石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (5): 1218-1230.doi: 10.11743/ogg20230511
吴进1,2(), 罗情勇1,2(), 钟宁宁1,2, 方子龙1,2, 段金材1,2, 张无忌1,2, 崔雅鑫1,2
收稿日期:
2023-03-07
修回日期:
2023-08-15
出版日期:
2023-10-19
发布日期:
2023-10-19
通讯作者:
罗情勇
E-mail:wujin209579@163.com;qingyong.luo@cup.edu.cn
第一作者简介:
吴进(1995—),男,博士研究生,有机岩石学与油气地球化学。E?mail: 基金项目:
Jin WU1,2(), Qingyong LUO1,2(), Ningning ZHONG1,2, Zilong FANG1,2, Jincai DUAN1,2, Wuji ZHANG1,2, Yaxin CUI1,2
Received:
2023-03-07
Revised:
2023-08-15
Online:
2023-10-19
Published:
2023-10-19
Contact:
Qingyong LUO
E-mail:wujin209579@163.com;qingyong.luo@cup.edu.cn
摘要:
华北北部中元古界下马岭组页岩是中国最古老的海相烃源岩之一,生源简单,有机质丰度高且成熟度低,但目前仍缺少对其显微组分面貌和成因的详细研究。通过有机岩石学方法,研究了下马岭组页岩中显微组分的组成、特征及其成因。结果表明,下马岭组页岩中显微组分组成较复杂,包括沥青质体、层状藻类体、类镜质组颗粒、矿物沥青基质和沥青铀钍矿。在显微镜下观察到类镜质组颗粒、沥青质体和层状藻类体存在光性过渡变化,它们的随机反射率呈现出逐渐减小的趋势,荧光逐渐增强。这种光性的过渡变化与它们的成因紧密相关。随着缺氧微生物降解作用的逐渐增强,层状藻类体会逐步降解形成沥青质体和类镜质组颗粒。有机质遭受放射性矿物颗粒的离子辐射聚合作用后形成沥青铀钍矿,其中放射性矿物颗粒主要为独居石和钍石。放射性矿物颗粒的热辐射对有机质成熟度有一定的影响,但是影响范围较小。
中图分类号:
表1
华北北部中元古界下马岭组页岩TOC、热解参数和元素分析参数[25]"
样品编号 | 采样类型 | TOC/% | S1/(mg/g) | S2/(mg/g) | (S1+S2)/(mg/g) | Tmax/℃ | HI/(mg/g) | VLM | EqRo/% | U含量/10-6 | Th含量/10-6 |
---|---|---|---|---|---|---|---|---|---|---|---|
XML-1 | 露头 | 8.48 | 0.96 | 34.25 | 35.21 | 434 | 404 | 0.56 | 0.42 | 2.49 | 7.70 |
XML-2 | 露头 | 2.19 | 0.50 | 7.03 | 7.53 | 432 | 321 | — | — | 1.93 | 6.14 |
XML-3 | 露头 | 4.30 | 0.71 | 15.85 | 16.56 | 434 | 368 | 0.53 | 0.39 | 2.81 | 5.74 |
XML-4 | 露头 | 14.10 | 1.66 | 62.73 | 64.39 | 442 | 445 | 0.54 | 0.39 | 2.69 | 8.59 |
XML-5 | 露头 | 5.80 | 0.45 | 18.96 | 19.41 | 441 | 327 | 0.58 | 0.44 | 2.45 | 10.20 |
XML-6 | 露头 | 4.56 | 0.72 | 21.50 | 22.22 | 439 | 472 | 0.60 | 0.46 | 3.01 | 6.11 |
XML-7 | 露头 | 2.84 | 0.23 | 8.94 | 9.17 | 440 | 315 | 0.48 | 0.33 | 2.91 | 5.22 |
表2
华北北部中元古界下马岭组页岩样品中类镜质组颗粒和沥青质体随机反射率"
样品 编号 | 类镜质组颗粒随机反射率 | 沥青质体随机反射率 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
最小值/% | 最大值/% | 平均值/% | 标准偏差/% | 测点数/个 | 最小值/% | 最大值/% | 平均值/% | 标准偏差/% | 测点数/个 | |
XML-1 | 0.45 | 0.66 | 0.56 | 0.06 | 30 | 0.16 | 0.26 | 0.19 | 0.03 | 30 |
XML-2 | — | — | — | — | — | 0.15 | 0.37 | 0.24 | 0.06 | 30 |
XML-3 | 0.47 | 0.63 | 0.53 | 0.04 | 30 | 0.23 | 0.39 | 0.30 | 0.05 | 30 |
XML-4 | 0.48 | 0.60 | 0.54 | 0.03 | 30 | 0.28 | 0.36 | 0.31 | 0.02 | 30 |
XML-5 | 0.49 | 0.68 | 0.58 | 0.05 | 30 | 0.20 | 0.25 | 0.23 | 0.01 | 30 |
XML-6 | 0.47 | 0.68 | 0.60 | 0.06 | 30 | 0.21 | 0.23 | 0.25 | 0.03 | 30 |
XML-7 | 0.44 | 0.56 | 0.48 | 0.03 | 30 | 0.22 | 0.34 | 0.29 | 0.04 | 30 |
表4
华北北部中元古界下马岭组页岩中沥青铀钍矿的放射性矿物颗粒元素组成"
样品 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 独居石 | 锆石 | 钍石 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
元素 含量/% | O | 27.67 | 37.61 | 27.66 | 27.49 | 31.16 | 26.12 | 37.55 | 20.95 | nc | nc | nc |
Si | 0 | 12.19 | 0 | 0.04 | 0.14 | 0 | 5.58 | 9.14 | nc | 14.96 | 8.79 | |
P | 13.80 | 13.37 | 14.98 | 13.26 | 14.26 | 13.64 | 0 | 1.14 | 13.09 | nc | nc | |
