石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (2): 270-283.doi: 10.11743/ogg20200204
沈臻欢1(), 于炳松1, 白辰阳1, 韩舒筠1, 杨志辉1, 费志斌2
收稿日期:
2018-03-28
出版日期:
2020-04-28
发布日期:
2020-04-03
第一作者简介:
沈臻欢(1993-),男,博士研究生,地质工程、储层预测。E-mail:基金项目:
Zhenhuan Shen1(), Bingsong Yu1, Chenyang Bai1, Shujun Han1, Zhihui Yang1, Zhibin Fei2
Received:
2018-03-28
Online:
2020-04-28
Published:
2020-04-03
摘要:
长石溶解及其次生孔隙的形成对砂岩储层质量具有重要影响。为了研究渤海湾盆地渤南洼陷有利孔隙发育带,利用长石溶解-沉淀的热力学和动力学计算,结合薄片分析、孔隙度和渗透率资料,开展了对沙三段长石次生孔隙发育的研究。结果显示,现今的地层水多有利于长石沉淀,部分区域发生长石溶解。结合孔隙度平面分布图和镜下薄片分析可知:孔隙度发育较好的区域主要是钾长石发生溶解,钙长石ΔG < -15 kJ/mol溶解速率较快和钠长石ΔG < 15 kJ/mol沉淀速率较慢的区域。此外,粘土矿物(高岭石等)在长石溶解形成的次生孔隙中的沉淀,降低了储层的渗透率;且在埋深超过3 000 m的区域,地层水中的SiO2(aq)沉淀速率的显著加快降低了储层孔隙度。综上:埋藏环境中,长石的溶解对于次生孔隙的贡献十分重要,但是如果其副产物未发生迁移则对次生孔隙的贡献较小,并且较高的粘土矿物含量会降低储层的渗透率。本文对于利用热力学和动力学模型预测储层发育提供了新的方法。
中图分类号:
表1
动力学模拟速率参数,n-H+反应级数"
矿物 | 表面积/(cm2·g-1) | 溶解 | 成核 | 反应级数n | |||
k25/(mol·cm-2·s-1) | Ea/(kJ·mol-1) | k25/(mol·cm-2·s-1) | Ea/(kJ·mol-1) | ||||
钾长石 | 9.8 | 8.710×10-15 | 51.7 | 3.890×10-17 | 38.0 | 0.500 | |
钠长石 | 9.8 | 6.918×10-15 | 65.0 | 2.754×10-17 | 69.8 | 0.457 | |
钙长石 | 9.8 | 3.162×10-8 | 16.6 | 7.568×10-17 | 17.8 | 1.411 | |
高岭石 | 151.6 | 6.918×10-18 | 22.2 | 0.777 | |||
石英 | 9.8 | 1.023×10-18 | 87.7 | 0 |
图3
渤海湾盆地渤南洼陷偏光显微镜观察 a,b.长石大量溶解形成了的次生孔隙,并伴随有副矿物在周围沉淀;a.罗358,埋深2 442.85 m(-);b.罗358,埋深2 445.40 m(-);c.长石溶解,碳酸盐致密胶结,义东301,埋深3 488.30 m(+);d.钾长石自生加大,胶结致密;义285,埋深3 819.80 m(-);e.石英自生加大,硅质胶结致密,几乎无孔隙发育;义361,埋深3 486.60 m(+);f.斜长石自生加大,义东301,埋深3 272.10 m(+);g,h.扫描电镜下保存完整的钠长石;义361,埋深3 488.05 mQ.石英颗粒;F.长石颗粒;K.高岭石;FD.长石溶解形成的次生孔隙;Qo.石英加大;Fo.长石加大"
表2
渤海湾盆地渤南洼陷沙三段地层水相关参数"
序号 | 井号 | 深度/m | 温度/℃ | pH值 | 总矿化度/ (g·L-1) | 水型 | 离子浓度/(mmol·L-1) | aCa2+ | |||||||||||
Na+ | K+ | Ca2+ | Mg2+ | Cl- | SO42- | OH- | HCO3- | CO32- | I | aNa+ | aK+ | ||||||||
1 | 义69 | 3520.1 | 144.3 | 6 | 1.66 | 硫酸钠 | 18.4 | 0.1 | 2.2 | 1.2 | 14.7 | 2.1 | 0 | 6.4 | 0 | 0.031 | 15.14 | 0.08 | 1.04 |
2 | 义601-1 | 3275.6 | 134.3 | 8.25 | 13.31 | 碳酸氢钠 | 163.6 | 0.8 | 3.2 | 2.6 | 133.1 | 0 | 0 | 42.9 | 0 | 0.182 | 116.25 | 0.56 | 0.86 |
