石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (6): 1499-1514.doi: 10.11743/ogg20230613
施振生1(), 赵圣贤2, 周天琪1, 孙莎莎1, 袁渊3, 张成林2, 李博2, 祁灵1
收稿日期:
2023-03-03
修回日期:
2023-06-30
出版日期:
2023-12-01
发布日期:
2023-12-20
第一作者简介:
施振生(1976—),男,博士、高级工程师,细粒储层地质学。E-mail:基金项目:
Zhensheng SHI1(), Shengxian ZHAO2, Tianqi ZHOU1, Shasha SUN1, Yuan YUAN3, Chenglin ZHANG2, Bo LI2, Ling QI1
Received:
2023-03-03
Revised:
2023-06-30
Online:
2023-12-01
Published:
2023-12-20
摘要:
页岩发育多种成因类型水平层理,不同类型水平层理渗透性存在差异。综合岩心观察、大薄片全直径成像和氩离子抛光片扫描电镜分析发现,川南地区古生界五峰组-龙马溪组含气页岩发育递变型、砂-泥递变型、砂-泥互层型和书页型4种水平层理。递变型水平层理由多个粉砂层水平叠置而成,粉砂和泥混杂堆积,粒序发育。砂-泥递变型水平层理中粉砂纹层和泥纹层水平互层,粉砂纹层呈颗粒支撑结构,整体正递变,其底部为突变界面,顶部与上覆泥纹层渐变接触。砂-泥互层型水平层理由粉砂纹层和泥纹层水平互层构成,层和纹层界面均突变接触,粒序不发育。书页型水平层理由极薄层状泥纹层构成,发育微弱的正粒序。4种水平层理具有不同的成因机制。递变型和砂-泥递变型水平层理均为相对低能的泥质浊流成因,递变型水平层理形成的水动力更弱;砂-泥互层型水平层理为陆棚相等深流成因;书页型水平层理为远洋悬浮沉降成因。水平层理类型直接影响页岩渗透性。书页型水平层理页岩富含有机质和有机孔,页岩渗透性最好;砂-泥互层型水平层理页岩颗粒分选性较好,页岩渗透性次之;递变型和砂-泥递变型水平层理页岩颗粒分选性差、有机质含量低,渗透性最差。
中图分类号:
表2
川南地区五峰组-龙马溪组黑色页岩水平层理类型及特征"
类型 | 成层性 | 矿物组成 | 组构 | 成因 | 示意图 | 长宁双河剖面实例 |
---|---|---|---|---|---|---|
递变型 | 多个粉砂纹层水平叠置,单个粉砂纹层构成正递变层、反递变层或复合递变层 | 方解石、白云石、微晶石英、黏土矿物及其他 | 砂-泥混杂堆积,杂基支撑 | 低能泥质浊流成因,流体流速<15 cm/s,体积浓度<0.5 % | ||
砂-泥递变型 | 粉砂纹层和泥纹层水平互层,二者构成正递变层或交互递变层 | 粉砂纹层主要由白云石、方解石和黏土矿物组成,泥纹层主要由微晶石英构成 | 粉砂纹层呈颗粒支撑结构 | 低能泥质浊流成因,正递变层流体流速<15 cm/s,交互递变层,流体流速15 ~ 25 cm/s | ||
砂-泥互层型 | 粉砂纹层和泥纹层水平互层,粉砂纹层无粒序变化 | 粉砂纹层由方解石、黏土矿物和碎屑石英等组成,泥纹层主要由微晶石英构成 | 粉砂纹层呈颗粒支撑结构 | 陆棚深水等深流成因,水流速度15 ~ 25 cm/s | ||
书页型 | 泥纹层构成,偶夹断续状或条带状粉砂纹层 | 泥纹层主要为微晶石英,粉砂纹层主要为方解石和白云石 | 整体呈书页状 | 远洋悬浮沉降成因,静水环境 |
表3
川南地区五峰组-龙马溪组不同类型水平层理页岩渗透率特征"
层理类型 | 剖面或井号 | 层位或深度/m | 样品号 | 水平渗透率/(10-3μm2) | 垂直渗透率/(10-3μm2) | 水平渗透率/垂直渗透率 |
---|---|---|---|---|---|---|
递变型水平层理 | 长宁双河 | 五峰组 | 4-2-1 | 0.001 490 | 0.000 124 | 12.02 |
长宁双河 | 五峰组 | 5-34-2 | 0.000 210 | 0.000 117 | 1.79 | |
长宁双河 | 五峰组 | 4-16-1 | 0.000 313 | 0.001 548 | 0.20 | |
砂-泥递变型水平层理 | 长宁双河 | 龙马溪组 | 8-33 | 0.000 584 | 0.000 777 | 0.75 |
长宁双河 | 龙马溪组 | 8-29 | 0.000 402 | 0.032 293 | 0.01 | |
砂-泥互层型水平层理 | 阳101H3-8 | 3 774.50 | Y-1 | 0.003 510 | 0.001 890 | 1.86 |
阳101H3-8 | 3 775.37 | Y-2 | 0.005 600 | 0.002 660 | 2.11 | |
阳101H3-8 | 3 776.20 | Y-3 | 0.004 570 | 0.001 320 | 3.46 | |
书页型水平层理 | 阳101H3-8 | 3 782.48 | Y-4 | 0.004 570 | 0.000 077 | 59.74 |
阳101H3-8 | 3 783.52 | Y-5 | 0.005 850 | 0.000 555 | 10.54 | |
长宁双河 | 龙马溪组 | 8-31-2 | 0.002 291 | 0.000 351 | 6.53 | |
长宁双河 | 龙马溪组 | 8-10-1 | 0.223 540 | 0.025 925 | 8.62 |
1 | 施振生, 邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报, 2021, 39(1): 181-196. |
SHI Zhensheng, QIU Zhen. Main bedding types of marine fine-grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica, 2021, 39(1): 181-196. | |
2 | 冯增昭. 沉积岩石学[M]. 2版. 北京: 石油工业出版社, 1994: 286-298. |
FENG Zengzhao. Sedimentary petrology[M]. 2nd ed. Beijing: Petroleum Industry Press, 1994: 286-298. | |
3 | 王红岩, 施振生, 孙莎莎, 等. 陆表海页岩沉积微相类型及微相分布模式——以川南地区五峰组—龙马溪组为例[J]. 石油勘探与开发, 2023, 50(1): 51-64. |
WANG Hongyan, SHI Zhensheng, SUN Shasha, et al. Microfacies types and distribution of epicontinental shale: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2023, 50(1): 51-64. | |
