石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (4): 962-975.doi: 10.11743/ogg20230413
收稿日期:
2023-01-16
修回日期:
2023-06-23
出版日期:
2023-08-01
发布日期:
2023-08-09
通讯作者:
冯建伟
E-mail:guohonghui_0326@126.com;linqu_fengjw@126.com
第一作者简介:
郭宏辉(1995—),男,硕士研究生,构造地质、工程地质。E-mail:基金项目:
Honghui GUO1(), Jianwei FENG1(), Libin ZHAO2,3
Received:
2023-01-16
Revised:
2023-06-23
Online:
2023-08-01
Published:
2023-08-09
Contact:
Jianwei FENG
E-mail:guohonghui_0326@126.com;linqu_fengjw@126.com
摘要:
库车坳陷位于南天山山前,受多期造山作用、基底先存构造与盐构造等因素的影响,构造格局复杂。明确此类复杂构造系统对裂缝发育的控制作用,对天然气勘探开发具有重要意义。基于前人的研究成果,结合最新地震、露头调查、成像与岩心资料等,系统性总结分析了博孜—大北地区构造模式及裂缝分布特征。研究结果表明,新生代以来研究区在天山造山运动与塔里木板块旋转联合控制作用下,构造系统在冲断的基础上发生被动走滑;在多条NEE向逆冲断层控制下,研究区构造体系南北方向上具有显著差异,呈现明显的分带特征;在走滑调节构造控制下,东西方向上走滑与逆冲相互转化,呈现明显的构造分段特征;断层被动走滑是有效缝发育的主控因素,断层走滑扰动应力场控制下的裂缝发育呈现分带特征;断层走滑作用下形成的断-缝系统是提高井产能的关键。此外,探讨了博孜—大北地区被动走滑构造控制下的裂缝发育规律及井产能特征,为裂缝发育机理的进一步研究提供了基础,同时也为此类油气田勘探开发提供一定的参考。
中图分类号:
表1
博孜—大北地区各井裂缝参数特征"
气藏 | 井号 | 构造部位 | 裂缝密度/(条/m) | 平均倾角/(°) | 优势走向 |
---|---|---|---|---|---|
博孜3 | B3 | 垂向剪切挤压走滑段 | 0.48 | 72.5 | NNE-SSW,NNW-SSE |
B301 | 垂向剪切挤压走滑段 | 0.70 | 70.3 | NNE-SSW | |
B302 | 垂向剪切挤压走滑段 | 0.59 | 65.4 | NNE-SSW | |
B3-1X | 垂向剪切挤压走滑段 | 0.70 | 66.5 | NNE-SSW | |
B3-3X | 垂向剪切挤压走滑段 | 0.27 | 81.2 | NNE-SSW | |
博孜12 | B12 | 垂向剪切挤压走滑段 | 0.52 | 69.9 | NW-SE,NNE-SSW |
B1201 | 垂向剪切挤压走滑段 | 0.96 | 75.6 | NW-SE | |
B1202 | 垂向剪切挤压走滑段 | 0.65 | 65.1 | NWW-SEE | |
B1203 | 垂向剪切挤压走滑段 | 1.07 | 69.6 | NNE-SSW | |
博孜1 | B101 | 走滑调节段 | 0.19 | 80.6 | NNW-SSE |
B101-2 | 走滑调节段 | 0.36 | 82.8 | NEE-SWW | |
B102 | 走滑调节段 | 0.37 | 65.7 | SN,NEE-SWW | |
B104 | 走滑调节段 | 0.75 | 70.8 | NNE-SSW,NNW-SSE | |
B105 | 走滑调节段 | 0.39 | 66.4 | NNW-SSE | |
大北17 | D17 | 挤压走滑冲断段 | 0.13 | 58.1 | NEE-SWW |
D1701X | 挤压走滑冲断段 | 0.09 | 64.3 | NEE-SWW | |
大北9 | D9 | 挤压走滑冲断段 | 0.25 | 65.9 | NE-SW |
D902 | 挤压走滑冲断段 | 0.15 | 64.8 | NE-SW | |
D903 | 挤压走滑冲断段 | 0.14 | 64.7 | NE-SW |
图7
博孜—大北地区储层岩石铸体薄片显微照片a.B301井,埋深5 838.82 m,不等粒砂状结构,剩余原生粒间孔、微裂缝发育,面孔率2.3 %;b.B301井,埋深5 836.85 m,粗-中粒砂状结构,原生粒间孔、粒间溶孔,面孔率4.2 %;c.B101-2井,埋深7 076.10 m,岩石胶结致密,孔隙性能差,方解石充填的构造缝内见微裂缝,面孔率0.1 %;d.B101-2井,埋深7 076.50 m,砂砾状结构,砾缘微裂缝发育,面孔率0.1 %;e.B103JS井,埋深7 399.16 m,岩石致密,孔隙度低,微裂缝沿砾石边缘发育,面孔率1.0 %;f. B103JS井,埋深7 399.16 m,岩石致密,孔隙度低,微裂缝沿砾石边缘发育,面孔率1.5 %"
表2
博孜—大北地区储层岩石渗透率特征"
样品编号 | 井号 | 埋深/m | 层位 | 构造部位 | 岩性 | 渗透率/(10-3 μm2) |
---|---|---|---|---|---|---|
1 | D903 | 5 178.20 | K1bs | 挤压走滑冲断段 | 细砂岩 | *4.42×102 |
2 | D903 | 5 182.70 | K1bs | 挤压走滑冲断段 | 细砂岩 | 3.28×10-2 |
3 | D17 | 6 104.59 | K1bs | 挤压走滑冲断段 | 细砂岩 | 3.07×10-2 |
4 | D17 | 6 154.42 | K1bs | 挤压走滑冲断段 | 细砂岩 | 1.64×10-1 |
5 | B1203 | 6 562.38 | K1bs | 垂向剪切挤压走滑段 | 细砂岩 | 1.09×10-1 |
