石油与天然气地质, 2024, 45(3): 787-800 doi: 10.11743/ogg20240315

油气地质

塔里木盆地富满油田走滑断裂带通源性评价

张艳秋,1,2,3, 陈红汉,4, 王燮培4, 王彭1,2,3, 苏丹梅2, 谢舟1,2,3

1.中国石油 塔里木油田公司 勘探开发研究院,新疆 库尔勒 841000

2.中国石油天然气集团有限公司超深层复杂油气藏勘探 开发技术研发中心,新疆 库尔勒 841000

3.新疆维吾尔自治区超深层复杂油气藏勘探开发工程研究中心,新疆 库尔勒 841000

4.中国地质大学(武汉) 资源学院 石油地质系,湖北 武汉 430074

Assessment of connectivity between source rocks and strike-slip fault zone in the Fuman oilfield, Tarim Basin

ZHANG Yanqiu,1,2,3, CHEN Honghan,4, WANG Xiepei4, WANG Peng1,2,3, SU Danmei2, XIE Zhou1,2,3

1.Research Institute of Exploration and Development,Tarim Oilfield Company,PetroChina,Korla,Xinjiang 841000,China

2.R&D Center for Ultra-deep Complex Reservoir Exploration and Development,CNPC,Korla,Xinjiang 841000,China

3.Engineering Research Center for Untra-deep Complex Reservoir Exploration and Development,Xinjiang Uygur Autonomous Region,Korla,Xinjiang 841000,China

4.Department of Petroleum Geology,School of Earth Resources,China University of Geosciences (Wuhan),Wuhan,Hubei 430074,China

通讯作者: 陈红汉(1962—),男,博士、教授、博士研究生导师,油气成藏动力学和流体包裹体系统分析。E-mail:hhchen@cug.edu.cn

编辑: 张玉银

收稿日期: 2024-02-23   修回日期: 2024-05-16  

基金项目: 国家科技重大专项.  2008ZX05008-003-034
国家重点基础研究发展计划(973计划)项目.  2012CB214804
塔里木油田科技项目.  T202112

Received: 2024-02-23   Revised: 2024-05-16  

第一作者简介 About authors

张艳秋(1979—),女,高级工程师,塔里木盆地石油地质综合研究。E-mail:zhangyanq-tlm@petrochina.com.cn。 E-mail:zhangyanq-tlm@petrochina.com.cn

摘要

塔里木盆地走滑断裂带对油气藏形成具有控制作用,走滑断裂带与油源连通性对油气运移、聚集非常重要。基于3D地震资料,运用Riedel剪切离散元模型和完全塑性介质-应力上升函数模型,对塔里木盆地富满油田Ⅱ区块FI17走滑断裂带油源连通性进行了评价。研究结果显示:①FI17走滑断裂带海西晚期雁列断裂拖曳点深度(h)理论计算值远小于实测值,表明其走滑断裂T张破裂成因,而非R剪切断裂。②FI17走滑断裂带通源深度平均达9 ~ 18 km,表明该断裂能够将其下伏埋深10 km以下的玉尔吐斯组烃源岩生成的油气直接输导至上覆奥陶系断(缝)溶体圈闭中聚集成藏。③FI17走滑断裂带通源深度(H)自北而南增加,其断控形成油气藏中的原油密度、天然气干燥系数、油气充注期次及各期次贡献度与油源连通性密切相关,表明油源连通性对油气聚集具有控制作用。走滑断裂级别、走向分段性、活动强度和断穿地层不同,控制作用也不同。油源连通性会沿着走向发生显著变化,影响油气垂向输导效能。

关键词: 通源性 ; 古老烃源岩 ; 超深层 ; 走滑断裂 ; 富满油田 ; 塔里木盆地

Abstract

The formation of hydrocarbon reservoirs in the Tarim Basin is significantly influenced by strike-slip fault zones, whose connectivity with source rocks is vital for hydrocarbon migration and accumulation. The 3D seismic data helps us to assess the connectivity of source rocks with the F17 strike-slip fault zone in block Ⅱ of the Fuman oilfield using both a discrete element model (DEM) for Riedel shear structures and a perfectly plastic medium- stress ascending function model. The findings reveal that the drag-point depth (h) of the en echelon faults of FI17 during the Late Hercynian obtained by theoretical calculation is far less than that measured by the Riedel shear DEM. This discrepancy suggests that the strike-slip faults of F17 originated from T-tensional rupturing rather than R-shear rupturing. The average depths of source rocks connected to the FI17 reach up to 9-18 km, suggesting that this fault zone acts as an immediate channel for the migration of hydrocarbons generated by the underlying source rocks of the Yurtus Formation at a burial depth of over 10 km to the overlying fault-karst (or fractured karst) traps of the Ordovician to form reservoirs. The depth (H) of source rocks connected to the FI17 zone increase from north to south. Parameters of the fault-controlled hydrocarbon reservoirs of FI17 zone, such as crude oil density, natural gas dryness coefficient, and hydrocarbon charging stages and their respective contributive degrees, are closely associated with the connectivity of FI17 zone with source rocks. Thereby, such connectivity plays a role in controlling hydrocarbon accumulation, with the controlling effects varying with the order, along-strike segmentation, activity intensity, and strike-slip fault-cut strata. The connectivity of the FI17 with source rocks changes significantly along the fault strikes, which affects the efficiency of vertical hydrocarbon transport.