4 | STOW D A V, TABREZ A R. Hemipelagites: processes, facies and model[J]. Geological Society, London, Special Publications, 1998, 129(1): 317-337. |
5 | 李志扬. 陆棚海泥岩的岩相特征及沉积过程——以晚白垩世北美西部内陆海道为例[J]. 沉积学报, 2021, 39(1): 168-180. |
LI Zhiyang. Facies characteristics and depositional processes of shelf mudstones: Examples from the Late Cretaceous western interior seaway of North America[J]. Acta Sedimentologica Sinica, 2021, 39(1): 168-180. | |
6 | SCHIMMELMANN A, LANGE C B, SCHIEBER J, et al. Varves in marine sediments: A review[J]. Earth-Science Reviews, 2016, 159: 215-246. |
7 | ANDERSON R Y, DEAN W E. Lacustrine varve formation through time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62(1/4): 215-235. |
8 | ZOLITSCHKA B, FRANCUS P, OJALA A E K, et al. Varves in lake sediments-a review[J]. Quaternary Science Reviews, 2015, 117: 1-41. |
9 | BOUMA A H, KUENEN P H, SHEPARD F P. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962. |
10 | STOW D A V, SHANMUGAM G. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments[J]. Sedimentary Geology, 1980, 25(1/2): 23-42. |
11 | PIPER D J W. Turbidite muds and silts on deep sea fans and abyssal plains[M]//STANLEY D J, KELLING G. Sedimentation in Submarine Canyons, Fans and Trenches. Stroudsburg: Dowden, Hutchinson & Ross, 1978: 163-176. |
12 | KOMAR P D. The hydraulic interpretation of turbidites from their grain sizes and sedimentary structures[M]//STOW D A V. Deep-Water Turbidite Systems. Gent: The International Association of Sedimentologists, 1991: 41-53. |
13 | SUMNER E J, TALLING P J, AMY L A, et al. Facies architecture of individual basin-plain turbidites: Comparison with existing models and implications for flow processes[J]. Sedimentology, 2012, 59(6): 1850-1887. |
14 | TALLING P J, MASSON D G, SUMNER E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003. |
15 | STOW D A V, BOWEN A J. Origin of lamination in deep sea, fine-grained sediments[J]. Nature, 1978, 274(5669): 324-328. |
16 | JONES K P N, MCCAVE I N, WEAVER P P E. Textural and dispersal patterns of thick mud turbidites from the Madeira Abyssal plain[J]. Marine Geology, 1992, 107(3): 149-173. |
17 | STOW D, SMILLIE Z. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites[J]. Geosciences, 2020, 10(2): 68. |
18 | SANSOM P. Hybrid turbidite-contourite systems of the Tanzanian margin[J]. Petroleum Geoscience, 2018, 24(3): 258-276. |
19 | REBESCO M, HERNÁNDEZ-MOLINA F J, VAN ROOIJ D, et al. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations[J]. Marine Geology, 2014, 352: 111-154. |
20 | STOW D A V, FAUGÈRES J C, HOWE J A, et al. Bottom currents, contourites and deep-sea sediment drifts: Current state-of-the-art[J]. Geological Society, London, Memoirs, 2002, 22(1): 7-20. |
21 | FAUGÈRES J C, STOW D A V. Bottom-current-controlled sedimentation: A synthesis of the contourite problem[J]. Sedimentary Geology, 1993, 82(1/4): 287-297. |
22 | SCHIEBER J, SOUTHARD J, THAISEN K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763. |
23 | SCHIEBER J, SOUTHARD J B. Bedload transport of mud by floccule ripples—direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486. |