6 | B1203 | 6 566.56 | K1bs | 垂向剪切挤压走滑段 | 中砂岩 | 1.11×10-1 |
7 | B1203 | 6 568.92 | K1bs | 垂向剪切挤压走滑段 | 粗砂岩 | 1.13×100 |
8 | B302 | 6 185.82 | K1bx | 垂向剪切挤压走滑段 | 细砂岩 | 1.10×100 |
9 | B302 | 6 186.94 | K1bx | 垂向剪切挤压走滑段 | 细砂岩 | 1.08×101 |
10 | B3 | 5 978.81 | K1bs | 垂向剪切挤压走滑段 | 中砂岩 | 7.08×10-2 |
11 | B3 | 5 981.43 | K1bs | 垂向剪切挤压走滑段 | 中砂岩 | 6.15×10-1 |
12 | B104 | 6 796.60 | K1bs | 走滑调节段 | 中砂岩 | 1.28×10-2 |
13 | B104 | 6 796.70 | K1bs | 走滑调节段 | 中砂岩 | 6.82×100 |
14 | B103JS | 7 404.10 | K1bx | 走滑调节段 | 含砾细砂岩 | 5.14×10-2 |
15 | B103JS | 7 404.50 | K1bx | 走滑调节段 | 细砾岩 | *1.60×104 |
16 | B12 | 6 906.90 | K1bs | 垂向剪切挤压走滑段 | 粉砂岩 | 1.32×10-2 |
17 | B12 | 6 908.33 | K1bs | 垂向剪切挤压走滑段 | 粉砂岩 | 2.44×100 |
1 | 王珂, 张荣虎, 曾庆鲁, 等. 库车坳陷博孜—大北地区下白垩统深层—超深层储层特征及成因机制[J]. 中国矿业大学学报, 2022, 51(2): 311-328. |
WANG Ke, ZHANG Ronghu, ZENG Qinglu, et al. Characteristics and formation mechanism of Lower Cretaceous deep and ultra-deep reservoir in Bozi-Dabei area, Kuqa Depression[J]. Journal of China University of Mining & Technology, 2022, 51(2): 311-328. | |
2 | 王珂, 张荣虎, 王俊鹏, 等. 超深层致密砂岩储层构造裂缝分布特征及其成因——以塔里木盆地库车前陆冲断带克深气田为例[J]. 石油与天然气地质, 2021, 42(2): 338-353. |
WANG Ke, ZHANG Ronghu, WANG Junpeng, et al. Distribution and origin of tectonic fractures in ultra-deep tight sandstone reservoirs: A case study of Keshen Gas Field, Kuqa foreland thrust belt, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(2): 338-353. | |
3 | 张荣虎, 刘春, 杨海军, 等. 库车坳陷白垩系超深层储集层特征与勘探潜力[J]. 新疆石油地质, 2016, 37(4): 423-429. |
ZHANG Ronghu, LIU Chun, YANG Haijun, et al. Characteristics and exploration potential of ultra-deep Cretaceous reservoir in Kuqa Depression, Tarim Basin[J]. Xinjiang Petroleum Geology, 2016, 37(4): 423-429. | |
4 | 周露, 莫涛, 王振鸿, 等. 塔里木盆地克深气田超深层致密砂岩储层裂缝分级分组合特征[J]. 天然气地球科学, 2017, 28(11): 1668-1677. |
ZHOU Lu, MO Tao, WANG Zhenhong, et al. Classification and combination characteristics of fractures in super-deep tight sandstone reservoir of Keshen Gasfield in Tarim Basin[J]. Natural Gas Geoscience, 2017, 28(11): 1668-1677. | |
5 | 王义天, 李继亮. 走滑断层作用的相关构造[J]. 地质科技情报, 1999, 18(3): 30-34. |
WANG Yitian, LI Jiliang. Fault-related tectonics of the strike-slip faulting[J]. Bulletin of Geological Science and Technology, 1999, 18(3): 30-34. | |
6 | 徐嘉炜. 论走滑断层作用的几个主要问题[J]. 地学前缘, 1995, 2(1/2): 125-136. |
XU Jiawei. Some major problems on strike-slip faulting[J]. Earth Science Frontiers, 1995, 2(1/2): 125-136. | |
7 | 刘和甫, 夏义平, 殷进垠, 等. 走滑造山带与盆地耦合机制[J]. 地学前缘, 1999, 6(3): 121-132. |
LIU Hefu, XIA Yiping, YIN Jinyin, et al. Coupling mechanism of strike-slip orogen and basin[J]. Earth Science Frontiers, 1999, 6(3): 121-132. | |