3 | 义288 | 2932.6 | 120.2 | 6.62 | 4.46 | 氯化镁 | 63.5 | 0.3 | 2.5 | 2.6 | 63.8 | 2.4 | 0 | 5.6 | 0 | 0.082 | 48.64 | 0.24 | 0.91 |
4 | 渤古403 | 3034.4 | 124.4 | 6.5 | 1.89 | 氯化镁 | 15.6 | 0.1 | 3.3 | 5.0 | 25.2 | 1.3 | 0 | 4.2 | 0 | 0.042 | 12.64 | 0.06 | 1.45 |
5 | 渤深8 | 3828.7 | 157.0 | 6.5 | 1.95 | 氯化镁 | 14.8 | 0.1 | 4.2 | 3.3 | 15.2 | 3.0 | 0 | 8.7 | 0 | 0.040 | 11.92 | 0.06 | 1.81 |
6 | 罗902 | 2259.0 | 92.6 | 7 | 12.34 | 碳酸氢钠 | 183.4 | 0.9 | 2.4 | 0.4 | 131.1 | 8.9 | 0 | 40.8 | 0 | 0.202 | 131.82 | 0.63 | 0.68 |
7 | 义135 | 3704.0 | 151.9 | 6 | 13.37 | 氯化钙 | 200.1 | 1.0 | 2.2 | 2.9 | 210.0 | 0 | 0 | 14.3 | 0 | 0.223 | 138.57 | 0.66 | 0.54 |
8 | 义136 | 3082.0 | 126.4 | 7 | 7.15 | 碳酸氢钠 | 98.4 | 0.5 | 0.9 | 0.7 | 54.5 | 0.6 | 0 | 46.4 | 0 | 0.104 | 73.66 | 0.36 | 0.31 |
9 | 义141 | 3052.9 | 125.2 | 6.5 | 2.32 | 氯化钙 | 16.7 | 0.1 | 9.8 | 1.2 | 29.9 | 3.2 | 0 | 2.3 | 0 | 0.053 | 13.25 | 0.07 | 4.04 |
10 | 义142 | 2638.0 | 108.2 | 7 | 7.28 | 碳酸氢钠 | 95.6 | 0.5 | 0.8 | 5.0 | 58.3 | 6.0 | 0 | 37.3 | 0 | 0.119 | 71.29 | 0.35 | 0.27 |
11 | 义172 | 3187.4 | 130.7 | 5 | 69.95 | 氯化钙 | 707.3 | 3.6 | 132.4 | 143.4 | 1246.3 | 0 | 0 | 10.2 | 0 | 1.535 | 490.85 | 1.89 | 26.91 |
12 | 义115 | 3855.5 | 158.1 | 6 | 4.51 | 氯化镁 | 33.9 | 0.2 | 7.9 | 13.7 | 60.3 | 2.2 | 0 | 12.1 | 0 | 0.101 | 25.14 | 0.12 | 2.53 |
13 | 埕915 | 1699.6 | 69.7 | 9 | 14.10 | 碳酸氢钠 | 213.4 | 1.1 | 1.1 | 0.4 | 151.8 | 4.2 | 0 | 52.0 | 2.6 | 0.226 | 153.91 | 0.74 | 0.30 |
14 | 义631 | 2858.6 | 117.2 | 7 | 11.85 | 碳酸氢钠 | 139.6 | 0.7 | 10.9 | 4.2 | 90.8 | 0 | 0 | 79.7 | 0 | 0.186 | 99.79 | 0.48 | 3.04 |
15 | 义943 | 3163.0 | 129.7 | 8 | 28.90 | 碳酸氢钠 | 473.4 | 2.4 | 5.1 | 0.8 | 471.1 | 0 | 0 | 16.5 | 0 | 0.494 | 315.09 | 1.43 | 1.07 |
16 | 义283 | 3162.7 | 129.7 | 5.78 | 3.83 | 氯化钙 | 46.1 | 0.2 | 4.7 | 6.0 | 66.0 | 0 | 0 | 1.5 | 0 | 0.078 | 35.32 | 0.17 | 1.71 |
17 | 义944 | 3574.1 | 146.5 | 6.37 | 126.32 | 氯化镁 | 1199.3 | 6.0 | 8.2 | 542.8 | 1996.0 | 138.1 | 0 | 18.5 | 0 | 2.988 | 982.69 | 3.05 | 2.25 |
