石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (3): 787-800.doi: 10.11743/ogg20240315
张艳秋1,2,3(), 陈红汉4(), 王燮培4, 王彭1,2,3, 苏丹梅2, 谢舟1,2,3
收稿日期:
2024-02-23
修回日期:
2024-05-16
出版日期:
2024-07-01
发布日期:
2024-07-01
通讯作者:
陈红汉
E-mail:zhangyanq-tlm@petrochina.com.cn;hhchen@cug.edu.cn
第一作者简介:
张艳秋(1979—),女,高级工程师,塔里木盆地石油地质综合研究。E-mail:zhangyanq-tlm@petrochina.com.cn。
基金项目:
Yanqiu ZHANG1,2,3(), Honghan CHEN4(), Xiepei WANG4, Peng WANG1,2,3, Danmei SU2, Zhou XIE1,2,3
Received:
2024-02-23
Revised:
2024-05-16
Online:
2024-07-01
Published:
2024-07-01
Contact:
Honghan CHEN
E-mail:zhangyanq-tlm@petrochina.com.cn;hhchen@cug.edu.cn
摘要:
塔里木盆地走滑断裂带对油气藏形成具有控制作用,走滑断裂带与油源连通性对油气运移、聚集非常重要。基于3D地震资料,运用Riedel剪切离散元模型和完全塑性介质-应力上升函数模型,对塔里木盆地富满油田Ⅱ区块FI17走滑断裂带油源连通性进行了评价。研究结果显示:①FI17走滑断裂带海西晚期雁列断裂拖曳点深度(h)理论计算值远小于实测值,表明其走滑断裂T张破裂成因,而非R剪切断裂。②FI17走滑断裂带通源深度平均达9 ~ 18 km,表明该断裂能够将其下伏埋深10 km以下的玉尔吐斯组烃源岩生成的油气直接输导至上覆奥陶系断(缝)溶体圈闭中聚集成藏。③FI17走滑断裂带通源深度(H)自北而南增加,其断控形成油气藏中的原油密度、天然气干燥系数、油气充注期次及各期次贡献度与油源连通性密切相关,表明油源连通性对油气聚集具有控制作用。走滑断裂级别、走向分段性、活动强度和断穿地层不同,控制作用也不同。油源连通性会沿着走向发生显著变化,影响油气垂向输导效能。
中图分类号:
表2
根据Riedel剪切的离散元模型计算的FⅠ17走滑断裂带雁列断裂深度"
分段 | 雁列断裂长度(L)/m | 雁列角(ω)/(°) | 雁列断裂间隔(S)/m | 雁列断裂深度(h)/m | ||
---|---|---|---|---|---|---|
计算值 | 计算平均值 | 实测平均值 | ||||
A段 | 4 367.33 | 32.91 | 1 417.89 | 525.74 | 448.07 | 2 555.4 |
3 712.23 | 37.90 | 813.64 | 279.57 | |||
3 852.83 | 35.03 | 1 352.08 | 482.31 | |||
4 780.14 | 37.17 | 1 390.97 | 481.91 | |||
4 424.17 | 37.72 | 1 358.06 | 467.56 | |||
2 578.52 | 35.50 | 1 274.30 | 451.34 | |||
B段 | 2 405.03 | 54.28 | 320.07 | 100.64 | 88.45 | 2 102.0 |
3 227.64 | 55.21 | 281.18 | 88.20 | |||
2 485.79 | 55.47 | 251.27 | 78.77 | |||
1 893.51 | 53.62 | 251.27 | 79.15 | |||
2 366.14 | 49.42 | 299.13 | 95.50 | |||
C段 | 3 197.73 | 47.73 | 355.97 | 114.41 | 142.34 | 2 074.0 |
3 724.20 | 47.32 | 499.55 | 160.84 | |||
4 005.38 | 48.43 | 361.95 | 116.00 | |||
4 056.24 | 46.87 | 559.38 | 180.46 | |||
3 987.44 | 45.34 | 430.75 | 139.99 | |||
D段 | 2 734.07 | 55.43 | 1 423.87 | 446.39 | 513.85 | 3 932.6 |
3 323.36 | 49.90 | 1 758.90 | 560.58 | |||
4 816.03 | 44.04 | 1 633.26 | 534.57 |
表3
完全塑性介质-应力上升函数模型计算参数"
参数 | 符号及单位 | 取值 |
---|---|---|
断裂区域内介质密度 | ρ,kg/m3 | 2 400.00 |
重力加速度 | g,m/s2 | 9.80 |
断裂区域内摩擦系数 | μφ,无量纲 | 1.19 |
断裂面内摩擦系数 | μf,无量纲 | 0.32 |
脆性地层区域内聚力 | C0,KPa | 16 507.00 |
断裂面内聚力[据 | C1(Kv=0.75),kPa | 9 478.58 |
C1(Kv=0.55),kPa | 6 081.40 | |
C1(Kv=0.35),kPa | 3 901.79 | |
C1(Kv=0.15),kPa | 2 503.36 | |
雁列断裂深度 | h,km | 2.50 |
雁列断裂间隔 | S,km | 0.75 |
内摩擦角 | φ=2 (45°-ω),(°) | 据ω计算 |
岩石完整性系数 | Kv,无量纲 | 按 |
表4
根据完全塑性介质-应力上升函数模型计算的FⅠ17走滑断裂各段通源深度参数"