8 | SYLVESTER A G. Strike-slip faults[J]. GSA Bulletin, 1988, 100(11): 1666-1703. |
9 | 肖坤泽, 童亨茂. 走滑断层研究进展及启示[J]. 地质力学学报, 2020, 26(2): 151-166. |
XIAO Kunze, TONG Hengmao. Progress on strike-slip fault research and its significance[J]. Journal of Geomechanics, 2020, 26(2): 151-166. | |
10 | 童亨茂, 范彩伟, 童传新, 等. 琼东南盆地宝岛变换带的特征、类型及其成因机制[J]. 石油与天然气地质, 2015, 36(6): 897-905. |
TONG Hengmao, FAN Caiwei, TONG Chuanxin, et al. Characteristics, types and genetic mechanism of Baodao transfer zone, Qiongdongnan Basin[J]. Oil & Gas Geology, 2015, 36(6): 897-905. | |
11 | MORLEY C K, NELSON R A, PATTON T L, et al. Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts[J]. AAPG Bulletin, 1990, 74(8): 1234-1253. |
12 | 能源, 李勇, 谢会文, 等. 库车前陆盆地盐下冲断带构造变换特征[J]. 新疆石油地质, 2019, 40(1): 54-60. |
NENG Yuan, LI Yong, XIE Huiwen, et al. Tectonic transformation characteristics of subsalt thrust belts in Kuqa foreland basin[J]. Xinjiang Petroleum Geology, 2019, 40(1): 54-60. | |
13 | 代春萌, 曾庆才, 郭晓龙, 等. 塔里木盆地库车坳陷克深气田构造特征及其对气藏的控制作用[J]. 天然气勘探与开发, 2017, 40(1): 17-22, 51. |
DAI Chunmeng, ZENG Qingcai, GUO Xiaolong, et al. Structural characteristics of Keshen Gasfield in Kuqa Depression of Tarim Basin and their controlling effects on gas reservoirs[J]. Natural Gas Exploration and Development, 2017, 40(1): 17-22, 51. | |
14 | 赵俊猛, 张培震, 张先康, 等. 中国西部壳幔结构与动力学过程及其对资源环境的制约: “羚羊计划” 研究进展[J]. 地学前缘, 2021, 28(5): 230-259. |
ZHAO Junmeng, ZHANG Peizhen, ZHANG Xiankang, et al. Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment: Research progress of the ANTILOPE project[J]. Earth Science Frontiers, 2021, 28(5): 230-259. | |
15 | 李四光. 地质力学的方法与实践: 第一篇-地质力学概论[M]. 北京: 地质力学研究所, 1965. |
LI Siguang. Methods and practice of geomechanics: Chapter 1-introduction to geomechanics[M]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences, 1965. | |
16 | 吴晓智, 李佰华, 吕修祥, 等. 库车前陆盆地走滑断裂形成机理及其对油气的控制[J]. 新疆石油地质, 2010, 31(2): 118-121. |
WU Xiaozhi, LI Baihua, Xiuxiang LYU, et al. Strike-Slip fault system in Kuqa foreland basin and its control on hydrocarbon[J]. Xinjiang Petroleum Geology, 2010, 31(2): 118-121. | |
17 | KIM Y S, PEACOCK D C P, SANDERSON D J. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta[J]. Journal of Structural Geology, 2003, 25(5): 793-812. |
18 | MCGRATH A G, DAVISON I. Damage zone geometry around fault tips[J]. Journal of Structural Geology, 1995, 17(7): 1011-1024. |
19 | 孙永河, 万军, 付晓飞, 等. 贝尔凹陷断裂演化特征及其对潜山裂缝的控制[J]. 石油勘探与开发, 2007, 34(3): 316-322. |
SUN Yonghe, WAN Jun, FU Xiaofei, et al. Evolutionary of faults and their control on fractures in buried hill in Beier Depression[J]. Petroleum Exploration and Development, 2007, 34(3): 316-322. | |