18 | 义601 | 3232.8 | 132.5 | 7.5 | 20.09 | 碳酸氢钠 | 315.5 | 1.6 | 3.6 | 1.2 | 283.0 | 2.4 | 0 | 38.5 | 0 | 0.334 | 214.05 | 1.00 | 0.83 |
19 | 义173 | 3424.4 | 140.4 | 7.5 | 22.70 | 碳酸氢钠 | 323.2 | 1.6 | 2.3 | 3.0 | 186.7 | 23.3 | 0 | 101.7 | 0 | 0.364 | 217.14 | 1.01 | 0.50 |
20 | 义251 | 3191.4 | 130.8 | 7 | 19.43 | 碳酸氢钠 | 276.7 | 1.4 | 3.0 | 15.1 | 251.8 | 7.6 | 0 | 47.4 | 0 | 0.340 | 187.67 | 0.88 | 0.69 |
21 | 义281 | 2288.5 | 93.8 | 6 | 20.45 | 氯化钙 | 216.0 | 1.1 | 51.4 | 10.3 | 296.5 | 1.5 | 0 | 40.7 | 0 | 0.403 | 148.17 | 0.69 | 12.08 |
22 | 义361 | 3464.9 | 142.1 | 8.02 | 24.36 | 碳酸氢钠 | 379.5 | 1.9 | 2.1 | 0.1 | 297.9 | 15.6 | 0 | 56.3 | 0 | 0.403 | 253.21 | 1.17 | 0.44 |
23 | 义180 | 3216.9 | 131.9 | 6.8 | 12.30 | 碳酸氢钠 | 179.6 | 0.9 | 1.2 | 2.2 | 127.8 | 3.9 | 0 | 51.4 | 0 | 0.194 | 127.03 | 0.61 | 0.31 |
24 | 义184 | 3245.6 | 133.1 | 10.75 | 7.51 | 碳酸氢钠 | 108.2 | 0.5 | 8.7 | 0.0 | 88.3 | 0 | 0 | 12.6 | 12.6 | 0.147 | 78.29 | 0.38 | 2.56 |
25 | 义185 | 3218.6 | 132.0 | 7.35 | 6.42 | 氯化镁 | 78.0 | 0.4 | 7.8 | 5.5 | 81.7 | 5.2 | 0 | 12.7 | 0 | 0.123 | 57.38 | 0.28 | 2.42 |
26 | 义179 | 2926.1 | 120.0 | 8.69 | 2.07 | 硫酸钠 | 26.2 | 0.1 | 1.9 | 1.6 | 24.0 | 2.6 | 0 | 4.1 | 0 | 0.039 | 21.33 | 0.11 | 0.86 |
27 | 渤古4 | 3444.3 | 141.2 | 7.11 | 7.06 | 碳酸氢钠 | 97.8 | 0.5 | 0.3 | 0.5 | 50.1 | 1.3 | 0 | 47.2 | 0 | 0.102 | 72.89 | 0.36 | 0.08 |
28 | 罗683 | 2785.6 | 114.2 | 6.06 | 4.05 | 碳酸氢钠 | 49.5 | 0.2 | 4.6 | 1.5 | 40.2 | 2.8 | 0 | 16.2 | 0 | 0.071 | 38.50 | 0.19 | 1.76 |
29 | 罗322 | 2257.0 | 92.5 | 7.34 | 6.86 | 碳酸氢钠 | 102.9 | 0.5 | 1.6 | 1.0 | 86.1 | 0.9 | 0 | 20.6 | 0 | 0.112 | 77.60 | 0.38 | 0.55 |
30 | 义183 | 3998.0 | 163.9 | 8.6 | 19.33 | 碳酸氢钠 | 281.0 | 1.4 | 1.2 | 1.2 | 167.7 | 17.6 | 0 | 83.9 | 0 | 0.307 | 188.55 | 0.88 | 0.25 |
31 | 罗69 | 2966.0 | 121.6 | 6.5 | 11.22 | 氯化镁 | 169.0 | 0.8 | 5.2 | 4.0 | 171.0 | 3.3 | 0 | 10.3 | 0 | 0.201 | 119.82 | 0.57 | 1.40 |
