等. 古生界干酪根热演化模拟实验[J]. 天然气地球科学, 2019, 30(4): 593-602. |
KANG Guangxing, XU Xuemin, WANG Shuangqing, et al. Experimental study on thermal evolution of kerogen in Paleozoic[J]. Natural Gas Geoscience, 2019, 30(4): 593-602. | |
31 | TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin: Springer, 1984. |
32 | VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5): 719-833. |
33 | 谢国梁, 刘树根, 焦堃, 等. 受显微组分控制的深层页岩有机质孔隙:四川盆地五峰组—龙马溪组有机质组分分类及其孔隙结构特征[J]. 天然气工业, 2021, 41(9): 23-34. |
XIE Guoliang, LIU Shugen, JIAO Kun, et al. Organic pores in deep shale controlled by macerals: Classification and pore characteristics of organic matter components in Wufeng Formation-Longmaxi Formation of the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 23-34. | |
34 | 刘文平, 周政, 吴娟, 等. 川南盆地长宁页岩气田五峰组-龙马溪组成藏动力学过程及其意义[J]. 南京大学学报(自然科学), 2020, 56(3): 393-404. |
LIU Wenping, ZHOU Zheng, WU Juan, et al. Hydrocarbon generation and shale gas accumulation in the Wufeng-Longmaxi formations, Changning shale-gas field, southern Sichuan Basin[J]. Journal of Nanjing University(Natural Science), 2020, 56(3): 393-404. | |
35 | 卢龙飞, 刘伟新, 俞凌杰, 等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 2020, 42(3): 363-370. |
LU Longfei, LIU Weixin, YU Lingjie, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology and Experiment, 2020, 42(3): 363-370. | |
36 | 赵杏媛, 何东博. 黏土矿物与页岩气[J]. 新疆石油地质, 2012, 33(6): 643-647, 633. |
ZHAO Xingyuan, HE Dongbo. Clay minerals and shale gas[J]. Xinjiang Petroleum Geology, 2012, 33(6): 643-647, 633. | |
37 | 袁玉松, 孙冬胜, 周雁, 等. 中上扬子地区印支期以来抬升剥蚀时限的确定[J]. 地球物理学报, 2010, 53(2): 362-369. |
YUAN Yusong, SUN Dongsheng, ZHOU Yan, et al. Determination of onset of uplifting for the Mid-Upper Yangtze area after Indosinian event[J]. Chinese Journal of Geophysics, 2010, 53(2): 362-369. | |
38 | 石红才, 施小斌. 中、上扬子白垩纪以来的剥蚀过程及构造意义——低温年代学数据约束[J]. 地球物理学报, 2014, 57(8): 2608-2619. |
SHI Hongcai, SHI Xiaobin. Exhumation process of Middle-Upper Yangtze since Cretaceous and its tectonic significance: Low-temperature thermochronology constraints[J]. Chinese Journal of Geophysics, 2014, 57(8): 2608-2619. | |
39 | 王濡岳, 胡宗全, 周彤, 等. 四川盆地及其周缘五峰组-龙马溪组页岩裂缝发育特征及其控储意义[J]. 石油与天然气地质, 2021, 42(6): 1295-1306. |
WANG Ruyue, HU Zongquan, ZHOU Tong, et al. Characteristics of fractures and their significance for reservoirs in Wufeng-Longmaxi shale, Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2021, 42(6): 1295-1306. | |
40 | 聂海宽, 何治亮, 刘光祥, 等. 四川盆地五峰组—龙马溪组页岩气优质储层成因机制[J]. 天然气工业, 2020, 40(6): 31-41. |
NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Genetic mechanism of high-quality shale gas reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(6): 31-41. | |
41 | 王濡岳, 胡宗全, 董立, 等. 页岩气储层表征评价技术进展与思考[J]. 石油与天然气地质, 2021, 42(1): 54-65. |
WANG Ruyue, HU Zongquan, DONG Li, et al. Advancement and trends of shale gas reservoir characterization and evaluation[J]. Oil & Gas Geology, 2021, 42(1): 54-65. | |
42 | 聂海宽, 李沛, 党伟, 等. 四川盆地及周缘奥陶系—志留系深层页岩气富集特征与勘探方向[J]. 石油勘探与开发, 2022, 49(4): 648-659. |
NIE Haikuan, LI Pei, DANG Wei, et al. Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan Basin and its surrounding areas, China[J]. Petroleum Exploration and Development, 2022, 49(4): 648-659. | |
43 | WANG Hongyan, ZHOU Shangwen, LI Shuangshuang, et al. Comprehensive characterization and evaluation of deep shales from Wufeng-Longmaxi Formation by LF-NMR technology[J]. Unconventional Resources, 2022, 2: 1-11. |
44 | WANG Pengwei, LIU Zhongbao, ZHANG Dianwei, et al. Source rock and reservoir qualities of middle Jurassic Lianggaoshan lacustrine shale at Fuxing area, Sichuan Basin: Implication for shale-oil enrichment[J]. Unconventional Resources, 2023, 3: 37-43. |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[3] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[4] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[5] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[6] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[7] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[8] | 侯读杰, 吴克强, 尤丽, 张自鸣, 李雅君, 熊小峰, 徐敏, 严夏泽, 陈威合, 程熊. 琼东南盆地陆源海相烃源岩有机质富集机理[J]. 石油与天然气地质, 2024, 45(1): 31-43. |
[9] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[10] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[11] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[12] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[13] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
[14] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[15] | 刘昇, 范存辉, 张本健, 张亚, 王尉, 罗冰, 白晓亮. 四川盆地东部中二叠统茅口组孤峰段展布特征及其油气地质意义[J]. 石油与天然气地质, 2023, 44(4): 993-1008. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||