24 | YAWAR Z, SCHIEBER J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34. |
25 | SHI Zhensheng, ZHOU Tianqi, WANG Hongyan, et al. Depositional structures and their reservoir characteristics in the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Energies, 2022, 15(5): 1618. |
26 | 董大忠, 施振生, 孙莎莎, 等. 黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组—龙马溪组为例[J]. 石油勘探与开发, 2018, 45(5): 763-774. |
DONG Dazhong, SHI Zhensheng, SUN Shasha, et al. Factors controlling microfractures in black shale: A case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile, Changning area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5): 763-774. | |
27 | 施振生, 赵圣贤, 赵群, 等. 川南地区下古生界五峰组-龙马溪组含气页岩岩心裂缝特征及其页岩气意义[J]. 石油与天然气地质, 2022, 43(5): 1087-1101. |
SHI Zhensheng, ZHAO Shengxian, ZHAO Qun, et al. Fractures in cores from the Lower Paleozoic Wufeng-Longmaxi shale in southern Sichuan Basin and their implications for shale gas exploration[J]. Oil & Gas Geology, 2022, 43(5): 1087-1101. | |
28 | 施振生, 邱振, 董大忠, 等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018, 45(2): 339-348. |
SHI Zhensheng, QIU Zhen, DONG Dazhong, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(2): 339-348. | |
29 | 王红岩, 施振生, 孙莎莎, 等. 四川盆地及周缘志留系龙马溪组一段深层页岩储层特征及其成因[J]. 石油与天然气地质, 2021, 42(1): 66-75. |
WANG Hongyan, SHI Zhensheng, SUN Shasha, et al. Characterization and genesis of deep shale reservoirs in the first Member of the Silurian Longmaxi Formation in southern Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2021, 42(1): 66-75. | |
30 | 胡宗全, 杜伟, 朱彤, 等. 四川盆地及其周缘五峰组-龙马溪组细粒沉积的层序地层与岩相特征[J]. 石油与天然气地质, 2022, 43(5): 1024-1038. |
HU Zongquan, DU Wei, ZHU Tong, et al. Sequence stratigraphy and lithofacies characteristics of fine-grained deposits of Wufeng-Longmaxi formations in the Sichuan Basin and on its periphery[J]. Oil & Gas Geology, 2022, 43(5): 1024-1038. | |
31 | 施振生, 董大忠, 王红岩, 等. 含气页岩不同纹层及组合储集层特征差异性及其成因——以四川盆地下志留统龙马溪组一段典型井为例[J]. 石油勘探与开发, 2020, 47(4): 829-840. |
SHI Zhensheng, DONG Dazhong, WANG Hongyan, et al. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(4): 829-840. | |
32 | MIDDLETON G V. Experiments on density and turbidity currents: Ⅲ. Deposition of sediment[J]. Canadian Journal of Earth Sciences, 1967, 4(3): 475-505. |
33 | MCANALLY W H, FRIEDRICHS C, HAMILTON D, et al. Management of fluid mud in estuaries, bays, and lakes. I: Present state of understanding on character and behavior[J]. Journal of Hydraulic Engineering, 2007, 133(1): 9-22. |
34 | TRAN D, STROM K. Suspended clays and silts: Are they Independent or dependent fractions when it comes to settling in a turbulent suspension?[J]. Continental Shelf Research, 2017, 138: 81-94. |
35 | STERNBERG R W, BERHANE I, OGSTON A S. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf[J]. Marine Geology, 1999, 154(1/4): 43-53. |
36 | COUSSOT P. Mudflow rheology and dynamics[M]. London: Routledge, 1997: 272. |
37 | JEONG S W, LOCAT J, LEROUEIL S, et al. Rheological properties of fine-grained sediment: The roles of texture and mineralogy[J]. Canadian Geotechnical Journal, 2010, 47(10): 1085-1100. |
