石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (1): 76-85.doi: 10.11743/ogg20210107
陈前1(), 闫相宾1,*(
), 刘超英1, 魏晓亮2, 程喆1, 秦伟军1, 洪太元1
收稿日期:
2020-07-16
出版日期:
2021-02-28
发布日期:
2021-02-07
通讯作者:
闫相宾
E-mail:chenqian.syky@sinopec.com;yxb1964.syky@sinopec.com
作者简介:
陈前(1990-), 男, 博士、高级工程师, 石油与天然气地质学。E-mail: 基金资助:
Qian Chen1(), Xiangbin Yan1,*(
), Chaoying Liu1, Xiaoliang Wei2, Zhe Cheng1, Weijun Qin1, Taiyuan Hong1
Received:
2020-07-16
Online:
2021-02-28
Published:
2021-02-07
Contact:
Xiangbin Yan
E-mail:chenqian.syky@sinopec.com;yxb1964.syky@sinopec.com
摘要:
有机质孔隙是页岩储层中的重要储集空间,目前相关研究主要集中在孔隙的成因与描述上,而对地质条件下有机质孔隙所经历的次生压实改造关注较少。基于扫描电镜、孔隙定量统计和气体吸附技术,对川东南地区及周缘下古生界黑色页岩有机质孔隙的压实改造特点开展了研究。结果显示,有机质孔隙的变形与定向性排列为常见现象,其特征与有机质的赋存状态有关。顺层有机质中孔隙被压实破坏的现象最为普遍,充填有机质中的孔隙则局部被挤压发生形变,矿物集合体有机质孔隙的形变则主要与粘土矿物有关。除有机质赋存状态外,有机质孔隙被压实破坏的影响作用还受控于微观矿物格架的保护、由有机质含量所决定的岩石塑性以及有机质孔隙本身的大小。
中图分类号:
图4
湘鄂西地区与川东南涪陵地区页岩与矿物结合有机质中孔隙被挤压形变特征(蓝色箭头指示主要挤压方向) a.有机质-粘土集合体中孔隙定向性排列,CY1井,牛蹄塘组,埋深1 357.7 m,扫描电镜照片;b.a图部分区域放大显示有机质孔隙的定向性排列;c.片状粘土中包含的几乎被完全压实的有机质孔隙,J1井,龙马溪组,埋深2 378.4 m,扫描电镜照片;d.有机质中较大的石英颗粒挤压两侧孔隙,J1井,龙马溪组,埋深2 404.5 m,扫描电镜照片;e.微晶石英-粘土形成“格架支撑”保护有机质孔隙,J11-4井,龙马溪组,埋深2 325.2 m,扫描电镜照片;f.有机质-黄铁矿集合体中有机质孔隙保存较好,J11-4井,龙马溪组,埋深2 266.7 m,扫描电镜照片"
图5
川东南涪陵地区龙马溪组微观矿物格架下有机质孔隙发育特征 a.矿物格架作为缓冲减轻有机质受到的压实作用,J41-5井,埋深2 594.0 m,扫描电镜照片;b.片状粘土组成“纸房结构”保护有机质孔隙,J1井,埋深2 341.4 m,扫描电镜照片;c.石英-粘土形成矿物格架保护有机质孔隙,J1井,埋深2 404.5 m,扫描电镜照片;d.黄铁矿晶体紧密堆积形成“格架支撑”保护有机质孔隙,J41-5井,埋深2 591.6 m,扫描电镜照片;e.黄铁矿充填有机质形成“骨架支撑”保护有机质孔隙,J41-5井,埋深2 613.3 m,扫描电镜照片;f.大量自生生物石英组合形成“格架支撑”保护有机质孔隙,J1井,埋深2 411.7 m,扫描电镜照片"
1 | 何治亮, 聂海宽, 胡东风, 等. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组-龙马溪组为例[J]. 石油学报, 2020, 41 (4): 379- 391. |
He Zhiliang , Nie Haikuan , Hu Dongfeng , et al. Geological problems in the effective development of deep shale gas: A case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2020, 41 (4): 379- 391. | |
2 | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49 (1): 13- 35. |
Nie Haikuan , He Zhiliang , Liu Guangxiang , et al. Status and direction of shale gas exploration and development in China[J]. Journal of China university of Mining & Technology, 2020, 49 (1): 13- 35. | |
3 |
Curtis M E , Sondergeld C H , Ambrose R J , et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012b, 96 (4): 665- 677.
