石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (5): 1231-1242.doi: 10.11743/ogg20230512
梁岳立1(), 赵晓明1,2(), 张喜1,2, 李树新3, 葛家旺1,2, 聂志宏3, 张廷山1,2, 祝海华1,2
收稿日期:
2022-11-10
修回日期:
2023-05-26
出版日期:
2023-10-19
发布日期:
2023-10-19
通讯作者:
赵晓明
E-mail:liangyl6855@gmail.com;zhxim98@163.com
第一作者简介:
梁岳立(1993—),男,博士研究生,开发地质。E-mail: 基金项目:
Yueli LIANG1(), Xiaoming ZHAO1,2(), Xi ZHANG1,2, Shuxin LI3, Jiawang GE1,2, Zhihong NIE3, Tingshan ZHANG1,2, Haihua ZHU1,2
Received:
2022-11-10
Revised:
2023-05-26
Online:
2023-10-19
Published:
2023-10-19
Contact:
Xiaoming ZHAO
E-mail:liangyl6855@gmail.com;zhxim98@163.com
摘要:
海-陆过渡相页岩气具有良好的勘探前景,但其产层多、单层厚度薄且岩相变化快等特点导致高精度层序地层格架构建难度大,而旋回地层学理论为高频旋回划分和对比提供了有效的手段。基于岩心分析测试及测井资料,结合高分辨率层序地层学及旋回地层学理论,厘定了鄂尔多斯盆地东缘二叠系山西组23亚段海-陆过渡相页岩层系高精度层序界面。运用山23亚段GR值、Th/U元素含量比值及总有机碳含量(TOC)数据序列,滤波输出记录在沉积物中的天文轨道参数,通过对山23亚段岩性、测井数据及地化元素分析数据进行划分,识别了四级层序界面,405 kyr 长偏心率周期与四级层序耦合关系良好,山23亚段共划分为4个四级层序(PSQ1—4)。依据短偏心率与五级层序的对应关系,山23亚段共划分为12个五级层序(FSQ1—12)。在此基础之上,分析了轨道周期与高分辨率层序、海平面升降、沉积环境演化及岩相组合规律的耦合关系,长偏心率周期通过调节0.4 Myr 尺度海平面变化控制沉积相演化,影响优势页岩储层段的发育;短偏心率周期通过调节0.1 Myr尺度海平面变化控制沉积亚相演化,影响页岩甜点层的发育。基于旋回地层学理论提出的页岩层系高精度地层划分与对比技术,能为精准识别优势页岩层段及水平井导向设计提供理论借鉴及技术支撑。
中图分类号:
表1
鄂尔多斯盆地东缘A井区山西组山23亚段天文旋回信息识别"
井号 | 优势旋回厚度/m | 优势旋回厚度比 | 天文旋回厚度/m | |||
---|---|---|---|---|---|---|
405 kyr长偏心率周期 | 107~123 kyr短偏心率周期 | 41~46 kyr斜率周期 | ||||
A1 | 11.88/3.25/2.87/1.29 | 20.0/5.5/4.8/2.0 | 11.88 | 3.25 | 2.87 | 1.29 |
A2 | 14.90/3.95/1.93 | 20.0/5.3/2.6 | 14.90 | 3.95 | 3.95 | 1.93 |
A3 | 18.72/5.30/4.07/1.88 | 20.0/5.7/4.4/2.0 | 18.72 | 5.30 | 4.07 | 1.88 |
A4 | 16.10/4.66/3.72/1.78 | 20.0/5.8/4.6/2.0 | 16.10 | 4.66 | 3.72 | 1.78 |
1 | 郭旭升, 胡东风, 刘若冰, 等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业, 2018, 38(10): 11-18. |
GUO Xusheng, HU Dongfeng, LIU Ruobing, et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 11-18. | |
2 | KUANG Lichun, DONG Dazhong, HE Wenyuan, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 471-482. |
3 | 董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45. |
DONG Dazhong, QIU Zhen, ZHANG Leifu, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1): 29-45. | |
4 | 吴鹏, 高丽军, 李勇, 等. 海陆过渡相岩性频繁互层型页岩气潜力评价方法——以鄂尔多斯盆地临兴区块下二叠统山西组为例[J]. 天然气工业, 2022, 42(2): 28-39. |
WU Peng, GAO Lijun, LI Yong, et al. An evaluation method for shale gas potential of marine-continent transitional facies with frequent interbedded lithology: A case study on the Lower Permian Shanxi Formation in Linxing Block of the Ordos Basin[J]. Natural Gas Industry, 2022, 42(2): 28-39. | |
5 | 赵宗举, 陈轩, 潘懋, 等. 塔里木盆地塔中-巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究[J]. 地质学报, 2010, 84(4): 518-536. |
ZHAO Zongju, CHEN Xuan, PAN Mao, et al. Milankovitch cycles in the Upper Ordovician Lianglitage Formation in the Tazhong-Bachu area, Tarim Basin[J]. Acta Geologica Sinica, 2010, 84(4): 518-536. | |
6 | 常吟善, 覃军, 赵洪, 等. 基于米氏旋回理论的高频层序识别与划分——以东海陆架盆地平湖斜坡带宝云亭地区平三段为例[J]. 海洋地质与第四纪地质, 2019, 39(3): 51-60. |
CHANG Yinshan, QIN Jun, ZHAO Hong, et al. Identification and division of high-frequency sequence based on Milakovitch cycle: A case of the 3rd Member of Pinghu Formation in Baoyunting area, Pinghu Slope Zone, East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 51-60. | |
7 | 陆扬博. 上扬子五峰组和龙马溪组富有机质页岩岩相定量表征及沉积过程恢复[D]. 武汉: 中国地质大学, 2020. |
