石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (6): 1350-1365.doi: 10.11743/ogg20230602
孙龙德1,2,3(), 王小军1,2,4, 冯子辉1,2,5, 邵红梅1,2,5, 曾花森1,2,5, 高波1,2,5, 江航1,2,6
收稿日期:
2023-04-10
修回日期:
2023-09-12
出版日期:
2023-12-01
发布日期:
2023-12-20
第一作者简介:
孙龙德(1962—),男,博士、教授级高级工程师、中国工程院院士,油气勘探开发研究与工程实践。E-mail: 基金项目:
Longde SUN1,2,3(), Xiaojun WANG1,2,4, Zihui FENG1,2,5, Hongmei SHAO1,2,5, Huasen ZENG1,2,5, Bo GAO1,2,5, Hang JIANG1,2,6
Received:
2023-04-10
Revised:
2023-09-12
Online:
2023-12-01
Published:
2023-12-20
摘要:
松辽盆地白垩系古龙页岩油储集层为富有机质、高黏土的陆相页岩,夹少量薄层的钙质砂岩和白云岩,其孔缝体系和页岩油富集规律研究还比较薄弱。基于松辽盆地古龙页岩氩离子抛光-场发射扫描电镜、能谱分析、高压压汞、低温氮气吸附、荧光薄片鉴定、X射线衍射全岩矿物分析、地球化学等实验分析数据,研究了古龙页岩有机-无机孔缝体系及其与页岩油富集的关系。结果表明:①古龙页岩发育基质孔和微裂缝构成的双孔介质储集体系,基质孔为页岩油提供富集空间,微裂缝为页岩油提供储集空间和渗流通道;②受矿物演化、有机质生烃和原油裂解转化等多因素控制,古龙页岩在不同演化阶段发育不同的孔缝组合,其中在成熟演化阶段主要发育微米级溶蚀孔和有机黏土复合孔缝,高成熟演化阶段主要发育纳米级有机黏土复合孔缝和页理缝;③古龙页岩油的富集与孔缝组合演化具有耦合关系,低成熟演化阶段页岩油主要富集于无机粒间孔和晶间孔中,成熟演化阶段页岩油主要富集于溶蚀孔和有机黏土复合孔缝内,油质较重,高成熟演化阶段页岩油主要富集于有机黏土复合孔缝和页理缝中,油质变轻。
中图分类号:
图2
松辽盆地白垩系青一段古龙页岩孔隙成因分类a1,a2.GY8井,埋深2 349.10 m,古龙凹陷,有机质粒内孔;b1,b2.YX58井,埋深2 107.94 m,古龙凹陷,有机复合黏土孔缝;c1,c2.GY8井,埋深2 367.04 m,古龙凹陷,层间缝;d1.d2.YX58井,埋深2 107.94 m,古龙凹陷,成岩收缩缝;e1,e2.ZY1井,埋深1 993.60 m,三肇凹陷,构造缝;f1,f2.GY8井,埋深2 337.10 m,古龙凹陷,粒间孔;g1,g2.GY3井,埋深2 448.25 m,古龙凹陷,黏土晶间孔;h1,h2.GY3井,埋深2 440.69 m,古龙凹陷,黄铁矿晶间孔;i1,i2.ZY1井,埋深2 026.60 m,三肇凹陷,长石粒内溶孔;j1,j2.GY3井,埋深2 415.42 m,古龙凹陷,碳酸盐溶孔(a1—d1,f1—j1为场发射扫描电镜照片;e1为薄片微观照片;a2—j2为微观图像模式图。)"
表1
松辽盆地白垩系古龙页岩水平渗透率和垂直渗透率"
井号 | 井深/m | 层位 | 岩性描述 | 垂直渗透率/ (10-3 μm2) | 水平渗透率/ (10-3 μm2) | 水平渗透率与 垂直渗透率比值 |
---|---|---|---|---|---|---|
GY1 | 2 429.8 | K2qn2+3 | 高有机质纹层状页岩 | 0.004 | 0.095 | 23.8 |
GY1 | 2 452.9 | K2qn2+3 | 中有机质纹层状页岩 | 0.011 | 0.150 | 13.6 |
GY1 | 2 523.0 | K2qn1 | 高有机质纹层状页岩 | 0.004 | 0.048 | 12.0 |
GY1 | 2 536.0 | K2qn1 | 高有机质纹层状页岩 | 0.006 | 0.089 | 14.8 |
YX58 | 2 054.1 | K2qn1 | 灰色含泥粉砂岩 | 0.010 | 0.009 | 0.9 |
YX58 | 2 073.8 | K2qn1 | 灰黑色纹层状泥页岩 | 0.010 | 0.457 | 45.7 |
YX58 | 2 096.7 | K2qn1 | 灰黑色纹层状泥页岩 | 0.007 | 0.078 | 11.1 |
Y47 | 2 317.9 | K2qn1 | 黑灰色层状页岩 | 0.006 | 0.179 | 29.8 |
Y47 | 2 335.9 | K2qn1 | 黑灰色层状页岩 | 0.004 | 0.312 | 78.0 |
Y47 | 2 374.1 | K2qn1 | 黑灰色层状页岩 | 0.008 | 0.095 | 11.9 |
Y47 | 2 381.1 | K2qn1 | 灰黑色泥岩 | 0.014 | 0.323 | 23.1 |
C21 | 1 642.5 | K2qn1 | 深灰色泥岩 | 0.003 | 0.014 | 4.7 |
图6
松辽盆地白垩系青一段古龙页岩成岩阶段和成岩作用类型典型扫描电镜照片a.CY6801井,埋深1 135.42 m,三肇凹陷;b.CY6801井,埋深1 067.20 m,三肇凹陷;c.S1井,埋深507.30 m,三肇凹陷;d.S1井,埋深507.30 m,三肇凹陷;e.C21井,埋深1 586.87 m,三肇凹陷;f.SYD1井,埋深1 638.39 m,古龙凹陷;g.C21井,埋深1 641.18 m,三肇凹陷;h.T2021井,埋深1 534.21 m,长垣;i.ZY1井,埋深2 026.60 m,三肇凹陷;j.ZY1井,埋深1 996.10 m,三肇凹陷;k.YX58井,埋深2 107.94 m,古龙凹陷;l.ZY1井,埋深2 021.10 m,三肇凹陷;m.GY1井,埋深2 550.46 m,古龙凹陷;n.GY1井,埋深2 557.66 m,古龙凹陷;o.GY8井,埋深2 464.10 m,古龙凹陷;p.GY3井,埋深2 508.30 m,古龙凹陷"
图10
