石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (4): 1142-1154.doi: 10.11743/ogg20240417
收稿日期:
2024-01-30
修回日期:
2024-07-12
出版日期:
2024-09-05
发布日期:
2024-09-05
第一作者简介:
李倩文(1992—),女,助理研究员,页岩油气储层地质和勘探评价。E-mail: liqw2018.syky@sinopec.com。
基金项目:
Received:
2024-01-30
Revised:
2024-07-12
Online:
2024-09-05
Published:
2024-09-05
摘要:
润湿性影响储层页岩油的赋存状态和渗流规律,是评价页岩储层的重要内容。对渤海湾盆地济阳坳陷东营凹陷古近系沙河街组页岩开展接触角测定和自发渗吸实验,定量表征储层的润湿性特征,分析研究润湿性的主控因素,从而对储层进行优选评价。研究结果表明:沙河街组页岩储层孔隙连通性中等,具有斑状润湿特征,总体为水湿-弱水湿。储层润湿性受有机质特征、矿物组成、孔隙孔径大小和页岩油组分控制。有机质和矿物组成对润湿性的影响由固体颗粒本身的界面张力决定。有机质丰度越高,矿物组成中钙质含量越高,储层的水湿性越差,油湿性越好。含油性和页岩油组分改变了液体的表面张力,从而影响储层润湿性。储层含油性越好,原油中极性组分越多,油湿性越好。孔隙结构通过毛细管力作用影响固、液表面的界面张力,进而影响润湿性。储层孔隙孔径越大,水湿性越差,油湿性越好。从润湿性特征评价,纹层状富有机质富钙质页岩的亲油性最好,且在弱水湿条件下页岩油较易富集成藏,相对容易开采,是页岩油勘探开发的有利选择。
中图分类号:
表1
东营凹陷沙河街组实验样品有机质特征、矿物组成和岩相划分"
样品 编号 | 井号 | 层位 | TOC/% | S1/ (mg/g) | S2/ (mg/g) | 矿物组分含量/% | 岩相 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
黏土 矿物 | 石英 | 钾长石 | 斜长石 | 方解石 | 白云石 | |||||||
① | Y556 | 沙 三 下 亚 段 | 2.7 | 0.5 | 11.5 | 37.0 | 20.0 | 1.7 | 2.5 | 31.6 | 0 | 层状富有机质钙质页岩 |
② | L752 | 0.6 | 0.1 | 0.3 | 46.1 | 26.3 | 4.3 | 11.1 | 3.5 | 4.8 | 块状贫有机质硅质泥岩 | |
③ | Y556 | 2.6 | 0.5 | 10.8 | 32.8 | 19.8 | 1.8 | 3.0 | 25.6 | 6.9 | 层状富有机质钙质页岩 | |
④ | F41 | 2.6 | 1.5 | 12.3 | 40.7 | 17.5 | 0.9 | 3.1 | 26.5 | 1.8 | 层状富有机质钙质页岩 | |
⑤ | F41 | 1.2 | 1.4 | 3.1 | 13.2 | 33.3 | 8.5 | 32.2 | 8.3 | 4.5 | 块状含有机质富硅质泥岩 | |
⑥ | L752 | 1.3 | 0.9 | 2.2 | 7.7 | 5.8 | 0.1 | 2.2 | 22.0 | 55.8 | 层状含有机质富钙质页岩 | |
⑦ | F41 | 1.7 | 0.3 | 3.5 | 14.0 | 38.7 | 5.8 | 18.5 | 11.2 | 6.6 | 块状含有机质富硅质泥岩 | |
⑧ | H88 | 沙 四 上 亚 段 | 0.2 | 0.1 | 0.2 | 2.6 | 43.0 | 5.1 | 16.8 | 14.7 | 14.0 | 块状贫有机质富硅质页岩 |
⑨ | F169 | 0.7 | 0.2 | 0.2 | 39.8 | 30.8 | 1.8 | 11.1 | 6.1 | 10.3 | 纹层状贫有机质硅质页岩 | |
⑩ | B172 | 0.9 | 0.2 | 0.2 | 14.8 | 35.5 | 2.5 | 10.3 | 6.1 | 30.8 | 块状含有机质含泥硅质页岩 | |
⑪ | H88 | 2.3 | 1.2 | 11.6 | 25.5 | 13.1 | 1.3 | 6.8 | 41.3 | 8.9 | 层状富有机质富钙质页岩 | |
⑫ | Y556 | 2.4 | 1.0 | 12.1 | 27.6 | 22.3 | 1.7 | 5.7 | 19.9 | 15.7 | 纹层状富有机质钙质页岩 | |
⑬ | L76 | 0.3 | 0.1 | 0.2 | 32.1 | 37.7 | 4.8 | 10.5 | 2.3 | 8.3 | 块状贫有机质富硅质泥岩 | |
⑭ | L76 | 0.4 | 0.1 | 0.2 | 28.9 | 40.0 | 2.8 | 14.2 | 1.8 | 8.9 | 块状贫有机质富硅质泥岩 | |
⑮ | LX884 | 2.5 | 3.0 | 7.3 | 30.0 | 26.0 | 0.2 | 2.7 | 18.7 | 17.5 | 纹层状富有机质钙质页岩 |
表2
东营凹陷沙河街组页岩样品自发渗吸实验柱样参数"
实验组 | 样品编号 | 岩相 | 柱样编号 | 层理面与底面方向 | 柱长/mm | 柱直径/mm |
---|---|---|---|---|---|---|
渗吸正十二烷实验组 | S4 | 高有机质纹层状硅质页岩 | S4-HO | 平行 | 10.67 | 25.23 |
S1 | 砂质夹层 | S1-HO | 平行 | 13.98 | 25.19 | |
S1-VO | 垂直 | 10.41 | 25.28 | |||