20 | 谢会文, 李勇, 漆家福, 等. 库车坳陷中部构造分层差异变形特征和构造演化[J]. 现代地质, 2012, 26(4): 682-690. |
XIE Huiwen, LI Yong, QI Jiafu, et al. Differential structural deformation and tectonic evolution in the middle part of Kuqa Depression, Tarim Basin[J]. Geoscience, 2012, 26(4): 682-690. | |
21 | WANG Wei, YIN Hongwei, JIA Dong, et al. Along-strike structural variation in a salt-influenced fold and thrust belt: Analysis of the Kuqa Depression[J]. Tectonophysics, 2020, 786: 228456. |
22 | 徐振平, 李勇, 马玉杰, 等. 库车坳陷中部新生代构造形成机制与演化[J]. 新疆地质, 2011, 29(1): 37-42. |
XU Zhenping, LI Yong, MA Yujie, et al. The Cenozoic structure formation mechanism and evolution of Mid-Kuche Depression[J]. Xinjiang Geology, 2011, 29(1): 37-42. | |
23 | 张荣虎, 魏国齐, 王珂, 等. 前陆冲断带构造逆冲推覆作用与岩石响应特征——以库车坳陷东部中-下侏罗统为例[J]. 岩石学报, 2021, 37(7): 2256-2270. |
ZHANG Ronghu, WEI Guoqi, WANG Ke, et al. Tectonic thrust nappe activity and sandstone rock response characteristics in foreland thrust belt: A case study of Middle and Lower Jurassic, Kuqa Depression, Tarim Basin[J]. Acta Petrologica Sinica, 2021, 37(7): 2256-2270. | |
24 | 吴珍云, 杨秀磊, 尹宏伟, 等. 库车坳陷西段阿瓦特构造转换带盐构造演化特征及影响因素[J]. 地球科学, 2023, 48(4): 1271-1287. |
WU Zhenyun, YANG Xiulei, YIN Hongwei, et al. Characteristics and influencing factors of salt structure evolution in awate transfer zone, western Kuqa Depression[J]. Earth Science, 2023, 48(4): 1271-1287. | |
25 | 易士威, 李明鹏, 范土芝, 等. 塔里木盆地库车坳陷克拉苏和东秋断层上盘勘探突破方向[J]. 石油与天然气地质, 2021, 42(2): 309-324. |
YI Shiwei, LI Mingpeng, FAN Tuzhi, et al. Exploration directions on the Kelasu and East-Qiulitag fault hanging walls, Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(2): 309-324. | |
26 | 刘立炜, 周慧, 张承泽, 等. 库车坳陷克拉苏构造带协同变形机制及盆山耦合关系[J]. 地质科学, 2022, 57(1): 61-72. |
LIU Liwei, ZHOU Hui, ZHANG Chengze, et al. Synergistic deformation mechanisms and basin-mountain coupling of Kelasu structural belt in Kuqa Depression[J]. Chinese Journal of Geology, 2022, 57(1): 61-72. | |
27 | 漆家福, 雷刚林, 李明刚, 等. 库车坳陷-南天山盆山过渡带的收缩构造变形模式[J]. 地学前缘, 2009, 16(3): 120-128. |
QI Jiafu, LEI Ganglin, LI Minggang, et al. A model of contractional structure for transition belt between Kuche Depression and southern Tianshan uplift[J]. Earth Science Frontiers, 2009, 16(3): 120-128. | |
28 | 王伟锋, 王乾, 单新建. 库车前陆冲断带横断层发育特征及其形成机制[J]. 中国地质, 2018, 45(3): 493-510. |
WANG Weifeng, WANG Qian, SHAN Xinjian. Development characteristics and formation mechanism of transverse faults along the Kuqa thrust belt[J]. Geology in China, 2018, 45(3): 493-510. | |
29 | 杨克基, 漆家福, 刘傲然, 等. 库车坳陷中段基底断裂特征及其对盐构造变形的影响[J]. 地质科学, 2022, 57(4): 991-1008. |