松辽盆地古龙页岩有机黏土复合孔与粒间孔原油转化对比场发射扫描电镜照片a,b.ZY1井, 埋深2 026.00 m,Ro=0.90 %,a图为有机质黏土复合孔含油,b图为溶蚀孔含油;c,d.ZY1井, 埋深2 016.60 m,Ro=0.98 %,c图为溶蚀孔含油,d图为绿泥石晶间孔含油;e.GY8井, 埋深2 484.10 m,Ro=1.47 %,有机黏土复合孔原油逸出;f.GY8井, 埋深2 473.23 m,Ro=1.46 %,溶蚀孔内含固体沥青;g.GY8井, 埋深2 331.10 m,Ro=1.27 %,绿泥石晶间孔含固体沥青;h.GY8井, 埋深2 355.10 m,Ro=1.30 %,白云石晶间孔含固体沥青"
图16
松辽盆地古龙页岩不同演化阶段孔隙类型与含油性特征场发射扫描电镜照片a. SYD1井,埋深1 629.25 m,S1=1.00 mg/g,Ro=0.60 %;b. C21井,埋深1 641.85 m,S1=1.10 mg/g,Ro=0.81 %;c. N256井,埋深1 753.98 m,S1=0.99 mg/g,Ro=0.90 %;d. ZY1井,埋深2 008.60 m,S1=1.78 mg/g,Ro=0.99 %;e. ZY1井,埋深1 989.60 m,S1=1.65 mg/g,Ro=0.90 %;f. GY2HC井,埋深2 336.15 m,S1=2.67 mg/g,Ro=1.36 %;g. GY8井,埋深2 339.10 m,S1=2.05 mg/g,Ro=1.27 %;h. GY1井,埋深2 540.02 m,S1=2.16 mg/g,Ro=1.61 %;i. GY3井,埋深2 469.22 m,S1=2.20 mg/g,Ro=1.40 %(a—c. 低成熟演化阶段;d—f. 成熟演化阶段;g—i. 高成熟演化阶段。)"
1 | 周庆凡, 金之钧, 杨国丰, 等. 美国页岩油勘探开发现状与前景展望[J]. 石油与天然气地质, 2019, 40(3): 469-477. |
ZHOU Qingfan, JIN Zhijun, YANG Guofeng, et al. Shale oil exploration and production in the U.S.: Status and outlook[J]. Oil & Gas Geology, 2019, 40(3): 469-477. | |
2 | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. |
JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. | |
3 | 赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10. |
ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10. | |
4 | 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. |
ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. | |
5 | 黎茂稳, 马晓潇, 金之钧, 等. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J]. Oil & Gas Geology, 2022, 43(1): 1-25. | |
6 | KATZ B J, ARANGO I. Organic porosity: A geochemist’s view of the current state of understanding [J]. Organic Geochemistry, 2018, 123: 1-16. |
7 | BERNARD S, WIRTH R, SCHREIBER A, et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 2012, 103: 3-11. |
8 | KO L T, LOUCKS R G, RUPPEL S C, et al. Origin and characterization of Eagle Ford pore networks in the south Texas Upper Cretaceous shelf[J]. AAPG Bulletin, 2017, 101(3): 387-418. |
9 | LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. |
10 | MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. |
11 | CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. |
12 | 徐亮, 杨威, 姜振学, 等. 四川盆地川西坳陷三叠系须家河组页岩有机孔演化及成因[J]. 石油与天然气地质, 2022, 43(2): 325-340. |
XU Liang, YANG Wei, JIANG Zhenxue, et al. Evolution and genesis of organic pores in Triassic Xujiahe Formation shale, Western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 325-340. | |
13 | 刘惠民, 张顺, 包友书, 等. 东营凹陷页岩油储集地质特征与有效性[J]. 石油与天然气地质, 2019, 40(3): 512-523. |
LIU Huimin, ZHANG Shun, BAO Youshu, et al. Geological characteristics and effectiveness of the shale oil reservoir in Dongying Sag[J]. Oil & Gas Geology, 2019, 40(3): 512-523. | |
14 | 杨华, 牛小兵, 徐黎明, 等. 鄂尔多斯盆地三叠系长7段页岩油勘探潜力[J]. 石油勘探与开发, 2016, 43(4): 511-520. |