S2 | 低有机质纹层状硅质页岩 | S2-HO | 平行 | 13.08 | 24.33 | |
S6 | 高有机质块状黏土质泥岩 | S6-VO | 垂直 | 11.01 | 25.00 | |
S3 | 低有机质纹层状硅质页岩 | S3-HO | 平行 | 12.17 | 25.00 | |
S3-VO | 垂直 | 10.51 | 25.32 | |||
渗吸去离子水实验组 | S5 | 高有机质块状长硅质泥岩 | S5-HW | 平行 | 19.88 | 25.52 |
S4 | 高有机质纹层状硅质页岩 | S4-HW | 平行 | 10.55 | 25.03 | |
S4-VW | 垂直 | 11.72 | 26.56 | |||
S1 | 砂质夹层 | S1-HW | 平行 | 11.77 | 25.51 | |
S1-VW | 垂直 | 10.53 | 25.82 | |||
S2 | 低有机质纹层状硅质页岩 | S2-HW | 平行 | 9.10 | 24.43 | |
S6 | 高有机质块状黏土质泥岩 | S6-VW | 垂直 | 10.93 | 25.19 | |
S3 | 低有机质纹层状硅质页岩 | S3-HW | 平行 | 11.63 | 25.39 | |
S3-VW | 垂直 | 11.08 | 25.48 |
表3
东营凹陷沙河街组实验样品的页岩连通性及润湿性评价"
样品编号 | S1 | S2 | S3 | S4 | S5 | S6 | ||
---|---|---|---|---|---|---|---|---|
岩相 | 砂质夹层 | 低有机质纹层 状硅质页岩 | 低有机质纹层状硅质页岩 | 高有机质纹层状硅质页岩 | 高有机质块状 长硅质泥岩 | 高有机质块状 黏土质泥岩 | ||
水 | 平行层面 | P水 | 0.401 3 | 0.401 3 | — | 0.322 8 | — | — |
连通性 | 中等 | 中等 | — | 中等 | — | — | ||
垂直层面 | T水 | 0.507 6 | 0.503 7 | 0.456 2 | 0.976 2 | 1.060 4 | 0.267 7 | |
连通性 | 好-中等 | 中等-好 | 中等 | 好 | 好 | 中等-差 | ||
油 | 平行层面 | P油 | 0.261 6 | 0.237 1 | — | 0.273 8 | — | 0.661 6 |
连通性 | 中等-差 | 差 | — | 中等 | — | 好 | ||
垂直层面 | T油 | 0.169 2 | 0.606 8 | 0.359 4 | 0.346 0 | 0.672 2 | 0.273 8 | |
连通性 | 差 | 好 | 中等 | 中等 | 好 | 中等 | ||
润湿性指数(W) | -0.198 7 | 0.267 3 | — | -0.581 2 | — | — | ||
润湿性判断 | 混合,偏水润湿 | 混合,偏油润湿 | — | 水润湿 | — | — |
1 | 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802. |
WANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802. | |
2 | 代金友, 林立新. 储层孔隙的“渗流”分类方案及其意义[J]. 大庆石油地质与开发, 2022, 41(2): 43-50. |
DAI Jinyou, LIN Lixin. “Seepage” classification scheme of reservoir pores and its significance[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(2): 43-50. | |
3 | 徐田武, 张成富, 李红磊, 等. 不同环境下陆相页岩油气富集关键要素下限研究——以中原油田探区为例[J]. 断块油气田, 2022, 29(6): 721-728, 743. |
XU Tianwu, ZHANG Chengfu, LI Honglei, et al. Research on lower limits of key factor controlling hydrocarbon accumulation of continental shale in different environments: Taking exploratory area of Zhongyuan Oilfield as an example[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 721-728, 743. | |
4 | LI Qianwen, LIU Zhongbao, CHEN Feiran, et al. Behavior and controlling factors of methane adsorption in Jurassic continental shale, northeastern Sichuan Basin[J]. Energy Geoscience, 2023, 4(1): 83-92. |
5 | 郑国伟, 高之业, 黄立良, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩储层润湿性及其主控因素[J]. 石油与天然气地质, 2022, 43(5): 1206-1220. |
ZHENG Guowei, GAO Zhiye, HUANG Liliang, et al. Wettability of the Permian Fengcheng formation shale in the Mahu Sag, Junggar Basin, and its main control factors[J]. Oil & Gas Geology, 2022, 43(5): 1206-1220. | |