32 | 义123-1 | 3344.8 | 137.1 | 7.82 | 97.21 | 氯化钙 | 1625.9 | 8.2 | 11.6 | 0.0 | 1638.9 | 0 | 0 | 16.0 | 0 | 1.668 | 1138.31 | 4.29 | 2.38 |
33 | 罗152 | 3096.0 | 126.9 | 9 | 15.58 | 氯化钙 | 189.2 | 1.0 | 38.3 | 0.5 | 256.1 | 0 | 0 | 7.2 | 2.2 | 0.309 | 129.44 | 0.61 | 9.03 |
34 | 义289 | 3500.0 | 143.5 | 7.58 | 49.59 | 碳酸氢钠 | 682.4 | 3.4 | 11.8 | 25.1 | 530.0 | 0 | 0 | 228.4 | 0 | 0.796 | 447.13 | 1.93 | 2.24 |
35 | 义176 | 3773.8 | 154.7 | 8.32 | 22.97 | 碳酸氢钠 | 363.4 | 1.8 | 2.4 | 1.3 | 306.4 | 16.9 | 0 | 32.0 | 0 | 0.393 | 241.10 | 1.11 | 0.49 |
36 | 义286 | 3260.0 | 133.7 | 7.37 | 40.87 | 碳酸氢钠 | 643.2 | 3.2 | 1.2 | 1.2 | 506.1 | 32.2 | 0 | 79.8 | 0 | 0.685 | 423.83 | 1.86 | 0.23 |
37 | 罗321 | 1800.0 | 73.8 | 8.5 | 10.05 | 碳酸氢钠 | 158.4 | 0.8 | 0.3 | 0.1 | 120.0 | 1.4 | 0 | 28.2 | 4.4 | 0.166 | 116.66 | 0.56 | 0.09 |
38 | 罗357 | 2579.0 | 105.7 | 8 | 6.93 | 碳酸氢钠 | 88.9 | 0.4 | 0.8 | 0.2 | 27.7 | 0.4 | 0 | 62.6 | 0 | 0.092 | 67.76 | 0.33 | 0.27 |
39 | 罗151 | 3062.6 | 125.6 | 8 | 24.08 | 氯化钙 | 351.0 | 1.8 | 23.6 | 1.8 | 377.7 | 0 | 0 | 25.8 | 0 | 0.429 | 235.68 | 1.08 | 5.12 |
40 | 垦629 | 2042.0 | 83.7 | 8 | 6.09 | 碳酸氢钠 | 83.8 | 0.4 | 0.7 | 1.2 | 49.8 | 0 | 0 | 38.2 | 0 | 0.090 | 64.64 | 0.32 | 0.27 |
41 | 义501-1 | 2936.3 | 120.4 | 7.25 | 15.12 | 氯化镁 | 247.4 | 1.2 | 2.4 | 2.4 | 252.4 | 1.8 | 0 | 2.2 | 0 | 0.265 | 171.72 | 0.81 | 0.59 |
42 | 义193 | 3312.5 | 135.8 | 8.45 | 1.53 | 氯化镁 | 18.1 | 0.1 | 1.8 | 1.5 | 18.6 | 1.6 | 0 | 3.0 | 0 | 0.030 | 14.99 | 0.07 | 0.88 |
43 | 罗71 | 1987.2 | 81.5 | 8.15 | 9.37 | 碳酸氢钠 | 145.3 | 0.7 | 1.4 | 1.0 | 127.6 | 0.6 | 0 | 22.1 | 0 | 0.154 | 107.31 | 0.52 | 0.44 |
44 | 义292 | 3556.6 | 145.8 | 8.58 | 0.72 | 硫酸钠 | 8.3 | 0.0 | 1.0 | 0.9 | 8.1 | 1.2 | 0 | 0.8 | 0.4 | 0.015 | 7.15 | 0.04 | 0.55 |
45 | 义189 | 3174.0 | 130.1 | 7.28 | 15.28 | 氯化镁 | 244.2 | 1.2 | 1.2 | 6.3 | 247.7 | 5.1 | 0 | 2.6 | 0 | 0.273 | 168.22 | 0.80 | 0.30 |
46 | 义50 | 3149.4 | 129.1 | 7.3 | 18.24 | 碳酸氢钠 | 288.8 | 1.5 | 3.2 | 1.0 | 262.4 | 3.7 | 0 | 28.9 | 0 | 0.306 | 197.48 | 0.93 | 0.75 |