Keywords: connectivity with source rocks ; ancient source rock ; ultra-deep sequence ; strike-slip fault ; Fuman oilfield ; Tarim Basin

PDF (6496KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张艳秋, 陈红汉, 王燮培等. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800 doi:10.11743/ogg20240315

ZHANG Yanqiu, CHEN Honghan, WANG Xiepei, et al. Assessment of connectivity between source rocks and strike-slip fault zone in the Fuman oilfield, Tarim Basin. Oil & Gas Geology[J], 2024, 45(3): 787-800 doi:10.11743/ogg20240315

塔里木盆地自加里东中期Ⅲ幕以来,作为多边界、多期盆-山耦合动力学机制的一种响应形式,在板内形成了具有“平面分域、走向分段、侧向分带、垂向分层”的走滑断裂系统1-2。随着塔里木盆地深层-超深层勘探不断深入,中国石化西北油田分公司在顺北18条主干走滑断裂带落实地质资源量17×108 t油当量3;中国石油塔里木油田分公司在富满油田走滑断裂带落实地质资源量10×108 t油当量4-5

然而,国内外大量钻探结果表明,这种断控型油气藏以下生上储的垂向运聚为特征6-10。为此,将走滑断裂带沟通下伏烃源灶、使得油气能够沿断裂带垂向运移至上覆目的层中聚集的有效性称为“走滑断裂带的通源性”。马庆佑等(2020)依据走滑断裂与现今的烃源层(下寒武统玉儿吐斯组)接触关系、断裂的构造样式和活动强度等参数,定性地评价了塔里木盆地台盆区走滑断裂带的通源性,并将其走滑断裂带划分为“上下多层贯通”强通源型、“下贯通上隐伏”中等通源型、“上下均未贯通”弱通源型等3种通源性结构模式;结合产能讨论了其与油气富集的相关性:“上下多层贯通”强通源型油气往往最富集,产能较好;“下贯通上隐伏”中等通源型油气富集程度减弱,产能差-中等;而“上下均未贯通”弱通源型油气产能通常很低甚至没有(如顺北蓬1井)11。这种通源性定性评价有两点局限性:①走滑断裂带与烃源灶和圈闭之间的关系反映的是现今的状态,需要根据走滑断裂各活动期次构型特征参数来评价其相应时期的通源性;②走滑断裂带向下延伸状态受到3D地震资料分辨率的限制,存在不确定性,而走滑断裂带模型参数计算方法获得破裂的脆性地层厚度并不受地震资料分辨率的影响。

这里,走滑断裂带具有输导、储集体和圈闭3种功能。换句话说,走滑断裂带向下延伸到烃源灶就会将烃源灶中的油气输导出来,走滑断裂带向上贯穿到上覆地层就会将油气输送到那里的圈闭中成藏。因此,板内走滑断裂带向下延伸的“根”不仅是天然地震研究的热点(震源深度)12,也是通源性关注的课题。

1 通源性定量评价原理

Donzé等(2021)对黏土、沙子、核桃和石膏4种不同材料进行了雁列式断裂测试实验,利用三角函数的非线性最小二乘法对实验数据进行拟合,得到了一个关于雁列构造扭转角、雁列断裂间隔和雁列断裂深度(拖曳点深度)的经验关系式13图1):

Sh=1.2tan-1 52ω-1π+π2

式中:S为雁列断裂间隔,m;h为雁列断裂深度,m;ω为雁列构造扭转角,(°)。可以通过在平面上测量雁列式走滑断裂带雁列构造扭转角和雁列断裂间隔,利用公式(1)来估算雁列走滑断裂深度。该关系式被称为Riedel剪切的离散元模型(DEM)。

图1

图1   发育负花状雁列断裂的右旋走滑断裂带地质概念模型

(图中变量解释详见文中公式注释。)

Fig. 1   Conceptual geology model of a dextral strike-slip fault zone with negative flower en echelon faults


假设研究地质体为理想塑性介质,通过弹性流变学的脆性地壳变形物理模型,将雁列式走滑断层均匀间隔(even space)与断层发育的脆性层厚度关联起来,推导出走滑断层均匀间隔(S)与断层发育的脆性层厚度(H)的物理模型关系式14

S=C0-C1+12ρghμφ-μfh12ρghμφHh-1

式中:C0为脆性地层区域内聚力,kPa;C1为断裂面内聚力,kPa;ρ为断裂区域内介质密度,kg/m3g为重力加速度,取9.8 m/s2μφ 为断裂区域内摩擦系数,无量纲;φ为内摩擦角,(°),φ=2 (45o-ω) (Anderson理论);μf为断裂面内摩擦系数,无量纲,μf=tanφH为边界区域脆性地层厚度,km。

通过对顺北地区灰岩和白云岩岩心进行实验室测量来构建岩石内聚力(C)与地层完整性系数(Kv)的经验关系式 15

C=16.507e-2.2191-Kv

式中:C为岩石内聚力,MPa;Kv为地层完整性系数,无量纲。

地层完整性系数(Kv)是评价岩石破碎程度的参数,可通过表征岩石弹性纵波波速与岩块中弹性横波波速比的平方加以表示:

Kv=vpm/vpr2

式中:vpm为岩石弹性纵波速度,m/s;vpr为岩石弹性横波速度,m/s。具体可参照表1选值。

表1   岩体完整程度与完整性系数(Kv)对应关系

Table 1  The rock-mass integrity index corresponding to the rock-mass integrity levels