断裂分段 | 雁列断裂长度(L)/km | 雁列断裂深度(h)/km | 雁列角(ω)/rad | 雁列距离(S′)/km | 雁列断裂平均间隔(S)/km | ||||
---|---|---|---|---|---|---|---|---|---|
范围 | 平均值 | 范围 | 平均值 | 范围 | 平均值 | 范围 | 平均值 | S=S′ sinω | |
A段 | 4.367 3 | 3.952 5 | 2.176 3 | 2.537 3 | 0.574 1 | 0.628 7 | 1.417 9 | 1.267 8 | 0.745 6 |
3.712 2 | 2.676 0 | 0.661 1 | 0.813 6 | ||||||
3.852 8 | 2.745 8 | 0.611 1 | 1.352 1 | ||||||
4.780 1 | 2.609 7 | 0.648 4 | 0.391 0 | ||||||
4.424 2 | 2.535 5 | 0.658 0 | 1.358 1 | ||||||
2.578 5 | 2.588 8 | 0.619 3 | 1.274 3 | ||||||
B段 | 2.405 0 | 2.475 6 | 2.002 9 | 2.102 0 | 0.946 9 | 0.935 0 | 0.320 1 | 0.280 6 | 0.225 8 |
3.227 6 | 2.154 2 | 0.963 1 | 0.281 2 | ||||||
2.485 7 | 2.237 5 | 0.967 6 | 0.251 3 | ||||||
1.893 5 | 2.013 3 | 0.935 4 | 0.251 3 | ||||||
2.366 1 | — | — | 0.862 1 | 0.299 1 | |||||
C段 | 3.197 7 | 3.794 2 | 2.018 1 | 2.074 0 | 0.832 6 | 0.822 3 | 0.356 0 | 0.441 6 | 0.323 5 |
3.724 2 | 2.166 2 | 0.825 5 | 0.499 6 | ||||||
4.005 4 | 2.203 2 | 0.844 8 | 0.362 0 | ||||||
4.056 2 | 1.908 5 | 0.817 6 | 0.559 4 | ||||||
3.984 2 | — | — | 0.790 9 | 0.430 8 | |||||
D段 | 3.901 1 | 4.181 6 | 3.581 9 | 3.932 6 | 0.966 9 | 0.868 6 | 1.423 9 | 1.605 4 | 1.225 5 |
3.827 8 | 3.761 3 | 0.870 5 | 1.758 9 | ||||||
4.816 0 | 4.454 5 | 0.768 3 | 1.633 3 |
1 | 陈红汉. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展[J]. 地球科学, 2023, 48(6): 2039-2066. |
CHEN Honghan. Advances on relationship between strike-slip structures and hydrocarbon accumulations in large superimposed craton basins, China[J]. Earth Science, 2023, 48(6): 2039-2066. | |
2 | 唐大卿, 陈红汉, 耿锋, 等. 板内小位移走滑断裂特征解析: 以塔里木、四川及鄂尔多斯盆地为例[J]. 地球科学, 2023, 48(6): 2067-2086. |
TANG Daqing, CHEN Honghan, GENG Feng, et al. Characteristics of intraplate small-displacement strike-slip faults: A case study of Tarim, Sichuan and Ordos basins[J]. Earth Science, 2023, 48(6): 2067-2086. | |
3 | 漆立新, 云露, 曹自成, 等. 顺北油气田地质储量评估与油气勘探方向[J]. 新疆石油地质, 2021, 42(2): 127-135. |
QI Lixin, YUN Lu, CAO Zicheng, et al. Geological reserves assessment and petroleum exploration targets in Shunbei Oil & Gas Field[J]. Xinjiang Petroleum Geology, 2021, 42(2): 127-135. | |
4 | 王清华, 杨海军, 汪如军, 等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 2021, 26(4): 58-71. |
WANG Qinghua, YANG Haijun, WANG Rujun, et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4): 58-71. | |
5 | 田军, 杨海军, 朱永峰, 等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8): 971-985. |
TIAN Jun, YANG Haijun, ZHU Yongfeng, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman Oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(8): 971-985. | |