6 | ANDERSON W G. Wettability literature survey-part 1: Rock/oil/brine interactions and the effects of core handling on wettability[J]. Journal of Petroleum Technology, 1986, 38(10): 1125-1144. |
7 | 何更生, 唐海. 油层物理[M]. 2版. 北京: 石油工业出版社, 2011: 240-242. |
HE Gengsheng, TANG Hai. Petrophysics[M]. 2nd ed. Beijing: Petroleum Industry Press, 2011: 240-242. | |
8 | 胡钦红, 刘惠民, 黎茂稳, 等. 东营凹陷沙河街组页岩油储集层润湿性、孔隙连通性和流体—示踪剂运移[J]. 石油学报, 2018, 39(3): 278-289. |
HU Qinhong, LIU Huimin, LI Maowen, et al. Wettability, pore connectivity and fluid-tracer migration in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Acta Petrolei Sinica, 2018, 39(3): 278-289. | |
9 | 王晓明, 陈军斌, 任大忠. 陆相页岩油储层孔隙结构表征和渗流规律研究进展及展望[J]. 油气藏评价与开发, 2023, 13(1): 23-30. |
WANG Xiaoming, CHEN Junbin, REN Dazhong. Research progress and prospect of pore structure representation and seepage law of continental shale oil reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 23-30. | |
10 | 范雨辰, 陈磊, 刘可禹, 等. 储层润湿性及孔隙水赋存对页岩储集空间的影响[J]. 中南大学学报(自然科学版), 2022, 53(9): 3575-3589. |
FAN Yuchen, CHEN Lei, LIU Keyu, et al. Effects of wettability and pore water occurrence of gas storage space of shale reservoirs[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3575-3589. | |
11 | MOSS A K, JING Xd, ARCHER J S. Laboratory investigation of wettability and hysteresis effects on resistivity index and capillary pressure characteristics[J]. Journal of Petroleum Science and Engineering, 1999, 24(2/4): 231-242. |
12 | 刘向君, 熊健, 梁利喜, 等. 川南地区龙马溪组页岩润湿性分析及影响讨论[J]. 天然气地球科学, 2014, 25(10): 1644-1652. |
LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Analysis of the wettability of Longmaxi Formation shale in the south region of Sichuan Basin and its influence[J]. Natural Gas Geoscience, 2014, 25(10): 1644-1652. | |
13 | HU Qinhong, EWING R P, ROWE H D. Low nanopore connectivity limits gas production in Barnett formation[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(12): 8073-8087. |
14 | XU M, DEHGHANPOUR H. Advances in understanding wettability of gas shales[J]. Energy & Fuels, 2014, 28(7): 4362-4375. |
15 | GAO Zhiye, HU Qinhong. Wettability of Mississippian Barnett Shale samples at different depths: Investigations from directional spontaneous imbibition[J]. AAPG Bulletin, 2016, 100(1): 101-114. |
16 | ARIF M, ZHANG Yihuai, IGLAUER S. Shale wettability: Data sets, challenges, and outlook[J]. Energy & Fuels, 2021, 35(4): 2965-2980. |