完整程度完整较完整较破碎破碎极破碎
Kv0.75<Kv ≤1.000.55<Kv ≤0.750.35<Kv ≤0.550.15<Kv≤0.350<Kv ≤0.15

新窗口打开| 下载CSV


为此,本文给出走滑断裂带通源性评价研究流程(图2)。该图左侧为通源性定性评价部分,主要涉及到走滑断裂带几何学和运动学特征描述,为建立地质概念模型奠定基础。右侧为通源性定量评价内容,包括花状断裂带深度(h)和走滑断裂带脆性地层厚度[走滑断裂垂向上贯穿的地层厚度,即通源深度(H)]的定量计算。

图2

图2   走滑断裂带通源性评价流程图

(图中变量解释详见文中公式注释。)

Fig. 2   Flow chart showing the assessment of the connectivity of a strike-slip fault zone with source rocks


2 走滑断裂带通源性评价

2.1 富满油田走滑断裂带通源性定性评价

富满油田主体位于北部坳陷阿满过渡带,北部为塔北古隆起,南部为塔中古隆起,西为阿瓦提凹陷,东为满加尔坳陷(图3a,b)。寒武纪—中-晚奥陶世早期,塔里木盆地主体为台地相,台缘呈南北向;受中-晚奥陶世晚期由拉张转为挤压的加里东中期Ⅲ幕关键构造变革(T76)控制17-19,塔里木盆地台缘由南北向转变为近东西向展布20。同时,在板内开始发育NE向和NW向走滑断裂体系21图3b)。

图3

图3   塔里木盆地富满油田位置(a)和奥陶系综合柱状图(b)

Fig.3   Map showing the location of the Fuman oilfield (a) and composite stratigraphic column of the Ordovician strata (b) in the Tarim Basin


根据3D地震断裂解释并考虑走滑断裂与玉儿吐斯组接触关系和断裂构造样式11,对富满油田Ⅰ级和Ⅱ级走滑断裂通源性进行定性评价。结果如图4所示:通源Ⅰ级相当于强通源型(红色),通源Ⅱ级相当于中等通源型(绿色);通源Ⅲ级相当于弱通源型(蓝色)。由此可见,走滑断裂的通源性受断裂产状、级别、活动强度和地层等多种因素影响。鉴于走滑断裂生长机制和贯穿作用22,以及能干层和非能干层内摩擦角和凝聚力的差异性23,既使是同一条走滑断裂其通源性也会沿着走向发生显著变化;不同走滑断裂体系级别在垂向上具有不同的分层性,从而影响到其通源性1。一般情况下,Ⅰ级和Ⅱ级走滑断裂通源性远高于其低序次(比Ⅰ级和Ⅱ级走滑断裂更低级别)走滑断裂体系。

图4

图4   富满油田Ⅰ级和Ⅱ级走滑断裂通源性定性评价

Fig. 4   Qualitative assessment of the connectivity of the first- and second-order strike-slip faults with source rocks in the Fuman oilfield


2.2 FI17走滑断裂带通源性定量评价

基于富满油田三维地震数据增强相干属性与断裂解释,在台盆区识别出25条Ⅰ级走滑断裂和55条Ⅱ级走滑断裂24。这些走滑断裂受控于西南、东南和北部“三面挤压、北弱南强”的动力学环境,在平面上可划分为6个走滑断裂体系域:①塔北中部对称共轭走滑断裂体系域;②塔北东部非对称共轭走滑断裂体系域;③阿满过渡带西部NW向走滑断裂体系域;④阿满过渡带中部近NE向(局部呈S形)调节型走滑断裂体系域;⑤阿满过渡带南部多类型复合走滑断裂体系域;⑥塔中古隆起中部近NE向走滑断裂体系域(图4)。

其中,富满Ⅱ区块F17走滑断裂主体位于阿满过渡带中部近NE向调节型走滑断裂体系域。3D地震剖面解释结果表明,F17走滑断裂带可划分为4个阶段25图5):①加里东早-中期Ⅰ—Ⅱ幕伸展正断层发育阶段;②加里东中期Ⅲ幕压扭性走滑断裂发育阶段;③海西早期张扭性走滑断裂发育阶段;④海西晚期应力场转变张扭性走滑断裂叠加发育阶段(花上花)。由于岩层能干性的差异(志留系泥岩层、寒武系盐膏岩层)和断裂多期活动导致分层差异变形,主干断裂沿走滑的产状、位置和位移量变化导致断裂带分段差异变形,以及不同区域的构造背景和构造应力场的差异导致走滑断裂变形表现出分区差异变形,使得F17走滑断裂带具有垂向分层、走向分段和侧向分带的差异变形特征。

图5

图5   富满油田F17走滑断裂不同段3D地震解释

a.TO3t界面现今F17走滑断裂;b—f. 切割F17走滑断裂地震剖面,剖面位置见图5a(图5b—f中不同颜色断裂为不同期次断裂,具体对应见图5f。)

Fig. 5   Three-dimentional seismic interpretations of strike-slip faults in different segments of the F17 zone in the Fuman oilfield