38 | BAAS J H, BEST J L, PEAKALL J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183. |
39 | BAAS J H, BEST J L, PEAKALL J E. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows[J]. Sedimentology, 2011, 58(7): 1953-1987. |
40 | HAMPTON M. Competence of fine-grained debris flows[J]. Journal of Sedimentary Research, 1975, 45(4): 834-844. |
41 | CUTHBERTSON A J S, DONG Ping, DAVIES P A. Non-equilibrium flocculation characteristics of fine-grained sediments in grid-generated turbulent flow[J]. Coastal Engineering, 2010, 57(4): 447-460. |
42 | LOWE D R. Sediment gravity flows; Ⅱ, Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297. |
43 | MACQUAKER J H S, BENTLEY S J, BOHACS K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950. |
44 | BENNETT M R, DOYLE P, MATHER A E. Dropstones: Their origin and significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 121(3/4): 331-339. |
45 | SCHIEBER J. Mud re-distribution in epicontinental basins-Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133. |
46 | TALLING P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3): 460-488. |
47 | MCCAVE I N, JONES K P N. Deposition of ungraded muds from high-density non-turbulent turbidity currents[J]. Nature, 1988, 333(6170): 250-252. |
48 | NORMARK W R, PIPER D J W, POSAMENTIER H, et al. Variability in form and growth of sediment waves on turbidite channel levees[J]. Marine Geology, 2002, 192(1/3): 23-58. |
49 | BOULESTEIX K, POYATOS-MORÉ M, HODGSON D M, et al. Fringe or background: Characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout[J]. Journal of Sedimentary Research, 2020, 90(12): 1678-1705. |
50 | PIPER D J W. Turbidite origin of some laminated mudstones[J]. Geological Magazine, 1972, 109(2): 115-126. |
51 | STOW D A V, BOWEN A J. A physical model for the transport and sorting of fine-grained sediment by turbidity currents[J]. Sedimentology, 1980, 27(1): 31-46. |
52 | STOW D A V. Fine-grained sediments in deep water: An overview of processes and facies models[J]. Geo-Marine Letters, 1985, 5(1): 17-23. |
53 | STOW D A V, FAUGÈRES J C. Chapter 13 contourite facies and the facies model[J]. Developments in Sedimentology, 2008, 60: 223-256. |
54 | STOW D A V, LOVELL J P B. Contourites: Their recognition in modern and ancient sediments[J]. Earth-Science Reviews, 1979, 14(3): 251-291. |
55 | STOW D A V, HUC A Y, BERTRAND P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 2001, 18(4): 491-498. |
56 | 管全中, 董大忠, 张华玲, 等. 富有机质页岩生物成因石英的类型及其耦合成储机制——以四川盆地上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油勘探与开发, 2021, 48(4): 700-709. |
GUAN Quanzhong, DONG Dazhong, ZHANG Hualing, et al. Types of biogenic quartz and its coupling storage mechanism in organic-rich shales: A case study of the Upper Ordovician Wufeng Formation to Lower SiLurian Longmaxi Formation in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(4): 700-709. | |
57 | 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236. |
LU Longfei, QIN Jianzhong, SHEN Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236. | |
58 | 周晓峰, 郭伟, 李熙喆, 等. 四川盆地五峰组-龙马溪组有机质类型与有机孔配置的放射虫硅质页岩岩石学证据[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 12-22. |
