石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (1): 76-85.doi: 10.11743/ogg20210107
陈前1(), 闫相宾1,*(), 刘超英1, 魏晓亮2, 程喆1, 秦伟军1, 洪太元1
收稿日期:
2020-07-16
出版日期:
2021-02-28
发布日期:
2021-02-07
通讯作者:
闫相宾
E-mail:chenqian.syky@sinopec.com;yxb1964.syky@sinopec.com
第一作者简介:
陈前(1990-), 男, 博士、高级工程师, 石油与天然气地质学。E-mail: 基金项目:
Qian Chen1(), Xiangbin Yan1,*(), Chaoying Liu1, Xiaoliang Wei2, Zhe Cheng1, Weijun Qin1, Taiyuan Hong1
Received:
2020-07-16
Online:
2021-02-28
Published:
2021-02-07
Contact:
Xiangbin Yan
E-mail:chenqian.syky@sinopec.com;yxb1964.syky@sinopec.com
摘要:
有机质孔隙是页岩储层中的重要储集空间,目前相关研究主要集中在孔隙的成因与描述上,而对地质条件下有机质孔隙所经历的次生压实改造关注较少。基于扫描电镜、孔隙定量统计和气体吸附技术,对川东南地区及周缘下古生界黑色页岩有机质孔隙的压实改造特点开展了研究。结果显示,有机质孔隙的变形与定向性排列为常见现象,其特征与有机质的赋存状态有关。顺层有机质中孔隙被压实破坏的现象最为普遍,充填有机质中的孔隙则局部被挤压发生形变,矿物集合体有机质孔隙的形变则主要与粘土矿物有关。除有机质赋存状态外,有机质孔隙被压实破坏的影响作用还受控于微观矿物格架的保护、由有机质含量所决定的岩石塑性以及有机质孔隙本身的大小。
中图分类号:
图4
湘鄂西地区与川东南涪陵地区页岩与矿物结合有机质中孔隙被挤压形变特征(蓝色箭头指示主要挤压方向) a.有机质-粘土集合体中孔隙定向性排列,CY1井,牛蹄塘组,埋深1 357.7 m,扫描电镜照片;b.a图部分区域放大显示有机质孔隙的定向性排列;c.片状粘土中包含的几乎被完全压实的有机质孔隙,J1井,龙马溪组,埋深2 378.4 m,扫描电镜照片;d.有机质中较大的石英颗粒挤压两侧孔隙,J1井,龙马溪组,埋深2 404.5 m,扫描电镜照片;e.微晶石英-粘土形成“格架支撑”保护有机质孔隙,J11-4井,龙马溪组,埋深2 325.2 m,扫描电镜照片;f.有机质-黄铁矿集合体中有机质孔隙保存较好,J11-4井,龙马溪组,埋深2 266.7 m,扫描电镜照片"
图5
川东南涪陵地区龙马溪组微观矿物格架下有机质孔隙发育特征 a.矿物格架作为缓冲减轻有机质受到的压实作用,J41-5井,埋深2 594.0 m,扫描电镜照片;b.片状粘土组成“纸房结构”保护有机质孔隙,J1井,埋深2 341.4 m,扫描电镜照片;c.石英-粘土形成矿物格架保护有机质孔隙,J1井,埋深2 404.5 m,扫描电镜照片;d.黄铁矿晶体紧密堆积形成“格架支撑”保护有机质孔隙,J41-5井,埋深2 591.6 m,扫描电镜照片;e.黄铁矿充填有机质形成“骨架支撑”保护有机质孔隙,J41-5井,埋深2 613.3 m,扫描电镜照片;f.大量自生生物石英组合形成“格架支撑”保护有机质孔隙,J1井,埋深2 411.7 m,扫描电镜照片"
1 | 何治亮, 聂海宽, 胡东风, 等. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组-龙马溪组为例[J]. 石油学报, 2020, 41 (4): 379- 391. |
He Zhiliang , Nie Haikuan , Hu Dongfeng , et al. Geological problems in the effective development of deep shale gas: A case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2020, 41 (4): 379- 391. | |
2 | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49 (1): 13- 35. |
Nie Haikuan , He Zhiliang , Liu Guangxiang , et al. Status and direction of shale gas exploration and development in China[J]. Journal of China university of Mining & Technology, 2020, 49 (1): 13- 35. | |
3 |
Curtis M E , Sondergeld C H , Ambrose R J , et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012b, 96 (4): 665- 677.
doi: 10.1306/08151110188 |
4 |
Pommer M , Milliken K . Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99 (9): 1713- 1744.
doi: 10.1306/03051514151 |
5 | Schieber J . Common themes in the formation and preservation of intrinsic porosity in shales and mudstones-Illustrated with examples across the Phanerozoic[M]. City. 2010. |
6 | Curtis M E , Cardott B J , Sondergeld C H , et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012a, 103 (23): 26- 31. |
7 | Bernard S , Wirth R , Schreiber A , et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 2012, 103 (23): 3- 11. |
8 |
Nie Haikuan , Jin Zhijun , Zhang Jinchuan . Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China[J]. Scientific Reports, 2018, 8 (1): 7014.