从富满油田Ⅱ区块相关界面构造图(图6)可看出:在上寒武统底界面(TЄ3)上F17走滑断裂带表现出较为稳定宽度、贯穿作用较强的线状构造,但在中部和南部出现右阶叠接和主位移带(PDZ)拐弯的分段性(图6a);在一间房组底界面(TO2yj)和吐木休克组底界面(TO3t)上,F17走滑断裂带继承了TЄ3界面的产状特征,但宽度有所增加(图6b,c);在志留系底界面(TS)却表现为雁列断裂,南端雁列断裂密集且短促,北端雁列断裂稀疏而细长,且呈帚状(图6d)。

图6

图6   富满油田Ⅱ区块F17走滑断裂带各界面构造图

a.上寒武统底界面(TЄ3);b.一间房组底界面(TO2yj);c.土木休克组底界面(TO3t);d.志留系底界面(TS)

Fig. 6   Structural maps showing the various interfaces along F17 strike-slip zone in block Ⅱ, Fuman oilfield


断层形态指数(FSI,无量纲)26-27可同时显示上盘和下盘信息,指示断层损伤带宽度和分段性及其叠接关系。从F17走滑断裂带分数导数指数(FDP,无量纲)28为0.5的断层形态指数图(图7)可看出:①在TЄ2界面F17走滑断裂带由多条小型断裂左阶叠接,总体呈线性展布,自北而南活动性增强(图7a)。②在TЄ3界面F17走滑断裂带损伤带宽度增大;出现NW向雁列断裂、南北向断裂以及FI20走滑断裂(图7b)。③在TO3t界面F17走滑断裂带具有明显的分段性:南段和中段呈辫状,中段以压隆段为主,南段以拉分段为主;北段由南向北依次发育软连接段—线性段—软连接段,软连接段呈左阶叠覆和右阶叠覆交替出现;东侧出现弧形断裂系(图7c)。④在志留系底界面(TS)F17走滑断裂表现为左行左阶雁列式展布的NW—NNW向次级断裂,单条雁列断层的长度由南向北逐渐增长;南段雁列断裂相对稀疏,中段雁列断裂“短且密”,北段雁列断裂长而疏(图7d)。与其他Ⅰ级走滑断裂带不同的是,F17走滑断裂带经历了十分复杂的应力-应变过程,除了成为塔中隆起和塔北隆起之间SN向压扭应力场的调节型走滑断裂之外,在海西晚期还叠加了近EW向拉张应力作用而具有张性T破裂特征29,从TS界面雁列断层与主位移带(PDZ)之间的夹角普遍大于45o可证明了这一点。

图7

图7   富满油田Ⅱ区块F17走滑断裂及各界面断层形态指数(FSI)图(FDP=0.50)

a.中寒武统底界面(TЄ2);b.上寒武统底界面(TЄ3);c.上奥陶统底界面(TO3t);d.志留系底界面(TS)[分数导数指数(FDP)是一种介于整数阶导数和整数阶积分之间的导数形式,能够描述非局部现象和复杂系统中的行为。通过调节FDP计算不同尺度的体曲率,一般取值0.25,0.50或0.75。数值小,适用于刻画较大的断裂;数值大,则适用于刻画裂缝(孟阳等,2018)。]

Fig. 7   Fault shape indices (FSIs) of the various interfaces along the F17 strike-slip zone in block Ⅱ, Fuman oilfield(FDP = 0.50)


运用公式(1)计算F17走滑断裂带A—D段(图8)雁列断裂深度(表2)。计算的雁列断裂深度(h)平均值远低于实际测量的值(表2),究其原因在于雁列角(ω)普遍较大(>45°)(图6d),意味着FI17在海西晚期不是简单剪切,而是存在EW向拉张应力叠加。因为F17断裂带位于台盆区南北应力调节区域,这套雁列断裂拉分段属于T张破裂,公式(1)并不适用于此雁列断裂深度(h)的计算,类似的还有FI10走滑断裂带。

图8

图8   富满油田Ⅱ区块F17走滑断裂带TS界面分段和地震剖面

a. F17走滑断裂带平面图;b.D段,拉分段;c.C段,压隆段;d.B段,拉分段;e.A段,拉分段(不同颜色断裂为不同期次断裂,图8a中不同颜色断层为图8b—e中花状构造中断层在平面上的投影。)

Fig. 8   Segmentation and the seismic profiles of the F17 strike-slip fault zone on TS reflectance interface on in block Ⅱ, Fuman oilfield


表2   根据Riedel剪切的离散元模型计算的F17走滑断裂带雁列断裂深度

Table 2  Depths of the en echelon faults in the F17 strike-slip fault zone calculated using the DEM for Riedel shear structures

分段雁列断裂长度(L)/m雁列角(ω)/(°)雁列断裂间隔(S)/m雁列断裂深度(h)/m
计算值计算平均值实测平均值
A段4 367.3332.911 417.89525.74448.072 555.4
3 712.2337.90813.64279.57
3 852.8335.031 352.08482.31
4 780.1437.171 390.97481.91
4 424.1737.721 358.06467.56
2 578.5235.501 274.30451.34
B段2 405.0354.28320.07100.6488.452 102.0
3 227.6455.21281.1888.20
2 485.7955.47251.2778.77
1 893.5153.62251.2779.15
2 366.1449.42299.1395.50
C段3 197.7347.73355.97114.41142.342 074.0
3 724.2047.32499.55160.84
4 005.3848.43361.95116.00
4 056.2446.87559.38180.46
3 987.4445.34430.75139.99
D段2 734.0755.431 423.87446.39513.853 932.6
3 323.3649.901 758.90560.58
4 816.0344.041 633.26534.57