6 | GOGONENKOV G N, TIMURZIEV A I. Strike-slip faults in the West Siberian Basin: Implications for petroleum exploration and development[J]. Russian Geology and Geophysics, 2010, 51(3): 304-316. |
7 | GOGONENKOV G N, TIMURZIEV A I. Strike-slip faulting in the West Siberian Platform: Insights from 3D seismic imagery[J]. Comptes Rendus Geoscience, 2012, 344(3/4): 214-226. |
8 | 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355. |
LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355. | |
9 | 吴梅莲, 刘永福, 彭鹏, 等. 轮南古潜山走滑断裂特征及其对油气成藏的影响[J]. 断块油气田, 2021, 28(4): 456-462. |
WU Meilian, LIU Yongfu, PENG Peng, et al. Characteristics of strike-slip faults in Lunnan buried hill and its influence on hydrocarbon accumulation[J]. Fault-Block Oil and Gas Field, 2021, 28(4): 456-462. | |
10 | 冯保周, 于长录, 何太洪, 等. 鄂尔多斯盆地伊陕斜坡北部断裂体系的发现及地质意义[J]. 西安石油大学学报(自然科学版), 2022, 37(2): 1-8. |
FENG Baozhou, YU Changlu, HE Taihong, et al. Discovery of fault system in the north of Yishan slope in Ordos Basin and its geological significance[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022, 37(2): 1-8. | |
11 | 马庆佑, 曹自成, 蒋华山, 等. 塔河—顺北地区走滑断裂带的通源性及其与油气富集的关系[J]. 海相油气地质, 2020, 25(4): 327-334. |
MA Qingyou, CAO Zicheng, JIANG Huashan, et al. Source-connectivity of strike slip fault zone and its relationship with oil and gas accumulation in Tahe-Shunbei area, Tarim Basin[J]. Marine Origin Petroleum Geology, 2020, 25(4): 327-334. | |
12 | AMPUERO J P, MAO Xiaolin. Upper limit on damage zone thickness controlled by seismogenic depth[M]//THOMAS M Y, MITCHELL T M, BHAT H S. Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture. Washington, D.C.: American Geophysical Union, 2017: 243-253. |
13 | DONZÉ F V, KLINGER Y, BONILLA-SIERRA V, et al. Assessing the brittle crust thickness from strike-slip fault segments on Earth, Mars and Icy moons[J]. Tectonophysics, 2021, 805: 228779. |
14 | YIN An, ZUZA A V, PAPPALARDO R T. Mechanics of evenly spaced strike-slip faults and its implications for the formation of tiger-stripe fractures on Saturn’s moon Enceladus[J]. Icarus, 2016, 266: 204-216. |
15 | 金军斌, 张杜杰, 李大奇, 等. 顺北油气田深部破碎性地层井壁失稳机理及对策研究[J]. 钻采工艺, 2023, 46(1): 42-49. |
JIN Junbin, ZHANG Dujie, LI Daqi, et al. Study on the wellbore instability mechanisms and drilling fluid countermeasures of deep fractured formation in Shunbei Oil and Gas Field[J]. Drilling & Production Technology, 2023, 46(1): 42-49. | |
16 | 李山明, 宋全友, 李宝刚, 等. 阿满地区顺北1号走滑断裂带差异性及油气富集规律[J]. 河南科学, 2019, 37(5): 797-805. |
LI Shanming, SONG Quanyou, LI Baogang, et al. Difference of Shunbei 1 strike-slip fault zone and the regularity of oil and gas accumulation in Aman area[J]. Henan Science, 2019, 37(5): 797-805. | |