47 | 义633 | 2740.5 | 112.4 | 7 | 8.92 | 氯化钙 | 125.3 | 0.6 | 5.5 | 7.9 | 142.0 | 3.0 | 0 | 4.8 | 0 | 0.169 | 90.52 | 0.44 | 1.58 |
1 |
Bjørlykke K , Jahren J . Open or closed geochemicalsystems during diagenesis insedimentary basins:Constraintson mass transfer duringdiagenesis and the predictionof porosity in sandstone andcarbonate reservoirs[J]. AAPG Bulletine, 2012, 96 (12): 2193- 2214.
doi: 10.1306/04301211139 |
2 | 刘四兵, 沈忠民, 刘昊年, 等. 川西坳陷中段上三叠统须家河组水岩相互作用机制[J]. 石油学报, 2013, 34 (1): 47- 58. |
Liu Sibing , Shen Zhongmin , Liu Haonian , et al. Mechanism of water-rock interaction of the Upper Triassic Xujiahe Formation inthe middle part of western Sichuan depression[J]. Acta Petrolei Sinica, 2013, 34 (1): 47- 58. | |
3 |
Chuhan F A , Bjørlykke K , Lowrey C J . Closedsystem burial diagenesis in reservoir sandstones:Examplesfrom the GarnFormation at Haltenbanken area, offshoremid-Norway[J]. Journal of Sedimentary Research, 2001, 71 (1): 15- 26.
doi: 10.1306/041100710015 |
4 | 赖兴运, 于炳松, 陈军元, 等. 碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用[J]. 中国科学:D辑, 2004, 34 (1): 45- 53. |
Lai Xingyun , Yu Bingsong , Chen Yuanjun , et al. The thermodynamic condition of rock fragment dissolution and its application in Kela2 gas field[J]. Science in China:Series D, 2004, 34 (1): 45- 53. | |
5 | 黄思静, 黄可可, 冯文立, 等. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球化学, 2009, 38 (5): 498- 506. |
Huang Sijing , Huang Keke , Feng Wenli , et al. Mass exchange among feldspar, kaolinite, illite and their influences on secondary porosity formation in clastic diagenesis:A case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression[J]. Geochimica, 2009, 38 (5): 498- 506. | |
6 |
Yuan G , Cao Y , Gluyas J , et al. Reactive transport modeling of coupled feldspar dissolutionand secondarymineral precipitation and its implicationfor diagenetic interaction in sandstones[J]. Geochimica et Cosmochimica Acta, 2017, 207, 232- 255.