17 | SIDDIQUI M A Q, ALI S, FEI Haoxiang, et al. Current understanding of shale wettability: A review on contact angle measurements[J]. Earth-Science Reviews, 2018, 181: 1-11. |
18 | CLARKSON C R, JENSEN J L, PEDERSEN P K, et al. Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir[J]. AAPG Bulletin, 2012, 96(2): 355-374. |
19 | 曾隽, 易明华, 聂军, 等. 渝东南地区页岩润湿性的定量表征研究[J]. 非常规油气, 2021, 8(1): 90-94. |
ZENG Juan, YI Minghua, NIE Jun, et al. Research of quantitative characterization based on shale wet-ability in southeast Chongqing area[J]. Unconventional Oil & Gas, 2021, 8(1): 90-94. | |
20 | 刘萱. 页岩润湿性及其主控因素[D]. 北京: 中国地质大学(北京), 2018. |
LIU Xuan. Main factors controlling the wettability of shales[D]. Beijing: China University of Geosciences (Beijing), 2018. | |
21 | 周立宏, 韩国猛, 杨飞, 等. 渤海湾盆地歧口凹陷沙河街组三段一亚段地质特征与页岩油勘探实践[J]. 石油与天然气地质, 2021, 42(2): 443-455. |
ZHOU Lihong, HAN Guomeng, YANG Fei, et al. Geological characteristics and shale oil exploration of Es3(1) in Qikou Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2021, 42(2): 443-455. | |
22 | 刘惠民, 李军亮, 刘鹏, 等. 济阳坳陷古近系页岩油富集条件与勘探战略方向[J]. 石油学报, 2022, 43(12): 1717-1729. |
LIU Huimin, LI Junliang, LIU Peng, et al. Enrichment conditions and strategic exploration direction of Paleogene shale oil in Jiyang Depression[J]. Acta Petrolei Sinica, 2022, 43(12): 1717-1729. | |
23 | 赖富强, 李仕超, 王敏, 等. 济阳坳陷页岩油储层矿物组分最优化反演方法[J]. 特种油气藏, 2022, 29(2): 16-23. |
LAI Fuqiang, LI Shichao, WANG Min, et al. Optimal retrieval method for mineral constituents of shale oil reservoirs in Jiyang Sag[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 16-23. | |
24 | 郭建春, 陶亮, 陈迟, 等. 川南地区龙马溪组页岩混合润湿性评价新方法[J]. 石油学报, 2020, 41(2): 216-225. |
GUO Jianchun, TAO Liang, CHEN Chi, et al. A new method for evaluating the mixed wettability of shale in Longmaxi Formation in the southern Sichuan[J]. Acta Petrolei Sinica, 2020, 41(2): 216-225. | |
25 | 肖文联, 杨玉斌, 黄矗, 等. 基于核磁共振技术的页岩油润湿性及其对原油动用特征的影响[J]. 油气地质与采收率, 2023, 30(1): 112-121. |
XIAO Wenlian, YANG Yubin, HUANG Chu, et al. Rock wettability and its influence on crude oil producing characteristics based on NMR technology[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 112-121. | |
26 | 张林晔, 包友书, 李钜源, 等. 湖相页岩油可动性——以渤海湾盆地济阳坳陷东营凹陷为例[J]. 石油勘探与开发, 2014, 41(6): 641-649. |
ZHANG Linye, BAO Youshu, LI Juyuan, et al. Movability of lacustrine shale oil: A case study of Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2014, 41(6): 641-649. | |
27 | 李政, 王秀红, 朱日房, 等. 济阳坳陷沙三下亚段和沙四上亚段页岩油地球化学评价[J]. 新疆石油地质, 2015, 36(5): 510-514. |