LU Yangbo. Quantitative characterization of lithofacies and reconstruction of the sedimentary process for Upper Yangtze Wufeng and Longmaxi organic rich shales[D]. Wuhan: China University of Geosciences, 2020. | |
8 | 聂海宽, 李东晖, 姜涛, 等. 基于笔石带特征的页岩等时地层测井划分方法及意义——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2020, 41(3): 273-283. |
NIE Haikuan, LI Donghui, JIANG Tao, et al. Logging isochronous stratigraphic division of shale based on characteristics of graptolite zones and its significance: A case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2020, 41(3): 273-283. | |
9 | WANG Yuman, WANG Hongyan, QIU Zhen, et al. Basic characteristics of key interfaces in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and its periphery, SW China[J]. Petroleum Exploration and Development, 2022, 49(1): 37-51. |
10 | 赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 2016, 27(3): 470-487. |
ZHAO Shengxian, YANG Yueming, ZHANG Jian, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27(3): 470-487. | |
11 | 王冠平, 朱彤, 王红亮, 等. 海相页岩综合层序地层划分及垂向分布特征——以川东南地区五峰组—龙马溪组为例[J]. 沉积学报, 2019, 37(2): 330-344. |
WANG Guanping, ZHU Tong, WANG Hongliang, et al. Integrated sequence stratigraphic division and vertical distribution characteristics of marine shale: A case study of the Wufeng Formation-Longmaxi Formation in southeastern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(2): 330-344. | |
12 | 吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学(中国地质大学学报), 2011, 36(3): 409-428. |
WU Huaichun, ZHANG Shihong, FENG Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science(Journal of China University of Geosciences), 2011, 36(3): 409-428. | |
13 | 吴怀春, 钟阳阳, 房强, 等. 古生代旋回地层学与天文地质年代表[J]. 矿物岩石地球化学通报, 2017, 36(5): 750-770. |
WU Huaichun, ZHONG Yangyang, FANG Qiang, et al. Paleozoic cyclostratigraphy and astronomical time scale[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 750-770. | |
14 | 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66. |
HUANG Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66. | |
15 | 刘贤, 葛家旺, 赵晓明, 等. 东海陆架盆地西湖凹陷渐新统花港组年代标尺及层序界面定量识别[J]. 石油与天然气地质, 2022, 43(4): 990-1004. |
LIU Xian, GE Jiawang, ZHAO Xiaoming, et al. Time scale and quantitative identification of sequence boundaries for the Oligocene Huagang Formation in the Xihu Sag, East China Sea Shelf Basin[J]. Oil & Gas Geology, 2022, 43(4): 990-1004. | |
16 | 石巨业, 金之钧, 刘全有, 等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序 定量划分[J]. 石油与天然气地质, 2019, 40(6): 1205-1214. |
SHI Juye, JIN Zhijun, LIU Quanyou, et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 2019, 40(6): 1205-1214. | |
17 | 杜学斌, 陆永潮, 刘惠民, 等. 细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J]. 石油实验地质, 2018, 40(2): 244-252. |
DU Xuebin, LU Yongchao, LIU Huimin, et al. Division of high-frequency sequences of different orders in fine-grained deposits and its geologic significance: A case study of mud shale from the lower section of the third member to the upper section of the fourth member of Shahejie Formation in Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology and Experiment, 2018, 40(2): 244-252. | |
18 | 彭军, 于乐丹, 许天宇, 等. 湖相泥页岩地层米氏旋回测井识别及环境响应特征——以渤海湾盆地济阳坳陷东营凹陷樊页1井Es4scs为例[J]. 石油与天然气地质, 2022, 43(4): 957-969. |