doi: 10.1016/j.gca.2017.03.022 |
7 | Bjørlykke K . Relationships between depositional environments, burial history androck properties:Some principal aspects ofdiagenetic process in sedimentary basins[J]. Sedimentary Geology, 2014, 301 (3): 1- 14. |
8 | 魏巍, 朱筱敏, 孟元林, 等. 基于热力学与动力学方法预测碎屑岩的次生孔隙发育带[J]. 中南大学学报(自然科学版), 2015, 46 (10): 3822- 3831. |
Wei wei , Zhu Xiaomin , Meng Yuanlin , et al. Prediction of secondary porosity developmental zones based on thermodynamics anddynamics methods[J]. Journal of Central South University (Science and Technology), 2015, 46 (10): 3822- 3831. | |
9 | 夏遵义, 马海洋, 房堃. 渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J]. 石油实验地质, 2019, 41 (1): 134- 141. |
Xia Zunyi , Ma Haiyang , Fang Kun . Rock mechanical properties and fracability of continental shale in Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41 (1): 134- 141. | |
10 | 操应长, 张少敏, 王艳忠, 等. 渤南洼陷近岸水下扇储层岩相一成岩相组合及其物性特征[J]. 大庆石油地质与开发, 2015, 34 (2): 41- 47. |
Cao Yingchang , Zhang Shaomin , Wang Yanzhong , et al. Combination and physical property characteristics of the lithofacies and diagenetic facies for the nearshore subaqueous fan reservoirs in Bonan Sag[J]. Petroleum Geology and oil field development in Daqing, 2015, 34 (2): 41- 47. | |
11 | 李志鹏, 卜丽侠. 渤海湾盆地渤南洼陷沙四段岩相的岩石力学性质差异[J]. 石油实验地质, 2019, 41 (2): 228- 233. |
Li Zhipeng , Bu Lixia . Difference of lithofacies mechanical properties of the fourth member of Shahejie Formation in the Bonan Subsag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41 (2): 228- 233. | |
12 | 李志鹏, 卜丽侠. 渤海湾盆地渤南洼陷沙四段岩相的岩石力学性质差异[J]. 石油实验地质, 2019, 41 (2): 228- 233. |
Li Zhipeng , Bu Lixia . Difference of lithofacies mechanical properties of the fourth member of Shahejie Formation in the Bonan Subsag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41 (2): 228- 233. | |
13 | 王雨菡, 丁伟铭, 刘璇, 等. 渤海湾盆地渤南洼陷沙河街组三段下亚段岩相特征及有机质富集成因[J]. 石油与天然气地质, 2019, 40 (5): 1106- 1114. |
Wang Yuhan , Ding Weiming , Liu Xuan , et al. Lithofacies and causal mechanism of organic matter enrichment in the lower submember of the 3rd member of Shahejie Formation, Bonan sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2019, 40 (5): 1106- 1114. | |
14 |
Liu Hua , Jiang Youlu , Song Guoqi , et al. Overpressure characteristics and effects on hydrocarbon distribution in theBonan Sag, Bohai Bay Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 149, 811- 821.
doi: 10.1016/j.petrol.2016.11.029 |
15 |
Helgeson H C . Theoretical prediction of the thermodynamicbehavior of aqueous electrolytes at high pressures and temperatures.Ⅳ.Calculation of activity coefficients, osmotic coefficient, andapparent molal and standard and relative partial molal properties to600℃ and 5 kb[J]. Am.J.Sci., 1981, 281, 1249- 1516.
doi: 10.2475/ajs.281.10.1249 |
16 | 林传仙, 白正华, 张哲儒. 矿物及有关化合物热力学数据手册[M]. 北京: 科学出版社, 1985: 310- 355. |
Lin Chuanxian , Bai Zhenghua , Zhang Zheru . Thermodynamic data manual for minerals and related compounds[M]. Beijing: Science Press, 1985: 310- 355. | |
17 | 钱会,马致远,李培月.水文地球化学(第二版)[M].地质出版社, 2012: 15-50. |
Qian Hui, Ma Zhiyuan, Li Peiyue.Hydrogeochemistry (second edition)[M].Geology Press, 2012: 5-50. | |
18 |
Lasaga A C . Chemical kinetics of water-rock interactions[J]. .Geophys.Res.:Solid Earth (1978-2012), 1984, 89 (B6): 4009- 4025.
doi: 10.1029/JB089iB06p04009 |
19 |
Steefel C I , Lasaga A C . A coupled model fortransport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in singlephase hydrothermal systems[J]. Am.J.Sci., 1994, 294 (5): 529- 592.
doi: 10.2475/ajs.294.5.529 |
20 |
Hellevang H , Pham V T H , Aagaard P . Kineticmodelling of CO2-water-rock interactions[J]. GreenhouseGas Control, 2013, 15, 3- 15.
doi: 10.1016/j.ijggc.2013.01.027 |
21 |
Xu T , Apps J A , Pruess K . Mineral sequestration ofcarbon dioxide in a sandstone-shale system[J]. Chem.Geol., 2005, 217 (3-4): 295- 318.