YANG Keji, QI Jiafu, LIU Aoran, et al. Characteristics of basement faults in the middle section of Kuqa Depression and their influence on salt tectonic deformation[J]. Chinese Journal of Geology, 2022, 57(4): 991-1008. | |
30 | 李涛, 王宗秀. 塔里木地块北部横向构造及断条模式[J]. 中国地质, 2006, 33(1): 14-27. |
LI Tao, WANG Zongxiu. Transverse structure and model of fault slivers in the northern part of the Tarim block[J]. Geology in China, 2006, 33(1): 14-27. | |
31 | 汤良杰, 余一欣, 杨文静, 等. 库车坳陷古隆起与盐构造特征及控油气作用[J]. 地质学报, 2007, 81(2): 145-150. |
TANG Liangjie, YU Yixin, YANG Wenjing, et al. Paleo-uplifts and salt structures and their influence on hydrocarbon accumulations in the Kuqa Depression[J]. Acta Geologica Sinica, 2007, 81(2): 145-150. | |
32 | 李东旭. 旋扭构造动力学[M]. 北京: 地质出版社, 2003: 9-35. |
LI Dongxu. Torsion tectonic dynamics[M]. Beijing: Geological Publishing House, 2003: 9-35. | |
33 | 何光玉, 卢华复, 李树新, 等. 库车盆地依南气田构造变形特征及动力学机制[J]. 北京大学学报(自然科学版), 2004, 40(2): 247-252. |
HE Guangyu, LU Huafu, LI Shuxin, et al. Features and dynamics for structure deformation of Yinan Gas Field in Kuqa Basin, northwestern China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2004, 40(2): 247-252. | |
34 | NENG Yuan, XIE Huiwen, YIN Hongwei, et al. Effect of basement structure and salt tectonics on deformation styles along strike: An example from the Kuqa fold-thrust belt, West China[J]. Tectonophysics, 2018, 730: 114-131. |
35 | 冯佳睿, 高志勇, 张宇航, 等. 库车坳陷大北克深井区白垩系储层含盐特征与分布规律[J]. 吉林大学学报(地球科学版), 2022, 52(1): 38-54. |
FENG Jiarui, GAO Zhiyong, ZHANG Yuhang, et al. Salt-bearing characteristics and distribution of Cretaceous reservoirs of the Dabei and Keshen areas in the Kuqa Depression[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(1): 38-54. | |
36 | 谭卓英, 夏志远, 丁宇, 等. 深部岩体地应力场分异特性研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3330-3337. |
TAN Zhuoying, XIA Zhiyuan, DING Yu, et al. Differentiation characteristics of insitu stress in deep rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3330-3337. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[8] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[9] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[10] | 高志勇, 吴永平, 刘兆龙, 魏聪, 张永忠, 王翠丽, 刘群明. 塔里木盆地库车坳陷中秋1井区白垩系巴什基奇克组砂质辫状河有利岩相组合发育模式与意义[J]. 石油与天然气地质, 2023, 44(5): 1141-1158. |
[11] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[12] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[13] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[14] | 李斌, 赵星星, 邬光辉, 韩剑发, 关宝珠, 沈春光. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320. |
[15] | 张红波, 周雨双, 沙旭光, 邓尚, 沈向存, 姜忠正. 塔里木盆地顺北5号走滑断裂隆起段发育特征与演化机制[J]. 石油与天然气地质, 2023, 44(2): 321-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||