Ca | 0 | 0 | 0 | 0 | 0.73 | 0 | 0 | 0.38 | nc | nc | nc | |
Y | 0 | 0 | 0 | 0 | 1.41 | 0 | 0 | 1.10 | nc | nc | nc | |
La | 14.16 | 4.69 | 12.84 | 15.60 | 8.80 | 11.16 | 0 | 0 | 11.08 | nc | nc | |
Ce | 32.01 | 25.03 | 32.71 | 34.76 | 23.22 | 30.27 | 0 | 0 | 23.05 | nc | nc | |
Pr | 1.51 | 0 | 1.73 | 0.63 | 2.43 | 2.67 | 0 | 0 | nc | nc | nc | |
Nd | 8.62 | 7.11 | 10.07 | 5.93 | 8.95 | 12.38 | 0 | 0 | 9.43 | nc | nc | |
Sm | 0 | 0 | 0 | 0 | 0.87 | 0 | 0 | 0 | nc | nc | nc | |
Th | 2.23 | 0 | 0 | 2.29 | 6.80 | 0 | 56.87 | 67.29 | 5.27 | nc | 69.88 | |
U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | nc | nc | nc | |
Zr | 0 | 0 | 0 | 0 | 1.22 | 0 | 0 | 0 | nc | 47.38 | nc | |
Hf | 0 | 0 | 0 | 0 | 0 | 2.92 | 0 | 0 | nc | nc | nc | |
总含量 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | — | — | — | |
矿物颗粒 | 独居石 | 独居石 | 独居石 | 独居石 | 独居石 | 独居石 | 钍石 | 钍石 | — | — | — |
1 | LUO Qingyong, GEORGE S C, XU Yaohui, et al. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources[J]. Organic Geochemistry, 2016, 99: 23-37. |
2 | 王铁冠. 燕山地区震旦亚界油苗的原生性及其石油地质意义[J]. 石油勘探与开发, 1980, 7(2): 34-52. |
WANG Tieguan. The originality of sub-Sinian oil seedlings in Yanshan area and its petroleum geological significance[J]. Petroleum Exploration and Development, 1980, 7(2): 34-52. | |
3 | 王晓梅, 张水昌, 王华建, 等. 烃源岩非均质性及其意义——以中国元古界下马岭组页岩为例[J]. 石油勘探与开发, 2017, 44(1): 32-39. |
WANG Xiaomei, ZHANG Shuichang, WANG Huajian, et al. Significance of source rock heterogeneities: A case study of Mesoproterozoic Xiamaling Formation shale in North China[J]. Petroleum Exploration and Development, 2017, 44(1): 32-39. | |
4 | ZHANG Shuichang, WANG Xiaomei, HAMMARLUND E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): E1406-E1413. |
5 | ZHANG Shuichang, WANG Xiaomei, WANG Huajian, et al. Sufficient oxygen for animal respiration 1,400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736. |
6 | SUMMONS R E, POWELL T G, BOREHAM C J. Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, northern Australia: Ⅲ. Composition of extractable hydrocarbons[J]. Geochimica et Cosmochimica Acta, 1988, 52(7): 1747-1763. |
7 | CRICK I H, BOREHAM C J, COOK A C, et al. Petroleum geology and geochemistry of Middle Proterozoic McArthur Basin, northern Australia II: Assessment of source rock potential[J]. AAPG Bulletin, 1988, 72(12): 1495-1514. |
8 | CRICK I H. Petrological and maturation characteristics of organic matter from the Middle Proterozoic McArthur Basin, Australia[J]. Australian Journal of Earth Sciences, 1992, 39(4): 501-519. |
9 | CHAKRABORTY P P. Facies architecture and sequence development in a Neoproterozoic carbonate ramp: Lakheri Limestone Member, Vindhyan Supergroup, Central India[J]. Precambrian Research, 2004, 132(1/2): 29-53. |
10 | DAYAL A M, MANI D, MADHAVI T, et al. Organic geochemistry of the Vindhyan sediments: Implications for hydrocarbons[J]. Journal of Asian Earth Sciences, 2014, 91: 329-338. |