新窗口打开| 下载CSV


应力-遮蔽理论中的完全塑性介质-应力上升函数模型涉及到的参数及取值详见表3表4。至此,就可以运用公式(2)计算富满油田Ⅱ区块F17走滑断裂带A—D段(图8)通源深度,其结果见表5

表3   完全塑性介质-应力上升函数模型计算参数

Table 3  Parameters used in the calculation of perfectly plastic medium-stress ascending function model

参数符号及单位取值
断裂区域内介质密度ρ,kg/m32 400.00
重力加速度g,m/s29.80
断裂区域内摩擦系数μφ,无量纲1.19
断裂面内摩擦系数μf,无量纲0.32
脆性地层区域内聚力C0,KPa16 507.00
断裂面内聚力[据公式(3)计算]C1(Kv=0.75),kPa9 478.58
C1(Kv=0.55),kPa6 081.40
C1(Kv=0.35),kPa3 901.79
C1(Kv=0.15),kPa2 503.36
雁列断裂深度h,km2.50
雁列断裂间隔S,km0.75
内摩擦角φ=2 (45°-ω),(°)ω计算
岩石完整性系数Kv,无量纲表1取值

新窗口打开| 下载CSV


表4   根据完全塑性介质-应力上升函数模型计算的F17走滑断裂各段通源深度参数

Table 4  Parameters used to calculate the depths of source rocks in connection with various segments of the F17 strike-slip fault zone based on the perfectly plastic medium-stress ascending function model

断裂分段雁列断裂长度(L)/km雁列断裂深度(h)/km雁列角(ω)/rad雁列距离(S′)/km雁列断裂平均间隔(S)/km
范围平均值范围平均值范围平均值范围平均值S=S′ sinω
A段4.367 33.952 52.176 32.537 30.574 10.628 71.417 91.267 80.745 6
3.712 22.676 00.661 10.813 6
3.852 82.745 80.611 11.352 1
4.780 12.609 70.648 40.391 0
4.424 22.535 50.658 01.358 1
2.578 52.588 80.619 31.274 3
B段2.405 02.475 62.002 92.102 00.946 90.935 00.320 10.280 60.225 8
3.227 62.154 20.963 10.281 2
2.485 72.237 50.967 60.251 3
1.893 52.013 30.935 40.251 3
2.366 10.862 10.299 1
C段3.197 73.794 22.018 12.074 00.832 60.822 30.356 00.441 60.323 5
3.724 22.166 20.825 50.499 6
4.005 42.203 20.844 80.362 0
4.056 21.908 50.817 60.559 4
3.984 20.790 90.430 8
D段3.901 14.181 63.581 93.932 60.966 90.868 61.423 91.605 41.225 5
3.827 83.761 30.870 51.758 9
4.816 04.454 50.768 31.633 3

注:“—”表示未取值。1弧度(rad)≈57.295 7°。

新窗口打开| 下载CSV


表5   完全塑性介质-应力上升函数模型计算F17走滑断裂各段通源深度

Table 5  Depths of source rocks in connection with various segments of the F17 strike-slip fault zone calculated using the perfectly plastic medium-stress ascending function model

断裂分段地层完整系数(Kv通源深度(H)/km
范围平均值
A段1.008.609.18
0.959.01
0.909.38
0.859.72
B段1.0016.5618.17
0.9517.71
0.9018.74
0.8519.66
C段1.0014.9116.04
0.9515.72
0.9016.43
0.8517.08
D段1.0014.5515.10
0.9514.94
0.9015.29
0.8515.61

新窗口打开| 下载CSV


F17走滑断裂带A段通源深度介于8.60 ~ 9.72 km,平均为9.18 km;B段通源深度介于16.56 ~ 19.66 km,平均为18.17 km;C段通源深度介于14.91 ~ 17.08 km,平均为16.04 km;D段通源深度介于14.55 ~ 15.61 km,平均为15.10 km。由此可见,B段通源深度最大,A段通源深度最小,C段和D段通源深度介于二者之间。对照图4的玉儿吐斯组烃源岩平面分布和10 km左右埋深30,充分证实了F17走滑断裂已断至下伏玉尔吐斯组、甚至震旦+南华系烃源岩。

3 通源性与F17走滑断裂带油气成藏关系

F17断裂带中原油碳同位素相对较轻,碳同位素值(δ13C)介于-33.12 ‰ ~ -32.30 ‰,平均为-32.71 ‰,具有显著的海相油特征。原油的族组分碳同位素值介于-33.00 ‰ ~ -30.30 ‰,平均为-31.65 ‰。与下寒武统玉尔吐斯组烃源岩干酪根碳同位素值(-34 ‰ ~ -30 ‰)31分布相吻合,推测F17走滑断裂带奥陶系鹰山组和一间房组的油气源自下寒武统玉尔吐斯组烃源岩24

沿F17走滑断裂带单井原油密度至北向南逐渐降低,线性走滑段及拉分段单井原油密度均大于0.80 g/cm3,压隆段4口井原油密度均小于0.80 g/cm3。整体上来看,单井原油密度以满深3井为界呈北高南低的特点(图9a)。这种单井原油密度的分段差异可能与研究区不同构造位置烃源岩埋深和F17走滑断裂带通源性的差异有关。