YANG Hua, NIU Xiaobing, XU Liming, et al. Exploration potential of shale oil in Chang 7 Member, Upper Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 511-520. | |
15 | 赵贤正, 周立宏, 蒲秀刚, 等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破——以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发, 2018, 45(3): 361-372. |
ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372. | |
16 | 孙龙德. 古龙页岩油 (代序)[J]. 大庆石油地质与开发, 2020, 39(3): 1-7. |
SUN Longde. Gulong shale oil (preface)[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 1-7. | |
17 | 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 453-463. |
SUN Longde, LIU He, HE Wenyuan, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453-463. | |
18 | 高瑞祺, 蔡希源. 松辽盆地油气田形成条件与分布规律[M]. 北京: 石油工业出版社, 1997. |
GAO Ruiqi, CAI Xiyuan. The distribution laws and formation conditions of oil-gas field in Songliao Basin[M]. Beijing: Petroleum Industry Press, 1997. | |
19 | 冯子辉, 霍秋立, 曾花森, 等. 松辽盆地古龙页岩有机质组成与有机质孔形成演化[J]. 大庆石油地质与开发, 2021, 40(5): 40-55. |
FENG Zihui, HUO Qiuli, ZENG Huasen, et al. Organic matter compositions and organic pore evolution in Gulong shale of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 40-55. | |
20 | CANTER L, ZHANG S, SONNENFELD M, et al. Primary and secondary organic matter habit in unconventional reservoirs[M]//OLSON T. Imaging Unconventional Reservoir Pore Systems. Tulsa: American Association of Petroleum Geologists, 2016: 9-23. |
21 | 王玉满, 董大忠, 杨桦, 等. 川南下志留统龙马溪组页岩储集空间定量表征[J]. 中国科学(地球科学), 2014, 44(6): 1348-1356. |
WANG Yuman, DONG Dazhong, YANG Hua, et al. Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale, southern Sichuan, China[J]. Science China Earth Sciences, 2014, 44(6): 1348-1356. | |
22 | WANG Feiyu, GUAN Jing, FENG Weiping, et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 819-824. |
23 | WEI Lin, MASTALERZ M, SCHIMMELMANN A, et al. Influence of soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales[J]. International Journal of Coal Geology, 2014, 132: 38-50. |
24 | 姜振学, 李鑫, 王幸蒙, 等. 中国南方典型页岩孔隙特征差异及其控制因素[J]. 石油与天然气地质, 2021, 42(1): 41-53. |
JIANG Zhenxue, LI Xin, WANG Xingmeng, et al. Characteristic differences and controlling factors of pores in typical South China shale[J]. Oil & Gas Geology, 2021, 42(1): 41-53. | |
25 | WANG Fenglan, FENG Zihui, WANG Xue, et al. Effect of organic matter, thermal maturity and clay minerals on pore formation and evolution in the Gulong Shale, Songliao Basin, China[J]. Geoenergy Science and Engineering, 2023, 223: 211507. |
26 | 何文渊, 崔宝文, 王凤兰, 等. 松辽盆地古龙凹陷白垩系青山口组储集空间与油态研究[J]. 地质论评, 2022, 68(2): 693-741. |
HE Wenyuan, CUI Baowen, WANG Fenglan, et al. Study on reservoir spaces and oil states of the Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin[J]. Geological Review, 2022, 68(2): 693-741. | |