11 | FEDOROV D L. The stratigraphy and hydrocarbon potential of the Riphean-Vendian (Middle-Late Proterozoic) succession on the Russian platform[J]. Journal of Petroleum Geology, 1997, 20(2): 205-221. |
12 | ZDANAVICIUTE O, LAZAUSKIENE J. Hydrocarbon migration and entrapment in the Baltic Syneclise[J]. Organic Geochemistry, 2004, 35(4): 517-527. |
13 | LUO Qingyong, ZHONG Ningning, QIN Jing, et al. Thucholite in Mesoproterozoic shales from northern north China: Occurrence and indication for thermal maturity[J]. International Journal of Coal Geology, 2014, 125: 1-9. |
14 | LUO Genming, HALLMANN C, XIE Shucheng, et al. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation[J]. Geochimica et Cosmochimica Acta, 2015, 151: 150-167. |
15 | WANG Xiaomei, ZHAO Wenzhi, ZHANG Shuichang, et al. The aerobic diagenesis of Mesoproterozoic organic matter[J]. Scientific Reports, 2018, 8(1): 13324. |
16 | ZHANG Shuichang, WANG Xiaomei, WANG Huajian, et al. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels[J]. Biogeosciences, 2017, 14(8): 2133-2149. |
17 | CANFIELD D E, ZHANG Shuichang, WANG Huajian, et al. A Mesoproterozoic iron formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): E3895-E3904. |
18 | SHI Miao, YU Bingsong, ZHANG Jinchuan, et al. Evolution of organic pores in marine shales undergoing thermocompression: A simulation experiment using hydrocarbon generation and expulsion[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 406-413. |
19 | SONG Dongjun, Jincai TUO, ZHANG Mingfeng, et al. Hydrocarbon generation potential and evolution of pore characteristics of Mesoproterozoic shales in North China: Results from semi-closed pyrolysis experiments[J]. Journal of Natural Gas Science and Engineering, 2019, 62: 171-183. |
20 | 王鹏威, 刘忠宝, 张殿伟, 等. 川东地区二叠系海相页岩有机质富集对有机质孔发育的控制作用[J]. 石油与天然气地质, 2023, 44(2): 379-392. |
WANG Pengwei, LIU Zhongbao, ZHANG Dianwei, et al. Control of organic matter enrichment on organic pore development in the Permian marine organic-rich shale, eastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(2): 379-392. | |
21 | 秦婧, 钟宁宁, 齐雯, 等. 华北北部洪水庄组有机岩石学[J]. 石油与天然气地质, 2010, 31(3): 367-374. |
QIN Jing, ZHONG Ningning, QI Wen, et al. Organic petrology of the Hongshuizhuang Formation in northern North China[J]. Oil & Gas Geology, 2010, 31(3): 367-374. | |
22 | 刘岩, 钟宁宁, 田永晶, 等. 中国最老古油藏——中元古界下马岭组沥青砂岩古油藏[J]. 石油勘探与开发, 2011, 38(4): 503-512. |
LIU Yan, ZHONG Ningning, TIAN Yongjing, et al. The oldest oil accumulation in China: Meso-Proterozoic Xiamaling Formation bituminous sandstone reservoirs[J]. Petroleum Exploration and Development, 2011, 38(4): 503-512. | |
23 | WANG Hongzhen, QIAO Xiufu. Proterozoic stratigraphy and tectonic framework of China[J]. Geological Magazine, 1984, 121(6): 599-614. |
24 | 柳永清, 刘晓文, 李寅. 燕山中、新元古代裂陷槽构造旋回层序研究──兼论裂陷槽构造旋回概念及级序的划分[J]. 地球学报, 1997, 18(2): 142-149. |