PENG Jun, YU Ledan, XU Tianyu, et al. Logging identification of Milankovitch cycle and environmental response characteristics of lacustrine shale—A case study on Es4scs in Well Fanye 1, Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(4): 957-969. | |
19 | 高云飞. 大宁—吉县区块东、西部山2段砂岩储层特征差异与控制因素[D]. 北京: 中国地质大学(北京), 2020. |
GAO Yunfei. Characteristics and control factors of sandstone reservoir of Shan2 member in the east and west of Daning-Jinxian Block[D]. Beijing: China University of Geosciences(Beijing), 2020. | |
20 | 赵龙梅, 文桂华, 李星涛, 等. 鄂尔多斯盆地大宁—吉县区块山西组23亚段致密砂岩气储层“甜点区”评价[J]. 天然气工业, 2018, 38(S1): 5-10. |
ZHAO Longmei, WEN Guihua, LI Xingtao, et al. Evaluation of the “sweet spot” of dense sandstone gas reservoir in sub-member 23 of Shanxi Formation in Daning-Jixian Block, Ordos Basin[J]. Natural Gas Industry, 2018, 38(S1): 5-10. | |
21 | 孙越, 蒋裕强, 熊先钺, 等. 鄂尔多斯盆地东缘大宁–吉县地区山西组山23亚段海陆过渡相页岩岩相与沉积环境变化[J]. 煤田地质与勘探, 2022, 50(9): 104-114. |
SUN Yue, JIANG Yuqiang, XIONG Xianyue, et al. Lithofacies and sedimentary environment evolution of the Shan23 sub-member transitional shale of the Shanxi Formation in the Daning-Jixian area, eastern Ordos Basin[J]. Coal Geology & Exploration, 2022, 50(9): 104-114. | |
22 | LI Mingsong, HINNOV L, KUMP L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22. |
23 | THOMSON D J. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE, 1982, 70(9): 1055-1096. |
24 | LI Mingsong, KUMP L R, HINNOV L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179. |
25 | LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285. |
26 | 郑荣才, 彭军, 吴朝容. 陆相盆地基准面旋回的级次划分和研究意义[J]. 沉积学报, 2001, 19(2): 249-255. |
ZHENG Rongcai, PENG Jun, WU Chaorong. Grade division of base-level cycles of terrigenous basin and its implications[J]. Acta Sedimentologica Sinica, 2001, 19(2): 249-255. | |
27 | WILKIN R T, BARNES H L, BRANTLEY S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912. |
28 | STEPHEN C, PASSEY Q R. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework[J]. AAPG Bulletin, 1993, 77(3): 386-401. |
29 | SINGH P. Lithofacies and sequence stratigraphic framework of the Barnett shale, northeast Texas[D]. Norman: The University of Oklahoma, 2008. |
30 | YANG Jianghai, CAWOOD P A, DU Yuansheng, et al. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high- and low-paleolatitude sedimentary records[J]. Geology, 2014, 42(10): 835-838. |
31 | YANG Jianghai, CAWOOD P A, MONTAÑEZ I P, et al. Enhanced continental weathering and large igneous province induced climate warming at the Permo-Carboniferous transition[J]. Earth and Planetary Science Letters, 2020, 534: 116074. |
32 | LI Mingsong, HUANG Chunju, HINNOV L, et al. Obliquity-forced climate during the Early Triassic hothouse in China[J]. Geology, 2016, 44(8): 623-626. |
33 | FANG Qiang, WU Huaichun, WANG Xunlian, et al. Astronomical cycles in the Serpukhovian-Moscovian (Carboniferous) marine sequence, South China and their implications for geochronology and icehouse dynamics[J]. Journal of Asian Earth Sciences, 2018, 156: 302-315. |
34 | 张喜. 中上扬子区晚奥陶世-早志留世天文旋回地层、底流沉积及对有机质聚集的影响[D]. 成都: 西南石油大学, 2020. |