图9

图9   富满油田Ⅱ区块FI17走滑断裂带油气物性和充注期次及成藏贡献度变化趋势图

a.原油密度(ρ)趋势图;b.天然气干燥系数趋势图;c.油气充注期次及成藏贡献度趋势图(本段没有第一期充注)

Fig. 9   Diagrams showing the variation trends of hydrocarbon physical properties, along with charging stages and their respective contributive degrees, of the FI17 strike-slip fault zone in block Ⅱ, Fuman oilfield


沿F17走滑断裂带天然气干燥系数变化较小,分布在73 ~ 87,线性走滑段及拉分段天然气干燥系数基本上小于80,压隆段均大于80(图9b)。总的来说,线性走滑段单井原油密度>拉分段单井原油密度>压隆段单井原油密度,压隆段天然气干燥系数>拉分段天然气干燥系数>线性走滑段天然气干燥系数,且自北而南有增加趋势。这与自北而南通源深度增加是一致的。

沿F17走滑断裂带油气充注期次及其贡献度表现为:北部为第二期—第四期共3期油充注,第三期贡献度最多,原油密度最大,天然气干燥系数最低;中部为第三期和第四期共2期充注,以第四期贡献为主,原油密度和天然气干燥系数居中;南部仅为第四期1期油充注,原油密度最小,干燥系数最大。总体表现为北部靠近塔北隆起斜坡带油充注期次多,南部为阿满鞍部构造带,仅发育晚期1期油充注(图9c)。尽管这种断控型油气聚集还受到走滑断裂带内构造高点的控制,但F17断裂带自北而南构造高点是逐渐下降的,而油气充注期次和贡献度以及原油密度和天然气干燥系数却呈相反的变化趋势,这可能与烃源岩埋深和通源深度增加有关,特别是南部通源深度加大,导致晚期更深部的高成熟天然气气侵改造程度增加32

根据流体包裹体与方解石U-Pb融合定年,并结合单井埋藏史-热史恢复以及原油地球化学分析结果,总结F17走滑断裂带油气成藏经历了早期油气深部成藏、深部原油裂解、晚期裂解气与早期油气混合成藏等3个阶段(图10):①第一阶段,随着寒武系埋藏深度的增加,地层温度的不断升高,玉尔吐斯组烃源岩在加里东晚期达到生烃门限(等效镜质体反射率Ro=0.6 %~ 0.8 %)并开始大量生烃,生成的油气首先在寒武系储层内聚集成藏,少量的油气沿走滑断裂向上运移到奥陶系储层。②第二阶段,寒武系持续埋藏,地层温度和压力持续升高,寒武系在海西中晚期达到原油裂解温度(150 ~ 160 ℃),加里东晚期生成的原油持续裂解生成更高成熟度的油气,并沿走滑断裂带向上调整运移。③第三阶段,喜马拉雅期,中-上寒武统埋深达到最大,此时地层温度达到170 ~ 200 ℃,早期生成的原油开始裂解生气,原油裂解气再次沿走滑断裂带向上运移到奥陶系储层与早期油混合成藏,形成“上油下气”的油气分布格局。

图10

图10   富满油田Ⅱ区块F17走滑断裂带断控型油气藏成藏模式

Fig. 10   Hydrocarbon accumulation pattern of the F17 strike-slip fault zone in block Ⅱ, Fuman oilfield


4 结论

1) 运用Riedel剪切的离散元模型(DEM)计算的富满油田Ⅱ区块F17走滑断裂带海西晚期花状构造拖曳点深度(h)远小于实测值,表明了该期雁列断裂并非R剪切,而是T张破裂成因。

2) 受走滑断裂级别、走向分段性、活动强度和地层等多因素控制,既使是同一条走滑断裂带,其通源性也会沿着走向发生显著变化,从而影响到其油气垂向输导效能,进而对断控型油气成藏过程起到控制作用。F17走滑断裂带自北而南通源深度与油气物性(原油密度、天然气干燥系数等)和充注期次及贡献度具有耦合变化趋势,表明通源性对油气聚集具有一定的控制作用。

3) FI17走滑断裂带通源性定量评价结果表明,该断裂通源深度平均达9 ~ 18 km。由此表明,该断裂能够将其下伏埋深10 km以下的玉尔吐斯组(甚至震旦系+南华系)烃源岩生成的油气直接输导至上覆奥陶系断(缝)溶体圈闭中聚集成藏。

参考文献

陈红汉.

我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展

[J]. 地球科学, 2023486): 2039-2066.

[本文引用: 2]

CHEN Honghan.

Advances on relationship between strike-slip structures and hydrocarbon accumulations in large superimposed craton basins, China

[J]. Earth Science, 2023486): 2039-2066.

[本文引用: 2]

唐大卿陈红汉耿锋.

板内小位移走滑断裂特征解析: 以塔里木、四川及鄂尔多斯盆地为例

[J]. 地球科学, 2023486): 2067-2086.

[本文引用: 1]

TANG DaqingCHEN HonghanGENG Fenget al.

Characteristics of intraplate small-displacement strike-slip faults: A case study of Tarim, Sichuan and Ordos basins

[J]. Earth Science, 2023486): 2067-2086.

[本文引用: 1]

漆立新云露曹自成.

顺北油气田地质储量评估与油气勘探方向

[J]. 新疆石油地质, 2021422): 127-135.