LIU Yongqing, LIU Xiaowen, LI Yin. Tectonic cyclic sequences in the Mesoproterozoic and Neoproterozoic aulacogen of Yanshan-A concept of aulacogen tectonic cycle and its hierarchy[J]. Acta Geoscientica Sinica, 1997, 18(2): 142-149. | |
25 | WU Jin, LI Hao, GOODARZI F, et al. Geochemistry and depositional environment of the Mesoproterozoic Xiamaling shales, northern North China[J]. Journal of Petroleum Science and Engineering, 2022, 215(Part B): 110730. |
26 | 乔秀夫, 高林志, 张传恒. 中朝板块中、新元古界年代地层柱与构造环境新思考[J]. 地质通报, 2007, 26(5): 503-509. |
QIAO Xiufu, GAO Linzhi, ZHANG Chuanheng. New idea of the Meso- and Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate[J]. Geological Bulletin of China, 2007, 26(5): 503-509. | |
27 | 潘建国, 曲永强, 马瑞, 等. 华北地块北缘中新元古界沉积构造演化[J]. 高校地质学报, 2013, 19(1): 109-122. |
PAN Jianguo, QU Yongqiang, MA Rui, et al. Sedimentary and tectonic evolution of the Meso-Neoproterozoic strata in the northern margin of the north China block[J]. Geological Journal of China Universities, 2013, 19(1): 109-122. | |
28 | 张琴, 周琛, 田寒云, 等. 华北龙山地区青白口系混积岩层序地层格架及发育模式[J]. 石油与天然气地质, 2022, 43(4): 792-803. |
ZHANG Qin, ZHOU Chen, TIAN Hanyun, et al. Sequence stratigraphic framework and model of mixed siliciclastic-carbonate rocks in the Qingbaikouan System, Longshan area, North China[J]. Oil & Gas Geology, 2022, 43(4): 792-803. | |
29 | 王铁冠, 钟宁宁, 王春江, 等. 冀北坳陷下马岭组底砂岩古油藏成藏演变历史与烃源剖析[J]. 石油科学通报, 2016, 1(1): 24-37. |
WANG Tieguan, ZHONG Ningning, WANG Chunjiang, et al. Source beds and oil entrapment-alteration histories of fossil-oil-reservoirs in the Xiamaling Formation basal sandstone, Jibei Depression[J]. Petroleum Science Bulletin, 2016, 1(1): 24-37. | |
30 | 高林志, 张传恒, 史晓颖, 等. 华北古陆下马岭组归属中元古界的锆石SHRIMP年龄新证据[J]. 科学通报, 2008, 53(21): 2617-2623. |
GAO Linzhi, ZHANG Chuanheng, SHI Xiaoying, et al. New evidence of zircon SHRIMP age of Xiamaling Formation in North China ancient land belongs to Mesoproterozoic[J]. Chinese Science Bulletin, 2008, 53(21): 2617-2623. | |
31 | 高林志, 张传恒, 史晓颖, 等. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年[J]. 地质通报, 2007, 26(3): 249-255. |
GAO Linzhi, ZHANG Chuanheng, SHI Xiaoying, et al. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China[J]. Geological Bulletin of China, 2007, 26(3): 249-255. | |
32 | WANG Xiaomei, ZHANG Shuichang, WANG Huajian, et al. Oxygen, climate and the chemical evolution of a 1 400 million year old tropical marine setting[J]. American Journal of Science, 2017, 317(8): 861-900. |
33 | 张惠民. 中国前寒武纪岩石的磁性地层学研究[J]. 前寒武纪研究进展, 2000, 23(1): 22-34. |
ZHANG Huimin. Magnetostratigraphy of Precanbrian rocks in China[J]. Progress in Precambrian Research, 2000, 23(1): 22-34. | |
34 | ZHANG Shuanhong, ZHAO Yue, SANTOSH M. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China craton: Implications for magmatism related to breakup of the Columbia supercontinent[J]. Precambrian Research, 2012, 222/223: 339-367. |