LI Zheng, WANG Xiuhong, ZHU Rifang, et al. Geochemical evaluation of shale oil in Lower Es3 and Upper Es4 in Jiyang Depression[J]. Xinjiang Petroleum Geology, 2015, 36(5): 510-514. | |
28 | 张鹏飞, 卢双舫, 李俊乾, 等. 湖相页岩油有利甜点区优选方法及应用——以渤海湾盆地东营凹陷沙河街组为例[J]. 石油与天然气地质, 2019, 40(6): 1339-1350. |
ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. Identification method of sweet spot zone in lacustrine shale oil reservoir and its application: A case study of the Shahejie Formation in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2019, 40(6): 1339-1350. | |
29 | 李倩文, 刘忠宝, 陈斐然, 等. 四川盆地侏罗系页岩层系岩相类型及储集特征——以元坝地区Y2井大安寨段为例[J]. 石油与天然气地质, 2022, 43(5): 1127-1140. |
LI Qianwen, LIU Zhongbao, CHEN Feiran, et al. Lithofacies types and reservoir characteristics of Jurassic shale in the Sichuan Basin revealed by the Da’anzhai Member, Well Y2, Yuanba area[J]. Oil & Gas Geology, 2022, 43(5): 1127-1140. | |
30 | XUE Haitao, DING Guozhi, DONG Zhentao, et al. Study on the wettability and spontaneous imbibition characteristics of lacustrine shale[J]. Geofluids, 2022, 4023435. |
31 | 董振涛. 松辽盆地北部页岩油储层润湿性研究及应用[D]. 青岛: 中国石油大学(华东), 2020. |
DONG Zhentao. Research and application of wettability of shale oil reservoirs in the northern Songliao Basin[D]. Qingdao: China University of Petroleum(East China), 2020. | |
32 | HANDY L L. Determination of effective capillary pressures for porous media from imbibition data[J]. Transactions of the AIME, 1960, 219(1): 75-80. |
33 | EWING R P, HORTON R. Diffusion in sparsely connected pore spaces: Temporal and spatial scaling[J]. Water Resources Research, 2002, 38(12): 1285. |
34 | 高之业, 范毓鹏, 胡钦红, 等. 川南地区龙马溪组页岩有机质孔隙差异化发育特征及其对储集空间的影响[J]. 石油科学通报, 2020, 5(1): 1-16. |
GAO Zhiye, FAN Yupeng, HU Qinhong, et al. Differential development characteristics of organic matter pores and their impact on reservoir space of Longmaxi Formation shale from the south Sichuan Basin[J]. Petroleum Science Bulletin, 2020, 5(1): 1-16. | |
35 | ARSALAN N, PALAYANGODA S S, BURNETT D J, et al. Surface energy characterization of sandstone rocks[J]. Journal of Physics and Chemistry of Solids, 2013, 74(8): 1069-1077. |
36 | 王业飞, 徐怀民, 齐自远, 等. 原油组分对石英表面润湿性的影响与表征方法[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 155-159. |
WANG Yefei, XU Huaimin, QI Ziyuan, et al. Effects of crude fractions on quartz surface wettability and characterization method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(5): 155-159. | |
37 | 张辉, 王志章, 杨亮, 等. 松南上白垩统青山口组一段不同赋存状态页岩油定量评价[J]. 吉林大学学报(地球科学版), 2022, 52(2): 315-327. |