doi: 10.1016/j.chemgeo.2004.12.015 |
22 | Palandri J L, Kharaka Y K.A Compilation of RateParameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling[M].U.S.Geological Survey, 2004: 12-26. |
23 |
Yang L , Xu T , Liu K , et al. Fluid-rock interaction during continuous diageneses of sandstone reservoirs and their effects on reservoir porosity[J]. Sedimentology, 2017, 64 (5): 1303- 1321.
doi: 10.1111/sed.12354 |
24 |
Roland H. , Delphine T . Dissolution kinetics as a function of the Gibbs free energyof reaction:An experimental study based on albite feldspar[J]. Geochimica et Cosmochimica Acta, 2006, 70, 364- 383.
doi: 10.1016/j.gca.2005.10.007 |
25 | 于炳松, 林畅松. 油气储层埋藏成岩过程中的地球化学热力学[J]. 沉积学报, 2009, 27 (5): 896- 903. |
Yu Bingsong , Lin Changsong . Geochemical thermodynamics of diagenesis in reservoir for Oil and Gas[J]. Acta Sedimentologica Sinica, 2009, 27 (5): 896- 903. | |
26 | Bjørlykke K . Fluid flow in sedimentary basins[J]. Sedimentary Geology, 1993, 86 (1): 137- 158. |
27 | Surdam R C , Crossey L J , Hagen E S , et al. Organic-inorganic intera-ctions andsandstone diagenesis[J]. AAPG Bull, 1989, 73, 1- 23. |
28 | Surdam R C , Boese S W , Crossey L J . The Chemistry of Secondary porosity[J]. AAPG Bull, 1984, 37 (2): 183- 200. |
29 | Surdam R C , Boese S W , Crossey L J . A theory of frameworkgrain dissolution in sandstones[J]. AAPG Bull, 1985, 163- 176. |
30 | Heald M T , Larese R E . The significanceof the solution of feldspar in porosity development[J]. Journal ofSedimentary Peotrology, 1973, 43, 458- 460. |
31 |
Taylor T R , Giles M R , Hathon LA , et al. Sandstone diagenesis and reservoir quality prediction:models, myths, and reality[J]. AAPG Bull, 2010, 94, 1093- 1132.
doi: 10.1306/04211009123 |
32 | 李红英, 陈善斌, 杨志成, 等. 巨厚油层隔夹层特征及其对剩余油分布的影响:以渤海湾盆地L油田为例[J]. 断块油气田, 2018, 25 (6): 709- 714. |
Li Hongying , Chen Shanbin , Yang Zhicheng , et al. Characteristics of interbeds in thick oil layer and its effect on remaining oil distribution:a case study of L Oilfield, Bohai Bay Basin[J]. Fault-Block Oil and Gas Field, 2018, 25 (6): 709- 714. | |
33 | Wilkinson M D , Darby R S , HaszeldineG D . CouplesSecondary porosity generation during deep burialassociated with overpressure leak-off:Fulmar Formation, United Kingdom CentralGraben[J]. AAPG Bulletin, 1997, 81, 803- 813. |
34 |
Giles M R , De Boer R B . Origin and significance ofredistributional secondary porosity[J]. Marine and PetroleumGeology, 1990, 7 (4): 378- 397.
doi: 10.1016/0264-8172(90)90016-A |
35 | Hayes M J , BolesJ R . Volumetric relations betweendissolved plagioclase and kaolinite in sandstones:Implications for aluminum mass transfer in the San JoaquinBasin, California, in D.W.Houseknecht and E.D.Pittman, eds., Origin, diagenesis, and petrophysics of clayminerals in sandstones[J]. SEPM Special Publication, 1992, 47, 111- 123. |
36 | BjørlykkeK . Claymineraldiagenesisinsedimentarybasins-Akeytothepredictionofrockproperties.ExamplesfromtheNorthSeaBasin[J]. ClayMinerals, 1998, 33 (1): 15- 34. |
37 | LansonBD , BeaufortG , BergerA , et al. Authigenic kaolin and illitic minerals during burial diagenesis of sand stones[J]. A review:ClayMinerals, 2002, 37 (1): 1- 22. |
38 |
Chuhan F A , Bjørlykke K , Lowrey C J . Closedsystem burial diagenesis in reservoir sandstones:Examplesfrom the GarnFormation at Haltenbanken area, offshoremid-Norway[J]. Journal of Sedimentary Research, 2001, 71 (1): 15- 26.