27 | 李文镖, 卢双舫, 李俊乾, 等. 页岩气运移过程中的碳同位素分馏: 机理、表征及意义[J]. 中国科学(地球科学), 2020, 50(4): 553-569. |
LI Wenbiao, LU Shuangfang, LI Junqian, et al. Carbon isotope fractionation during shale gas transport: Mechanism, characterization and significance[J]. Science China Earth Sciences, 2020, 50(4): 553-569. | |
28 | 霍秋立, 曾花森, 张晓畅, 等. 松辽盆地古龙页岩有机质特征与页岩油形成演化[J]. 大庆石油地质与开发, 2020, 39(3): 86-96. |
HUO Qiuli, ZENG Huasen, ZHANG Xiaochang, et al. Organic matter characteristics and shale oil formation of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 86-96. | |
29 | SCHMIDT V, MCDONALD D A. The role of secondary porosity in the course of sandstone diagenesis[M]//SCHOLLE P A, SCHLUGER P R. Aspects of Diagenesis. Broken Arrow: SEPM Society for Sedimentary Geology, 1979: 175-207. |
30 | BARUCH E T, KENNEDY M J, LÖHR S C, et al. Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation (McArthur Basin, Australia)[J]. AAPG Bulletin, 2015, 99(9): 1745-1770. |
31 | SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333. |
32 | 霍秋立, 曾花森, 付丽, 等. 松辽盆地北部青一段泥页岩储集特征及孔隙演化[J]. 大庆石油地质与开发, 2019, 38(1): 1-8. |
HUO Qiuli, ZENG Huasen, FU Li, et al. Accumulating characteristics and pore evolution for Member Qing-1 mud shale in North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(1): 1-8. | |
33 | PEPPER A S, DODD T A. Simple kinetic models of petroleum formation. Part II: Oil-gas cracking[J]. Marine and Petroleum Geology, 1995, 12(3): 321-340. |
34 | WAPLES D W. The kinetics of in-reservoir oil destruction and gas formation: Constraints from experimental and empirical data, and from thermodynamics[J]. Organic Geochemistry, 2000, 31(6): 553-575. |
35 | SUN Longde, HE Wenyuan, FENG Zihui, et al. Shale oil and gas generation process and pore fracture system evolution mechanisms of the continental Gulong Shale, Songliao Basin, China[J]. Energy & Fuels, 2022, 36(13): 6893-6905. |
36 | XIAO Qilin, SUN Yongge, ZHANG Yongdong. The role of reservoir mediums in natural oil cracking: Preliminary experimental results in a confined system[J]. Chinese Science Bulletin, 2010, 55(33): 3787-3793. |
37 | 张安达, 王继平, 王永超, 等. 松辽盆地古龙页岩储集空间类型及油赋存状态[J]. 大庆石油地质与开发, 2021, 40(5): 68-77. |
ZHANG Anda, WANG Jiping, WANG Yongchao, et al. Reservoir space types and oil occurrence of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 68-77. | |
38 | 邵红梅, 高波, 潘会芳, 等. 松辽盆地古龙页岩成岩—孔隙演化[J]. 大庆石油地质与开发, 2021, 40(5): 56-67. |
SHAO Hongmei, GAO Bo, PAN Huifang, et al. Diagenesis-pore evolution for Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 56-67. | |
39 | 江强明, 张姚娜, 吴宏海. 软阳离子钾改性蒙脱石矿物对硝基苯的强化吸附实验研究[J]. 岩石矿物学杂志, 2011, 30(6): 1074-1080. |
JIANG Qiangming, ZHANG Yaona, WU Honghai. Experimental research on intensified adsorption of soft K+ cation-modified montmorillonite mineral for nitrobenzene[J]. Acta Petrologica et Mineralogica, 2011, 30(6): 1074-1080. | |