doi: 10.1306/08151110188 |
4 |
Pommer M , Milliken K . Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99 (9): 1713- 1744.
doi: 10.1306/03051514151 |
5 | Schieber J . Common themes in the formation and preservation of intrinsic porosity in shales and mudstones-Illustrated with examples across the Phanerozoic[M]. City. 2010. |
6 | Curtis M E , Cardott B J , Sondergeld C H , et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012a, 103 (23): 26- 31. |
7 | Bernard S , Wirth R , Schreiber A , et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 2012, 103 (23): 3- 11. |
8 |
Nie Haikuan , Jin Zhijun , Zhang Jinchuan . Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China[J]. Scientific Reports, 2018, 8 (1): 7014.
doi: 10.1038/s41598-018-25104-5 |
9 |
Wang P , Chen Z , Jin Z , et al. Shale oil and gas resources in organic pores of the Devonian Duvernay Shale, Western Canada Sedimentary Basin based on petroleum system modeling[J]. Journal of Natural Gas Science and Engineering, 2018, 50, 33- 42.
doi: 10.1016/j.jngse.2017.10.027 |
10 | 罗小平, 吴飘, 赵建红, 等. 富有机质泥页岩有机质孔隙研究进展[J]. 成都理工大学学报(自科版), 2015, 42 (1): 50- 59. |
Luo Xiaoping , Wu Piao , Zhao Jianhong , et al. Study advances on organic pores in organic matter-rich mud shale[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42 (1): 50- 59. | |
11 | 曹涛涛, 刘光祥, 曹清古, 等. 有机显微组成对泥页岩有机孔发育的影响——以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39 (1): 40- 53. |
Cao Taotao , Liu Guangxiang , Cao Qinggu , et al. Influence of maceral composition on organic pore development in shale: A case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (1): 40- 53. | |
12 | 谭静强, 张煜麟, 罗文彬, 等. 富有机质泥页岩微纳米孔隙结构研究进展[J]. 矿物岩石地球化学通报, 2019, 38 (1): 18- 29. |
Tan Jingqiang , Zhang Yulin , Luo Wenbin , et al. Research progress on microscale and nanoscale pore structures of organic-rich muddy shales[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38 (1): 18- 29. | |
13 | Jiao K , Yao S , Liu C , et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing: An example from the lower Silurian Longmaxi Shale, upper Yangtze region, China[J]. International Journal of Coal Geology, 2014, 128-129 (3): 1- 11. |
14 |
Ma Y , Zhong N , Cheng L , et al. Pore structure of the graptolite-derived OM in the Longmaxi Shale, southeastern Upper Yangtze Region, China[J]. Marine and Petroleum Geology, 2016, 72, 1- 11.
doi: 10.1016/j.marpetgeo.2016.01.009 |
15 |
Gai S , Liu H , He S , et al. Shale reservoir characteristics and exploration potential in the target: A case study in the Longmaxi Formation from the southern Sichuan Basin of China[J]. Journal of Natural Gas Science and Engineering, 2016, 31, 86- 97.
doi: 10.1016/j.jngse.2016.02.060 |
16 |
Sun M , Yu B , Hu Q , et al. Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation Shale: A case study from Well Yuke #1 in the Southeast of Chongqing, China[J]. International Journal of Coal Geology, 2016, 154-155, 16- 29.
doi: 10.1016/j.coal.2015.11.015 |
17 |
Milliken K L , Rudnicki M , Awwiller D N , et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97 (2): 177- 200.