35 | 马奎, 王铜山, 胡素云, 等. 铀对古老烃源岩有机质生烃影响——以华北花园地区下马岭组元古界烃源岩为例[J]. 东北石油大学学报, 2017, 41(2): 35-43, 120. |
MA Kui, WANG Tongshan, HU Suyun, et al. Effect of radioactive uranium on the hydrocarbon generation of organic matter in the ancient source rocks: Case study of Proterozoic Xiamaling hydrocarbon source rocks in Xiahuayuan district of North China[J]. Journal of Northeast Petroleum University, 2017, 41(2): 35-43, 120. | |
36 | PETERSEN H I, SCHOVSBO N H, NIELSEN A T. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance[J]. International Journal of Coal Geology, 2013, 114: 1-18. |
37 | 吴朝东, 陈其英, 雷家锦. 湘西震旦—寒武纪黑色岩系的有机岩石学特征及其形成条件[J]. 岩石学报, 1999, 15(3): 453-462. |
WU Chaodong, CHEN Qiying, LEI Jiajin. The genesis factors and organic petrology of black shale series from the Upper Sinian to the Lower Cambrian, southwest of China[J]. Acta Petrologica Sinica, 1999, 15(3): 453-462. | |
38 | 李苗春, 丁海, 焦堃, 等. 湘西三岔地区牛蹄塘组黑色岩系有机岩石学特征[J]. 天然气地球科学, 2012, 23(6): 1077-1089. |
LI Miaochun, DING Hai, JIAO Kun, et al. Organic petrology of Niutitang Formation in Sancha, western Hunan Province, China[J]. Natural Gas Geoscience, 2012, 23(6): 1077-1089. | |
39 | 刘大锰, 金奎励, 艾天杰. 塔里木盆地海相烃源岩显微组分的分类及其岩石学特征[J]. 沉积学报, 1995, 13(S1): 124-133. |
LIU Dameng, JIN Kuili, AI Tianjie. A petrographic classification and organic petrological characteristics of macerals of the marine hydrocarbon source rocks in the Tarim Basin[J]. Acta Sedimentologica Sinica, 1995, 13(S1): 124-133. | |
40 | 王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364. | |
41 | LUO Qingyong, ZHANG Liang, ZHONG Ningning, et al. Thermal evolution behavior of the organic matter and a ray of light on the origin of vitrinite-like maceral in the Mesoproterozoic and Lower Cambrian black shales: Insights from artificial maturation[J]. International Journal of Coal Geology, 2021, 244: 103813. |
42 | 马新华, 闫海军, 陈京元, 等. 四川盆地安岳气田震旦系气藏叠合岩溶发育模式与主控因素[J]. 石油与天然气地质, 2021, 42(6): 1281-1294, 1333. |
MA Xinhua, YAN Haijun, CHEN Jingyuan, et al. Development patterns and constraints of superimposed karst reservoirs in Sinian Dengying Formation, Anyue Gas Field, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1281-1294, 1333. | |
43 | 罗情勇, 钟宁宁, 李美俊, 等. 前寒武纪—早古生代沉积岩显微组分分类、成因及演化[J]. 石油与天然气地质, 2023, 44(5). |
LUO Qingyong, ZHONG Ningning, LI Meijun, et al. Classfication, origins and evolution of macerals in the Precambrian-Eopaleozoin sedimentary rocks[J]. Oil & Gas Geology, 2023, 44(5). | |
44 | ALPERN B. Petrographie du kerogene[J]. Kerogene-Insoluble Organic Matter From Sedimentary Rocks, 1980: 339-384. |
45 | 王飞宇, 何萍, 程顶胜, 等. 下古生界高——过成熟烃源岩有机成熟度评价[J]. 天然气地球科学, 1994, 5(6): 1-14. |
WANG Feiyu, HE Ping, CHENG Dingsheng, et al. Evaluation of organic maturity of high-over-mature source rocks in Lower Paleozoic[J]. Natural Gas Geoscience, 1994, 5(6): 1-14. | |