ZHANG Xi. The late Ordovician-Early Silurian astrocyclic stratigraphy, sedimentary floor and its influence on organic matter accumulation in the middle and Upper Yangtze region[D]. Chengdu: Southwest Petroleum University, 2020. | |
35 | 张喜, 张廷山, 赵晓明, 等. 天文轨道周期及火山活动对中上扬子区晚奥陶世—早志留世有机碳聚集的影响[J]. 石油勘探与开发, 2021, 48(4): 732-744. |
ZHANG Xi, ZHANG Tingshan, ZHAO Xiaoming, et al. Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician-Early Silurian in the Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2021, 48(4): 732-744. | |
36 | LOUCKS R G, SARG J F. Carbonate sequence stratigraphy[J]. Soc.econ.paleontol.mineral.spec.publ, 1988, 42: 123-138. |
37 | KERANS C, TINKER S W. Sequence stratigraphy and characterization of carbonate reservoirs[M]. Broken Arrow: SEPM Society for Sedimentary Geology, 1997. |
38 | BELOPOLSKY A V, DROXLER A W. Seismic expressions and interpretation of carbonate sequences: The Maldives platform, equatorial Indian ocean[M]. Tulsa: American Association of Petroleum Geologists, 2004. |
39 | 毛凯楠, 解习农, 徐伟, 等. 基于米兰科维奇理论的高频旋回识别与划分——以琼东南盆地梅山组和三亚组地层为例[J]. 石油实验地质, 2012, 34(6): 641-647. |
MAO Kainan, XIE Xinong, XU Wei, et al. Identification and division of high-frequency cycles based on Milakovitch theory: A case study on Miocene Sanya and Meishan formations in Qiongdongnan Basin[J]. Petroleum Geology and Experiment, 2012, 34(6): 641-647. | |
40 | 肖强, 张廷山, 张喜, 等. 川南五峰组—龙马溪组有机质富集规律——基于旋回地层学的研究[J]. 海相油气地质, 2021, 26(2): 105-112. |
XIAO Qiang, ZHANG Tingshan, ZHANG Xi, et al. Organic matter enrichment in Wufeng Formation-Longmaxi Formation in southern Sichuan: Based on cyclostratigraphy[J]. Marine Origin Petroleum Geology, 2021, 26(2): 105-112. | |
41 | FEDO C M, YOUNG G M, NESBITT H W. Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: A greenhouse to icehouse transition[J]. Precambrian Research, 1997, 86(3/4): 201-223. |
42 | NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. |
43 | LI Mingsong, HINNOV L A, HUANG Chunju, et al. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications, 2018, 9(1): 1004. |
[1] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[2] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[3] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[4] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[5] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[6] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[7] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[8] | 刘成林, 丁振刚, 陈践发, 范立勇, 康锐, 王海东, 洪思婕, 田安琦, 陈学勇. 鄂尔多斯盆地氦源岩特征及生氦潜力[J]. 石油与天然气地质, 2023, 44(6): 1546-1554. |
[9] | 李勇, 朱治同, 吴鹏, 申陈州, 高计县. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
[10] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[11] | 李涵, 付金华, 季汉成, 张雷, 佘钰蔚, 官伟, 井向辉, 王红伟, 曹茜, 刘刚, 魏嘉怡. 鄂尔多斯盆地西南部上古生界风化壳型铝土岩系发育过程及优势储层分布规律[J]. 石油与天然气地质, 2023, 44(5): 1243-1255. |
[12] | 李晓, 郭鹏, 胡彦智, 李士祥, 杨伟伟. 陆相页岩压裂试验与数值模拟[J]. 石油与天然气地质, 2023, 44(4): 1009-1019. |
[13] | 张瑞, 金之钧, 朱如凯, 李明松, 惠潇, 魏韧, 贺翔武, 张谦. 中国陆相富有机质页岩沉积速率研究及其页岩油勘探意义[J]. 石油与天然气地质, 2023, 44(4): 829-845. |
[14] | 高嘉洪, 金之钧, 梁新平, 李士祥, 杨伟伟, 朱如凯, 杜晓宇, 刘全有, 李彤, 董琳, 李鹏, 张旺. 火山活动对鄂尔多斯盆地三叠系长7段淡水湖盆富营养化与沉积水体介质环境的影响[J]. 石油与天然气地质, 2023, 44(4): 887-898. |
[15] | 王梓毅, 付金华, 刘显阳, 李士祥, 张昌虎, 梁新平, 董琳. 鄂尔多斯盆地上三叠统延长组7段埋藏期热液活动对页岩油储层的影响[J]. 石油与天然气地质, 2023, 44(4): 899-909. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||