ZHOU Xiaofeng, GUO Wei, LI Xizhe, et al. Mutual relation between organic matter types and pores with petrological evidence of radiolarian siliceous shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(5): 12-22. | |
59 | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27(2): 377-386. |
ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386. | |
60 | SHI Zhensheng, WANG Hongyan, SUN Shasha, et al. Graptolite zone calibrated stratigraphy and topography of the Late Ordovician-Early Silurian Wufeng-Lungmachi shale in Upper Yangtze area, South China[J]. Arabian Journal of Geosciences, 2021, 14(3): 213. |
61 | MACQUAKER J H S, KELLER M A, DAVIES S J. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of Sedimentary Research, 2010, 80(11): 934-942. |
62 | ZOU Caineng, QIU Zhen, POULTON S W, et al. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6): 535-538. |
63 | SHI Zhensheng, ZHAO Shengxian, ZHOU Tianqi, et al. Mineralogy and geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi shale on the Yangtze platform, south China: Implications for provenance analysis and shale gas sweet-spot interval[J]. Minerals, 2022, 12(10): 1190. |
64 | 王红岩, 施振生, 孙莎莎. 四川盆地及周缘奥陶系五峰组—志留系龙马溪组页岩生物地层及其储集层特征[J]. 石油勘探与开发, 2021, 48(5): 879-890. |
WANG Hongyan, SHI Zhensheng, SUN Shasha. Biostratigraphy and reservoir characteristics of the Ordovician Wufeng-Silurian Longmaxi shale in the Sichuan Basin and surrounding areas, China[J]. Petroleum Exploration and Development, 2021, 48(5): 879-890. |
[1] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[2] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[3] | 李勇, 朱治同, 吴鹏, 申陈州, 高计县. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
[4] | 周雁, 付斯一, 张涛, 陈洪德, 苏中堂, 张军涛, 张成弓, 刘子铭, 韩骁宇. 鄂尔多斯盆地下古生界构造-沉积演化、古地理重建及有利成藏区带划分[J]. 石油与天然气地质, 2023, 44(2): 264-275. |
[5] | 孟江辉, 吕沛熙, 吴伟, 潘仁芳, 朱逸青. 基于笔石表皮体反射率和拉曼光谱评价海相页岩热成熟度的方法[J]. 石油与天然气地质, 2022, 43(6): 1515-1528. |
[6] | 冯烁, 李胜利, 于兴河, 何发岐, 李顺利, 齐荣. 四级层序格架内浊流沉积特征及演化模式[J]. 石油与天然气地质, 2022, 43(4): 859-876. |
[7] | 葛勋, 郭彤楼, 马永生, 王国力, 黎茂稳, 余小群, 赵培荣, 温真桃, 王鹏. 四川盆地东南缘林滩场地区上奥陶统五峰组-龙马溪组页岩气储层甜点预测[J]. 石油与天然气地质, 2022, 43(3): 633-647. |
[8] | 陈治军, 张春明, 贺永红, 文志刚, 马芳侠, 李渭, 高怡文, 陈义国, 张慧元, 魏东涛. 银额盆地古生界过成熟烃源岩特征及其地球化学意义[J]. 石油与天然气地质, 2022, 43(3): 682-695. |
[9] | 何发岐, 董昭雄. 深部煤层气资源开发潜力[J]. 石油与天然气地质, 2022, 43(2): 277-285. |
[10] | 王鹏威, 陈筱, 刘忠宝, 杜伟, 李东晖, 金武军, 王濡岳. 海相富有机质页岩储层压力预测方法——以涪陵页岩气田上奥陶统五峰组-下志留统龙马溪组页岩为例[J]. 石油与天然气地质, 2022, 43(2): 467-476. |
[11] | 王濡岳, 胡宗全, 周彤, 包汉勇, 吴靖, 杜伟, 何建华, 王鹏威, 陈前. 四川盆地及其周缘五峰组-龙马溪组页岩裂缝发育特征及其控储意义[J]. 石油与天然气地质, 2021, 42(6): 1295-1306. |
[12] | 刘畅, 张道旻, 李超, 路媛媛, 于姗姗, 郭明强. 鄂尔多斯盆地临兴区块上古生界致密砂岩气藏成藏条件及主控因素[J]. 石油与天然气地质, 2021, 42(5): 1146-1158. |
[13] | 杨鹏, 任战利, ZhaoJianxin, AiDucNguyen, FengYuexing, 祁凯, 王琨. 方解石原位U-Pb测年结合磷灰石裂变径迹方法约束鄂尔多斯盆地西南部构造演化[J]. 石油与天然气地质, 2021, 42(5): 1189-1201. |
[14] | 何光玉, 曹自成, 姚泽伟, 廖天奇, 林波. 塔里木盆地古城地区古生界垒-扭叠合复合断层-裂缝体模型[J]. 石油与天然气地质, 2021, 42(3): 587-594. |
[15] | 程鑫, 周立宏, 操应长, 金凤鸣, 付立新, 李宏军, 楼达, 远光辉. 黄骅坳陷大港探区下古生界碳酸盐岩潜山差异演化及优质储层成因[J]. 石油与天然气地质, 2021, 42(3): 673-689. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||