[本文引用: 1]

QI LixinYUN LuCAO Zichenget al.

Geological reserves assessment and petroleum exploration targets in Shunbei Oil & Gas Field

[J]. Xinjiang Petroleum Geology, 2021422): 127-135.

[本文引用: 1]

王清华杨海军汪如军.

塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新

[J]. 中国石油勘探, 2021264): 58-71.

[本文引用: 1]

WANG QinghuaYANG HaijunWANG Rujunet al.

Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin

[J]. China Petroleum Exploration, 2021264): 58-71.

[本文引用: 1]

田军杨海军朱永峰.

塔里木盆地富满油田成藏地质条件及勘探开发关键技术

[J]. 石油学报, 2021428): 971-985.

[本文引用: 1]

TIAN JunYANG HaijunZHU Yongfenget al.

Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman Oilfield, Tarim Basin

[J]. Acta Petrolei Sinica, 2021428): 971-985.

[本文引用: 1]

GOGONENKOV G NTIMURZIEV A I.

Strike-slip faults in the West Siberian Basin: Implications for petroleum exploration and development

[J]. Russian Geology and Geophysics, 2010513): 304-316.

[本文引用: 1]

GOGONENKOV G NTIMURZIEV A I.

Strike-slip faulting in the West Siberian Platform: Insights from 3D seismic imagery

[J]. Comptes Rendus Geoscience, 20123443/4): 214-226.

鲁新便胡文革汪彦.

塔河地区碳酸盐岩断溶体油藏特征与开发实践

[J]. 石油与天然气地质, 2015363): 347-355.

LU XinbianHU WengeWANG Yanet al.

Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin

[J]. Oil & Gas Geology, 2015363): 347-355.

吴梅莲刘永福彭鹏.

轮南古潜山走滑断裂特征及其对油气成藏的影响

[J]. 断块油气田, 2021284): 456-462.

WU MeilianLIU YongfuPENG Penget al.

Characteristics of strike-slip faults in Lunnan buried hill and its influence on hydrocarbon accumulation

[J]. Fault-Block Oil and Gas Field, 2021284): 456-462.

冯保周于长录何太洪.

鄂尔多斯盆地伊陕斜坡北部断裂体系的发现及地质意义

[J]. 西安石油大学学报(自然科学版), 2022372): 1-8.

[本文引用: 1]

FENG BaozhouYU ChangluHE Taihonget al.

Discovery of fault system in the north of Yishan slope in Ordos Basin and its geological significance

[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022372): 1-8.

[本文引用: 1]

马庆佑曹自成蒋华山.

塔河—顺北地区走滑断裂带的通源性及其与油气富集的关系

[J]. 海相油气地质, 2020254): 327-334.

[本文引用: 3]

MA QingyouCAO ZichengJIANG Huashanet al.

Source-connectivity of strike slip fault zone and its relationship with oil and gas accumulation in Tahe-Shunbei area, Tarim Basin

[J]. Marine Origin Petroleum Geology, 2020254): 327-334.

[本文引用: 3]

AMPUERO J PMAO Xiaolin.

Upper limit on damage zone thickness controlled by seismogenic depth

[M]//THOMAS M Y, MITCHELL T M, BHAT H S. Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture. Washington, D.C.American Geophysical Union2017243-253.

[本文引用: 1]

DONZÉ F VKLINGER YBONILLA-SIERRA Vet al.

Assessing the brittle crust thickness from strike-slip fault segments on Earth, Mars and Icy moons

[J]. Tectonophysics, 2021805228779.

[本文引用: 1]

YIN AnZUZA A VPAPPALARDO R T.

Mechanics of evenly spaced strike-slip faults and its implications for the formation of tiger-stripe fractures on Saturn’s moon Enceladus

[J]. Icarus, 2016266204-216.

[本文引用: 1]

金军斌张杜杰李大奇.

顺北油气田深部破碎性地层井壁失稳机理及对策研究

[J]. 钻采工艺, 2023461): 42-49.

[本文引用: 1]

JIN JunbinZHANG DujieLI Daqiet al.

Study on the wellbore instability mechanisms and drilling fluid countermeasures of deep fractured formation in Shunbei Oil and Gas Field

[J]. Drilling & Production Technology, 2023461): 42-49.

[本文引用: 1]

李山明宋全友李宝刚.

阿满地区顺北1号走滑断裂带差异性及油气富集规律

[J]. 河南科学, 2019375): 797-805.

LI ShanmingSONG QuanyouLI Baoganget al.

Difference of Shunbei 1 strike-slip fault zone and the regularity of oil and gas accumulation in Aman area

[J]. Henan Science, 2019375): 797-805.

张丽娟李勇周成刚.

塔里木盆地奥陶纪岩相古地理特征及礁滩分布

[J]. 石油与天然气地质, 2007286): 731-737.

[本文引用: 1]

ZHANG LijuanLI YongZHOU Chengganget al.

Lithofacies paleogeographical characteristics and reef-shoal distribution during the Ordovician in the Tarim Basin

[J]. Oil & Gas Geology, 2007286): 731-737.

[本文引用: 1]

汤良杰黄太柱金文正.

叠合盆地差异构造变形与油气聚集

[J]. 地学前缘, 2009164): 13-22.

TANG LiangjieHUANG TaizhuJIN Wenzhenget al.

Differential deformation and hydrocarbon accumulation in the superimposed basins

[J]. Earth Science Frontiers, 2009164): 13-22.