17 | 张丽娟, 李勇, 周成刚, 等. 塔里木盆地奥陶纪岩相古地理特征及礁滩分布[J]. 石油与天然气地质, 2007, 28(6): 731-737. |
ZHANG Lijuan, LI Yong, ZHOU Chenggang, et al. Lithofacies paleogeographical characteristics and reef-shoal distribution during the Ordovician in the Tarim Basin[J]. Oil & Gas Geology, 2007, 28(6): 731-737. | |
18 | 汤良杰, 黄太柱, 金文正, 等. 叠合盆地差异构造变形与油气聚集[J]. 地学前缘, 2009, 16(4): 13-22. |
TANG Liangjie, HUANG Taizhu, JIN Wenzheng, et al. Differential deformation and hydrocarbon accumulation in the superimposed basins[J]. Earth Science Frontiers, 2009, 16(4): 13-22. | |
19 | 张宇航, 汤良杰, 云露, 等. 塔里木盆地关键构造变革期不整合特征及其地质意义[J]. 世界地质, 2012, 31(2): 306-314. |
ZHANG Yuhang, TANG Liangjie, YUN Lu, et al. Unconformity characteristics and geological significance in key tectonic revolution stage of Tarim Basin[J]. Global Geology, 2012, 31(2): 306-314. | |
20 | 赵明胜. 塔里木盆地奥陶系不同台地边缘礁滩体类型、迁移及储集体差异性研究[D]. 成都: 成都理工大学, 2014. |
ZHAO Mingsheng. The research about differences on type, migration and reservoir of reef flat body in platform edge during the Ordovician in Tarim Basin[D]. Chengdu: Chengdu University of Technology, 2014. | |
21 | NENG Yuan, LI Yong, QI Jiafu, et al. Deformation styles and multi-stage evolution history of a large intraplate strike-slip fault system in a Paleozoic superimposed basin: A case study from the Tarim Basin, NW China[J]. Frontiers in Earth Science, 2022, 10: 837354. |
22 | AYDIN A, BERRYMAN J G. Analysis of the growth of strike-slip faults using effective medium theory[J]. Journal of Structural Geology, 2010, 32(11): 1629-1642. |
23 | CARLINI M, VIOLA G, MATTILA J, et al. The role of mechanical stratigraphy on the refraction of strike-slip faults[J]. Solid Earth, 2019, 10(1): 343-356. |
24 | 王清华. 塔里木盆地富满油田凝析气藏成因[J]. 石油勘探与开发, 2023, 50(6): 1128-1139. |
WANG Qinghua. Origin of gas condensate reservoir in Fuman Oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1128-1139. | |
25 | 宋兴国, 陈石, 谢舟, 等. 塔里木盆地富满油田东部走滑断裂发育特征与油气成藏[J]. 石油与天然气地质, 2023, 44(2): 335-349. |
SONG Xingguo, CHEN Shi, XIE Zhou, et al. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman Oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(2): 335-349. | |
26 | 杨珂, 孙铁军, 王田野, 等. 断层形态指数属性在小断层识别中的应用[C]//SPG/SEG南京2020年国际地球物理会议论文集(中文). 北京: 《中国学术期刊(光盘版)》电子杂志社有限公司, 2020: 761-764. |
YANG Ke, SUN Tiejun, WANG Tianye, et al. Application of fault shape index attribution to the identification of sub-seismic faults[C]//SPG/SEG Nanjing 2020 International Geophysical Conference Proceedings (Chinese). Beijing: Chinese Academic Journal (CD Edition) Electronic Magazine Co., Ltd, 2020: 761-764. | |