46 | XIAO Xianming, WILKINS R W T, LIU Dehan, et al. Investigation of thermal maturity of Lower Palaeozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance—a Tarim Basin case study[J]. Organic Geochemistry, 2000, 31(10): 1041-1052. |
47 | SANEI H, PETERSEN H I, SCHOVSBO N H, et al. Petrographic and geochemical composition of kerogen in the Furongian (U. Cambrian) Alum Shale, central Sweden: Reflections on the petroleum generation potential[J]. International Journal of Coal Geology, 2014, 132: 158-169. |
48 | KHAN I, ZHONG Ningning, LUO Qingyong, et al. Maceral composition and origin of organic matter input in Neoproterozoic-Lower Cambrian organic-rich shales of Salt Range Formation, Upper Indus Basin, Pakistan[J]. International Journal of Coal Geology, 2020, 217: 103319. |
49 | ELLSWORTH H V. (I) Thuchohte, a remarkable primary carbon mineral from the vicinity of Parry Sound, Ontario. (Ⅱ) Cyrtolite intergrowth associated with the Parry Sound thucholite[J]. American Mineralogist, 1928, 13(8): 419-441. |
50 | RASMUSSEN B, GLOVER J E, FOSTER C B. Polymerisation of hydrocarbons by radioactive minerals in sedimentary rocks: Diagenetic and economic significance[M]//PARNELL J, KUCHA H, LANDAIS P. Bitumens in Ore Deposits. Berlin: Springer, 1993: 490-509. |
51 | RASMUSSEN B, GLOVER J E, ALEXANDER R. Hydrocarbon rims on monazite in Permian-Triassic arenites, northern Perth Basin, Western Australia: Pointers to the former presence of oil[J]. Geology, 1989, 17(2): 115-118. |
52 | DAHL J, HALLBERG R, KAPLAN I R. The effects of radioactive decay of uranium on elemental and isotopic ratios of alum shale kerogen[J]. Applied Geochemistry, 1988, 3(6): 583-589. |
53 | ENGLAND G L, RASMUSSEN B, KRAPEŽ B, et al. The origin of uraninite, bitumen nodules, and carbon seams in Witwatersrand gold-uranium-pyrite ore deposits, based on a Permo-Triassic analogue[J]. Economic Geology, 2001, 96(8): 1907-1920. |
54 | FÖRSTER H J, HARLOV D E, MILKE R. Composition and Th-U-total Pb ages of huttonite and thorite from Gillespie’s Beach, south Island, New Zealand[J]. The Canadian Mineralogist, 2000, 38(3): 675-684. |
55 | PICKEL W, KUS J, FLORES D, et al. Classification of liptinite-ICCP System 1994[J]. International Journal of Coal Geology, 2017, 169: 40-61. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[7] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[8] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[9] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[10] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[11] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[12] | 陈昌, 邱楠生, 高荣锦, 周晓龙, 孙永河, 杨琳琳, 付健. 渤海湾盆地辽河坳陷西部冷家—雷家地区中-深层超压成因及其对油气成藏的影响[J]. 石油与天然气地质, 2024, 45(1): 130-141. |
[13] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[14] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[15] | 侯读杰, 吴克强, 尤丽, 张自鸣, 李雅君, 熊小峰, 徐敏, 严夏泽, 陈威合, 程熊. 琼东南盆地陆源海相烃源岩有机质富集机理[J]. 石油与天然气地质, 2024, 45(1): 31-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||