张宇航汤良杰云露.

塔里木盆地关键构造变革期不整合特征及其地质意义

[J]. 世界地质, 2012312): 306-314.

[本文引用: 1]

ZHANG YuhangTANG LiangjieYUN Luet al.

Unconformity characteristics and geological significance in key tectonic revolution stage of Tarim Basin

[J]. Global Geology, 2012312): 306-314.

[本文引用: 1]

赵明胜.

塔里木盆地奥陶系不同台地边缘礁滩体类型、迁移及储集体差异性研究

[D]. 成都成都理工大学2014.

[本文引用: 1]

ZHAO Mingsheng.

The research about differences on type, migration and reservoir of reef flat body in platform edge during the Ordovician in Tarim Basin

[D]. ChengduChengdu University of Technology2014.

[本文引用: 1]

NENG YuanLI YongQI Jiafuet al.

Deformation styles and multi-stage evolution history of a large intraplate strike-slip fault system in a Paleozoic superimposed basin: A case study from the Tarim Basin, NW China

[J]. Frontiers in Earth Science, 202210837354.

[本文引用: 1]

AYDIN ABERRYMAN J G.

Analysis of the growth of strike-slip faults using effective medium theory

[J]. Journal of Structural Geology, 20103211): 1629-1642.

[本文引用: 1]

CARLINI MVIOLA GMATTILA Jet al.

The role of mechanical stratigraphy on the refraction of strike-slip faults

[J]. Solid Earth, 2019101): 343-356.

[本文引用: 1]

王清华.

塔里木盆地富满油田凝析气藏成因

[J]. 石油勘探与开发, 2023506): 1128-1139.

[本文引用: 2]

WANG Qinghua.

Origin of gas condensate reservoir in Fuman Oilfield, Tarim Basin, NW China

[J]. Petroleum Exploration and Development, 2023506): 1128-1139.

[本文引用: 2]

宋兴国陈石谢舟.

塔里木盆地富满油田东部走滑断裂发育特征与油气成藏

[J]. 石油与天然气地质, 2023442): 335-349.

[本文引用: 1]

SONG XingguoCHEN ShiXIE Zhouet al.

Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman Oilfield, Tarim Basin

[J]. Oil & Gas Geology, 2023442): 335-349.

[本文引用: 1]

杨珂孙铁军王田野.

断层形态指数属性在小断层识别中的应用

[C]//SPG/SEG南京2020年国际地球物理会议论文集(中文). 北京《中国学术期刊(光盘版)》电子杂志社有限公司2020761-764.

[本文引用: 1]

YANG KeSUN TiejunWANG Tianyeet al.

Application of fault shape index attribution to the identification of sub-seismic faults

[C]//SPG/SEG Nanjing 2020 International Geophysical Conference Proceedings (Chinese). BeijingChinese Academic Journal (CD Edition) Electronic Magazine Co., Ltd2020761-764.

[本文引用: 1]

MENG YujingCHEN HonghanLUO Yanget al.

Architecture of intraplate strike-slip fault zones in the Yanchang Formation,Southern Ordos Basin, China: Characterization and implications for their control on hydrocarbon enrichment

[J]. Journal of Structural Geology, 2023170104851.

[本文引用: 1]

孟阳许颖玉李静叶.

OVT域地震资料属性分析技术在断裂精细识别中的应用

[J]. 石油地球物理勘探, 201853(): 289-294.

[本文引用: 2]

MENG YangXU YingyuLI Jingyeet al.

Fault identification with OVT-domain seismic attribute analysis

[J]. Oil Geophysical Prospecting, 201853S2): 289-294.

[本文引用: 2]

邓尚李慧莉张仲培.

塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系

[J]. 石油与天然气地质, 2018395): 878-888.

[本文引用: 1]

DENG ShangLI HuiliZHANG Zhongpeiet al.

Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin

[J]. Oil & Gas Geology, 2018395): 878-888.

[本文引用: 1]

闫磊朱光有王珊.

塔里木盆地震旦系—寒武系万米超深层天然气成藏条件与有利区带优选

[J]. 石油学报, 20214211): 1446-1457.

[本文引用: 1]

YAN LeiZHU GuangyouWANG Shanet al.

Accmulation conditions and favorable areas for natural gas accumulation in the 10 000 meters ultra-deep Sinian-Cambrian in Tarim Basin

[J]. Acta Petrolei Sinica, 20214211): 1446-1457.

[本文引用: 1]

朱光有胡剑风陈永权.

塔里木盆地轮探1井下寒武统玉尔吐斯组烃源岩地球化学特征与形成环境

[J]. 地质学报, 2022966): 2116-2130.

[本文引用: 1]

ZHU GuangyouHU JianfengCHEN Yongquanet al.

Geochemical characteristics and formation environment of source rock of the Lower Cambrian Yuertusi Formation in well Luntan 1 in Tarim Basin

[J]. Acta Geologica Sinica, 2022966): 2116-2130.

[本文引用: 1]

LU ZhongdengPING HongweiCHEN Honghanet al.

Geochemical characteristics of Ordovician crude oils in the FI17 strike-slip fault zone of the Fuman Oilfield, Tarim Basin: Implications for ultra-deep hydrocarbon accumulation in the Tarim Basin

[J]. Marine and Petroleum Geology, 2024163106800.

[本文引用: 1]

/