doi: 10.1038/s41598-018-25104-5 |
9 |
Wang P , Chen Z , Jin Z , et al. Shale oil and gas resources in organic pores of the Devonian Duvernay Shale, Western Canada Sedimentary Basin based on petroleum system modeling[J]. Journal of Natural Gas Science and Engineering, 2018, 50, 33- 42.
doi: 10.1016/j.jngse.2017.10.027 |
10 | 罗小平, 吴飘, 赵建红, 等. 富有机质泥页岩有机质孔隙研究进展[J]. 成都理工大学学报(自科版), 2015, 42 (1): 50- 59. |
Luo Xiaoping , Wu Piao , Zhao Jianhong , et al. Study advances on organic pores in organic matter-rich mud shale[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42 (1): 50- 59. | |
11 | 曹涛涛, 刘光祥, 曹清古, 等. 有机显微组成对泥页岩有机孔发育的影响——以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39 (1): 40- 53. |
Cao Taotao , Liu Guangxiang , Cao Qinggu , et al. Influence of maceral composition on organic pore development in shale: A case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (1): 40- 53. | |
12 | 谭静强, 张煜麟, 罗文彬, 等. 富有机质泥页岩微纳米孔隙结构研究进展[J]. 矿物岩石地球化学通报, 2019, 38 (1): 18- 29. |
Tan Jingqiang , Zhang Yulin , Luo Wenbin , et al. Research progress on microscale and nanoscale pore structures of organic-rich muddy shales[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38 (1): 18- 29. | |
13 | Jiao K , Yao S , Liu C , et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing: An example from the lower Silurian Longmaxi Shale, upper Yangtze region, China[J]. International Journal of Coal Geology, 2014, 128-129 (3): 1- 11. |
14 |
Ma Y , Zhong N , Cheng L , et al. Pore structure of the graptolite-derived OM in the Longmaxi Shale, southeastern Upper Yangtze Region, China[J]. Marine and Petroleum Geology, 2016, 72, 1- 11.
doi: 10.1016/j.marpetgeo.2016.01.009 |
15 |
Gai S , Liu H , He S , et al. Shale reservoir characteristics and exploration potential in the target: A case study in the Longmaxi Formation from the southern Sichuan Basin of China[J]. Journal of Natural Gas Science and Engineering, 2016, 31, 86- 97.
doi: 10.1016/j.jngse.2016.02.060 |
16 |
Sun M , Yu B , Hu Q , et al. Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation Shale: A case study from Well Yuke #1 in the Southeast of Chongqing, China[J]. International Journal of Coal Geology, 2016, 154-155, 16- 29.
doi: 10.1016/j.coal.2015.11.015 |
17 |
Milliken K L , Rudnicki M , Awwiller D N , et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97 (2): 177- 200.
doi: 10.1306/07231212048 |
18 |
Chen Q , Zhang J , Tang X , et al. Relationship between pore type and pore size of marine shale: An example from the Sinian-Cambrian formation, upper Yangtze region, South China[J]. International Journal of Coal Geology, 2016, 158, 13- 28.
doi: 10.1016/j.coal.2016.03.001 |
19 |
Wang G . Deformation of organic matter and its effect on pores in mud rocks[J]. AAPG Bulletin, 2020, 103, 21- 36.
doi: 10.1306/04241918098 |
20 | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组页岩岩相类型与沉积环境[J]. 石油学报, 2016, 37 (5): 572- 586. |
Zhao Jianhua , Jin Zhijun , Jin Zhenkui , et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37 (5): 572- 586. | |
21 |
翟刚毅, 包书景, 庞飞, 等. 贵州遵义地区安场向斜"四层楼"页岩油气成藏模式研究[J]. 中国地质, 2017, 44 (1): 1- 12.
doi: 10.3969/j.issn.1006-9372.2017.01.001 |
Zhai Gangyi , Bao Shujing , Pang Fei , et al. Peservoir-forming pattern of "four-storey" hydrocarbon accumulation in Anchang syncline of northern Guizhou Province[J]. Geology in China, 2017, 44 (1): 1- 12.