27 | MENG Yujing, CHEN Honghan, LUO Yang, et al. Architecture of intraplate strike-slip fault zones in the Yanchang Formation,Southern Ordos Basin, China: Characterization and implications for their control on hydrocarbon enrichment[J]. Journal of Structural Geology, 2023, 170: 104851. |
28 | 孟阳, 许颖玉, 李静叶, 等. OVT域地震资料属性分析技术在断裂精细识别中的应用[J]. 石油地球物理勘探, 2018, 53(): 289-294. |
MENG Yang, XU Yingyu, LI Jingye, et al. Fault identification with OVT-domain seismic attribute analysis[J]. Oil Geophysical Prospecting, 2018, 53(S2): 289-294. | |
29 | 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. |
DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. | |
30 | 闫磊, 朱光有, 王珊, 等. 塔里木盆地震旦系—寒武系万米超深层天然气成藏条件与有利区带优选[J]. 石油学报, 2021, 42(11): 1446-1457. |
YAN Lei, ZHU Guangyou, WANG Shan, et al. Accmulation conditions and favorable areas for natural gas accumulation in the 10 000 meters ultra-deep Sinian-Cambrian in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(11): 1446-1457. | |
31 | 朱光有, 胡剑风, 陈永权, 等. 塔里木盆地轮探1井下寒武统玉尔吐斯组烃源岩地球化学特征与形成环境[J]. 地质学报, 2022, 96(6): 2116-2130. |
ZHU Guangyou, HU Jianfeng, CHEN Yongquan, et al. Geochemical characteristics and formation environment of source rock of the Lower Cambrian Yuertusi Formation in well Luntan 1 in Tarim Basin[J]. Acta Geologica Sinica, 2022, 96(6): 2116-2130. | |
32 | LU Zhongdeng, PING Hongwei, CHEN Honghan, et al. Geochemical characteristics of Ordovician crude oils in the FI17 strike-slip fault zone of the Fuman Oilfield, Tarim Basin: Implications for ultra-deep hydrocarbon accumulation in the Tarim Basin[J]. Marine and Petroleum Geology, 2024, 163: 106800. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[3] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[4] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[5] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[6] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[7] | 曾联波, 巩磊, 宿晓岑, 毛哲. 深层-超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1): 1-14. |
[8] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[9] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[10] | 刘惠民, 张关龙, 范婕, 曾治平, 郭瑞超, 宫亚军. 准噶尔盆地腹部征沙村地区征10井的勘探发现与启示[J]. 石油与天然气地质, 2023, 44(5): 1118-1128. |
[11] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[12] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[13] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[14] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
[15] | 李斌, 赵星星, 邬光辉, 韩剑发, 关宝珠, 沈春光. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||