doi: 10.1306/041100710015 |
39 |
Franks S G , Zwingmann H . Origin and timing of latediagenetic illite in the Permian-Carboniferous Unayzahsandstone reservoirs of Saudi Arabia[J]. AAPG Bull, 2010, 94 (8): 1133- 1159.
doi: 10.1306/04211009142 |
40 |
Yuan G , Cao Y , Gluyas J , et al. Feldspar dissolution, authigenicclays, and quartz cements inopen and closed sandstonegeochemical systems duringdiagenesis:Typical examplesfrom two sags in Bohai BayBasin, East China[J]. AAPG Bull, 2015, 99 (11): 2121- 2154.
doi: 10.1306/07101514004 |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 娄瑞, 孙永河, 张中巧. 渤海湾盆地渤南低凸起西段低角度正断层分段生长特征及其油气地质意义[J]. 石油与天然气地质, 2024, 45(3): 710-721. |
[4] | 韩载华, 刘华, 赵兰全, 刘景东, 尹丽娟, 李磊. 渤海湾盆地临南洼陷古近系沙河街组源-储组合类型与致密(低渗)砂岩油差异富集模式[J]. 石油与天然气地质, 2024, 45(3): 722-738. |
[5] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[6] | 邵长印, 宋璠, 张世奇, 王秋月. 渤海湾盆地黄河口凹陷SC7区块古近系东营组二段下亚段滩坝储集体构型特征[J]. 石油与天然气地质, 2024, 45(2): 486-501. |
[7] | 雷文智, 陈冬霞, 王永诗, 巩建强, 邱贻博, 王翘楚, 成铭, 蔡晨阳. 渤海湾盆地济阳坳陷东部深层砂砾岩多类型油气藏成藏机理及模式[J]. 石油与天然气地质, 2024, 45(1): 113-129. |
[8] | 张宏国, 杨海风, 宿雯, 徐春强, 黄志, 程燕君. 源外层系油气运聚关键环节研究与评价方法[J]. 石油与天然气地质, 2024, 45(1): 281-292. |
[9] | 杨小艺, 刘成林, 王飞龙, 李国雄, 冯德浩, 杨韬政, 何志斌, 苏加佳. 渤海湾盆地渤中凹陷西南洼古近系东营组超压分布特征及成因[J]. 石油与天然气地质, 2024, 45(1): 96-112. |
[10] | 刘惠民, 李政, 包友书, 张守春, 王伟庆, 吴连波, 王勇, 朱日房, 方正伟, 张顺, 刘鹏, 王敏. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417. |
[11] | 王民, 余昌琦, 费俊胜, 李进步, 张宇辰, 言语, 吴艳, 董尚德, 唐育龙. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. |
[12] | 王永诗, 巩建强, 陈冬霞, 邱贻博, 茆书巍, 雷文智, 杨怀宇, 王翘楚. 渤海湾盆地东营凹陷盐家地区深层砂砾岩油气藏相态演化及成藏过程[J]. 石油与天然气地质, 2023, 44(5): 1159-1172. |
[13] | 李军亮, 王鑫, 王伟庆, 李博, 曾溅辉, 贾昆昆, 乔俊程, 王康亭. 致密砂岩砂-泥结构发育特征及其对储集空间的控制作用[J]. 石油与天然气地质, 2023, 44(5): 1173-1187. |
[14] | 赵淑娟, 李三忠, 牛成民, 张江涛, 张震, 戴黎明, 杨宇, 李金月. 渤海湾盆地旅大隆起区多期叠加构造及其对潜山的控制作用[J]. 石油与天然气地质, 2023, 44(5): 1188-1202. |
[15] | 刘佳庚, 王艳忠, 操应长, 王淑萍, 李雪哲, 王铸坤. 渤海湾盆地东营凹陷民丰洼陷陡坡带深层-超深层碎屑岩优质储层控制因素[J]. 石油与天然气地质, 2023, 44(5): 1203-1217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||