doi: 10.3969/j.issn.1006-9372.2017.01.001 |
|
22 | 郑和荣, 彭勇民, 唐建信, 等. 中、上扬子地区常压页岩气勘探前景——以湘中坳陷下寒武统为例[J]. 石油与天然气地质, 2019, 40 (6): 1155- 1167. |
Zheng Herong , Peng Yongmin , Tang Jianxin , et al. Exploration prospect of normal-pressure shale gas in Middle and Upper Yangtze regions: A case study of the Lower Cambrian shale in Xiangzhong Depression[J]. Oil & Gas Geology, 2019, 40 (6): 1155- 1167. | |
23 | 罗超, 刘树根, 孙玮, 等. 上扬子区下寒武统牛蹄塘组页岩气基本特征研究——以贵州丹寨南皋剖面为例[J]. 天然气地球科学, 2014, 25 (3): 453- 470. |
Luo Chao , Liu Shugen , Sun Wei , et al. Basic characteristics of shale gas in the Lower Cambrian Niutitang Formation in the Upper Yangtze Region: Taking Nangao section in Danzhai as an example[J]. Natural Gas Geoscience, 2014, 25 (3): 453- 470. | |
24 | 赵建华, 金之钧, 林畅松, 等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质, 2019, 40 (4): 701- 715. |
Zhao Jianhua , Jin Zhijun , Lin Changsong , et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40 (4): 701- 715. | |
25 | 牟传龙, 葛祥英, 许效松, 等. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义[J]. 古地理学报, 2014, 16 (4): 427- 440. |
Mou Chuanlong , Ge Xiangying , Xu Xiaosong , et al. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in Middle-Upper Yangtze Region[J]. Journal of palaeogeography, 2014, 16 (4): 427- 440. | |
26 |
冯常茂, 牛新生, 吴冲龙. 黔中隆起及周缘地区下组合含油气流体包裹体研究[J]. 岩石矿物学杂志, 2008, 27 (2): 121- 126.
doi: 10.3969/j.issn.1000-6524.2008.02.004 |
Feng Changmao , Niu Xinsheng , Wu Chonglong . A study of hydrocarbon fluid inclusions in Qianzhong uplift and its adjacent areas[J]. Acta Petrologica et mineralogica, 2008, 27 (2): 121- 126.
doi: 10.3969/j.issn.1000-6524.2008.02.004 |
|
27 | 沃玉进, 周雁, 肖开华. 中国南方海相层系埋藏史类型与生烃演化模式[J]. 沉积与特提斯地质, 2007, 27 (3): 96- 102. |
Wo Yujin , Zhou Yan , Xiao Kaihua . The burial history and models for hydrocarbon generation and evolution in the marine strata in southern China[J]. Sedimentary Geology and Tethyan Geology, 2007, 27 (3): 96- 102. | |
28 | Chen J , Xiao X.M . Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129 (4): 173- 181. |
29 | 胡海燕. 富有机质Woodford页岩孔隙演化的热模拟实验[J]. 石油学报, 2013, 34 (5): 820- 825. |
Hu Haiyan . Porosity evolution of the organic-rich shale with thermal maturity increasing[J]. Acta Petrolei Sinica, 2013, 34 (5): 820- 825. | |
30 | 何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018, 39 (3): 472- 484. |
He Chencheng , He Sheng , Guo Xusheng , et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation's first Member, Jiaoshiba Block, Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (3): 472- 484. | |
31 |
Slatt R , O'brien N . Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in finegrained rocks[J]. AAPG Bulletin, 2011, 95, 2017- 2030.
doi: 10.1306/03301110145 |
32 | 张光荣, 聂海宽, 唐玄, 等. 页岩中黄铁矿类型及其对页岩气富集的影响——以四川盆地及其周缘五峰组-龙马溪组页岩为例[J]. 石油实验地质, 2020, 42 (3): 459- 466. |
Zhang Guangrong , Nie Haikuan , Tang Xuan , et al. Pyrite type and its effect on shale gas accumulation: A case study of Wufeng-Longmaxi shale in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2020, 42 (3): 459- 466. | |
33 | 孙川翔, 聂海宽, 刘光祥, 等. 石英矿物类型及其对页岩气富集开采的控制——以四川盆地及其周缘五峰组-龙马溪组为例[J]. 地球科学, 2019, 44 (11): 3690- 3704. |
Sun Chuanxiang , Nie Haikuan , Liu Guangxiang , et al. Quartz type and its control on shale gas enrichment and production: A Case Study of the Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science, 2019, 44 (11): 3690- 3704. | |
34 | Loucks R , Reed R . Scanning-electron-microscope petrographic evidence for distinguishing organic matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J]. GCAGS Journal, 2014, 3, 51- 60. |
35 | 聂海宽, 何治亮, 刘光祥, 等. 四川盆地五峰组-龙马溪组页岩气优质储层成因机制[J]. 天然气工业, 2020, 40 (6): 31- 41. |
Nie Haikuan , He Zhiliang , Liu Guangxiang , et al. Genetic mechanism of high-quality shale reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40 (6): 31- 41. | |
36 | Wu S , Yang Z , Zhai X , et al. An experimental study of organic matter, minerals and porosity evolution in shales within high-temperature and high-pressure constraints[J]. Marine and Petroleum Geology, 2019, 102, 377- 390. |
37 | 王飞宇, 关晶, 冯伟平, 等. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 2013, 40 (6): 764- 768. |
Wang Feiyu , Guan Jing , Feng Weiping , et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40 (6): 764- 768. | |
38 | Kuila U , Prasad M . Specific surface area and pore-size distribution in clays and shales[J]. Geophysical Prospecting, 2013, 61 (2): 341- 362. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[7] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[8] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[9] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[10] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[11] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[12] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[13] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[14] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
[15] | 米立军, 徐建永, 李威. 渤海海域页岩油资源潜力[J]. 石油与天然气地质, 2023, 44(6): 1366-1377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||