ZHANG Hui, WANG Zhizhang, YANG Liang, et al. Quantitative evaluation of shale oil in different occurrence states in first member of Qingshankou Formation of Upper Cretaceous in south of Songliao Basin[J]. Journal of Jilin University(Earth Science Edition), 2022, 52(2): 315-327. | |
38 | 葸克来, 张媛媛, 操应长, 等. 孔喉微观润湿性对页岩油赋存的控制作用——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组纹层状页岩为例[J]. 石油勘探与开发, 2023, 50(2): 297-308. |
XI Kelai, ZHANG Yuanyuan, CAO Yingchang, et al. Control of micro-wettability of pore-throat on shale oil occurrence: A case study of laminated shale of Permian Lucaogou Formation in Jimusar Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(2): 297-308. | |
39 | 刘鹏, 张磊, 王胜奎, 等. 济阳坳陷古近系页岩油运移路径探讨及其石油地质意义[J]. 中国石油大学学报(自然科学版), 2022, 46(6): 89-98. |
LIU Peng, ZHANG Lei, WANG Shengkui, et al. Discussion on migration path of Paleogene shale oil in Jiyang Depression and its petroleum geological significance[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(6): 89-98. |
[1] | 刘国勇, 薛建勤, 吴松涛, 伍坤宇, 张博策, 邢浩婷, 张娜, 庞鹏, 朱超. 柴达木盆地柴西坳陷古近系-新近系石油地质特征与油气环带状分布模式[J]. 石油与天然气地质, 2024, 45(4): 1007-1017. |
[2] | 解馨慧, 邓虎成, 胡蓝霄, 李勇, 毛金昕, 刘佳杰, 张鑫, 李柏洋. 湖相细粒沉积岩颗粒微观力学特征及类型划分[J]. 石油与天然气地质, 2024, 45(4): 1079-1088. |
[3] | 张琴, 卢东连, 王凯, 刘畅, 郭明强, 张梦婕, 郭超杰, 王颖, 胡文忠, 朱筱敏. 下扬子地区荷塘组细粒沉积岩岩相划分及微观孔隙发育特征[J]. 石油与天然气地质, 2024, 45(4): 1089-1105. |
[4] | 佟欢, 朱世发, 崔航, 蔡文典, 马立驰. 渤海湾盆地桩海地区古近系沙河街组一段-二段混积岩优质储层特征与控制因素[J]. 石油与天然气地质, 2024, 45(4): 1106-1120. |
[5] | 刘成龙, 王艳忠, 杨怀宇, 操应长, 王淑萍, 郭超凡, 郭豪, 陈兆祥, 宋林坤, 黄歆媛. 高精度层序约束下三角洲-滩坝沉积体系精细刻画与岩性圈闭分布规律[J]. 石油与天然气地质, 2024, 45(4): 1121-1141. |
[6] | 李一波, 陈耀旺, 赵金洲, 王志强, 魏兵, Valeriy Kadet. 超临界二氧化碳与页岩相互作用机制[J]. 石油与天然气地质, 2024, 45(4): 1180-1194. |
[7] | 朱筱敏, 王晓琳, 张美洲, 林兴悦, 张琴. 中国典型陆相盆地细粒沉积环境和岩相特征[J]. 石油与天然气地质, 2024, 45(4): 873-892. |
[8] | 胡宗全, 刘忠宝, 李倩文, 吴舟凡. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
[9] | 叶玥豪, 陈伟, 汪华, 宋金民, 明盈, 戴鑫, 李智武, 孙豪飞, 马小刚, 刘婷婷, 唐辉, 刘树根. 四川盆地上二叠统大隆组页岩储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 979-991. |
[10] | 张明何, 魏祥峰, 高波, 戎佳, 刘珠江, 燕继红, 杨琪航, 王佳乐, 刘慧萍, 游浪, 刘自亮. 川北山前带寒武系筇竹寺组富有机质页岩发育模式[J]. 石油与天然气地质, 2024, 45(4): 992-1006. |
[11] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[12] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[13] | 娄瑞, 孙永河, 张中巧. 渤海湾盆地渤南低凸起西段低角度正断层分段生长特征及其油气地质意义[J]. 石油与天然气地质, 2024, 45(3): 710-721. |
[14] | 韩载华, 刘华, 赵兰全, 刘景东, 尹丽娟, 李磊. 渤海湾盆地临南洼陷古近系沙河街组源-储组合类型与致密(低渗)砂岩油差异富集模式[J]. 石油与天然气地质, 2024, 45(3): 722-738. |
[15] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||