40 | 滕飞, 李福春, 吴志强, 等. 高岭石和蒙脱石吸附胡敏酸的对比研究[J]. 中国地质, 2009, 36(4): 892-898. |
TENG Fei, LI Fuchun, WU Zhiqiang, et al. A comparative study of the humic acid adsorption capability between kaolinite and montmorillonite[J]. Geology in China, 2009, 36(4): 892-898. | |
41 | 周炎如, 童正火, 于大森. 有机溶质在蒙脱石中 “原位” 吸附的研究[J]. 沉积学报, 1992, 10(1): 118-125. |
ZHOU Yanru, TONG Zhenghuo, YU Dasen. Study of situ-adsorption of organic solutes in montmorillonite[J]. Acta Sedimentologica Sinica, 1992, 10(1): 118-125. | |
42 | 吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176. |
WU Songtao, ZHU Rukai, CUI Jinggang, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 167-176. | |
43 | 高玉巧, 蔡潇, 张培先, 等. 渝东南盆缘转换带五峰组—龙马溪组页岩气储层孔隙特征与演化[J]. 天然气工业, 2018, 38(12): 15-25. |
GAO Yuqiao, CAI Xiao, ZHANG Peixian, et al. Pore characteristics and evolution of Wufeng-Longmaxi Fms shale gas reservoirs in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12): 15-25. | |
44 | STAINFORTH J G, REINDERS J E A. Primary migration of hydrocarbons by diffusion through organic matter networks, and its effect on oil and gas generation[J]. Organic Geochemistry, 1990, 16(1/3): 61-74. |
45 | ZENG Huasen, HUO Qiuli, FANG Qinghua, et al. Lacustrine petroleum generation and its implications in the Qingshankou shale oil exploration, northern Songliao Basin[C]//29th International Meeting on Organic Geochemistry, Gothenburg, 2019. Bunnik: European Association of Geoscientists & Engineers, 2019: 1-2. |
46 | CHARPENTIER D, WORDEN R H, DILLON C G, et al. Fabric development and the smectite to illite transition in Gulf of Mexico mudstones: An image analysis approach[J]. Journal of Geochemical Exploration, 2003, 78/79: 459-463. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 韩载华, 刘华, 赵兰全, 刘景东, 尹丽娟, 李磊. 渤海湾盆地临南洼陷古近系沙河街组源-储组合类型与致密(低渗)砂岩油差异富集模式[J]. 石油与天然气地质, 2024, 45(3): 722-738. |
[4] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[5] | 李宁, 李瑞磊, 苗贺, 曹开芳, 田军. 松辽盆地深层中-基性火山岩有利相带及储层“甜点”逐级识别[J]. 石油与天然气地质, 2024, 45(3): 801-815. |
[6] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[7] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[8] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[9] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[10] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[11] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[12] | 米立军, 徐建永, 李威. 渤海海域页岩油资源潜力[J]. 石油与天然气地质, 2023, 44(6): 1366-1377. |
[13] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[14] | 刘惠民, 李政, 包友书, 张守春, 王伟庆, 吴连波, 王勇, 朱日房, 方正伟, 张顺, 刘鹏, 王敏. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417. |
[15] | 王民, 余昌琦, 费俊胜, 李进步, 张宇辰, 言语, 吴艳, 董尚德, 唐育龙. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||