doi: 10.1306/07231212048 |
18 |
Chen Q , Zhang J , Tang X , et al. Relationship between pore type and pore size of marine shale: An example from the Sinian-Cambrian formation, upper Yangtze region, South China[J]. International Journal of Coal Geology, 2016, 158, 13- 28.
doi: 10.1016/j.coal.2016.03.001 |
19 |
Wang G . Deformation of organic matter and its effect on pores in mud rocks[J]. AAPG Bulletin, 2020, 103, 21- 36.
doi: 10.1306/04241918098 |
20 | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组页岩岩相类型与沉积环境[J]. 石油学报, 2016, 37 (5): 572- 586. |
Zhao Jianhua , Jin Zhijun , Jin Zhenkui , et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37 (5): 572- 586. | |
21 |
翟刚毅, 包书景, 庞飞, 等. 贵州遵义地区安场向斜"四层楼"页岩油气成藏模式研究[J]. 中国地质, 2017, 44 (1): 1- 12.
doi: 10.3969/j.issn.1006-9372.2017.01.001 |
Zhai Gangyi , Bao Shujing , Pang Fei , et al. Peservoir-forming pattern of "four-storey" hydrocarbon accumulation in Anchang syncline of northern Guizhou Province[J]. Geology in China, 2017, 44 (1): 1- 12.
doi: 10.3969/j.issn.1006-9372.2017.01.001 |
|
22 | 郑和荣, 彭勇民, 唐建信, 等. 中、上扬子地区常压页岩气勘探前景——以湘中坳陷下寒武统为例[J]. 石油与天然气地质, 2019, 40 (6): 1155- 1167. |
Zheng Herong , Peng Yongmin , Tang Jianxin , et al. Exploration prospect of normal-pressure shale gas in Middle and Upper Yangtze regions: A case study of the Lower Cambrian shale in Xiangzhong Depression[J]. Oil & Gas Geology, 2019, 40 (6): 1155- 1167. | |
23 | 罗超, 刘树根, 孙玮, 等. 上扬子区下寒武统牛蹄塘组页岩气基本特征研究——以贵州丹寨南皋剖面为例[J]. 天然气地球科学, 2014, 25 (3): 453- 470. |
Luo Chao , Liu Shugen , Sun Wei , et al. Basic characteristics of shale gas in the Lower Cambrian Niutitang Formation in the Upper Yangtze Region: Taking Nangao section in Danzhai as an example[J]. Natural Gas Geoscience, 2014, 25 (3): 453- 470. | |
24 | 赵建华, 金之钧, 林畅松, 等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质, 2019, 40 (4): 701- 715. |
Zhao Jianhua , Jin Zhijun , Lin Changsong , et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40 (4): 701- 715. | |
25 | 牟传龙, 葛祥英, 许效松, 等. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义[J]. 古地理学报, 2014, 16 (4): 427- 440. |
Mou Chuanlong , Ge Xiangying , Xu Xiaosong , et al. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in Middle-Upper Yangtze Region[J]. Journal of palaeogeography, 2014, 16 (4): 427- 440. | |
26 |
冯常茂, 牛新生, 吴冲龙. 黔中隆起及周缘地区下组合含油气流体包裹体研究[J]. 岩石矿物学杂志, 2008, 27 (2): 121- 126.
doi: 10.3969/j.issn.1000-6524.2008.02.004 |
Feng Changmao , Niu Xinsheng , Wu Chonglong . A study of hydrocarbon fluid inclusions in Qianzhong uplift and its adjacent areas[J]. Acta Petrologica et mineralogica, 2008, 27 (2): 121- 126.
doi: 10.3969/j.issn.1000-6524.2008.02.004 |
|
27 | 沃玉进, 周雁, 肖开华. 中国南方海相层系埋藏史类型与生烃演化模式[J]. 沉积与特提斯地质, 2007, 27 (3): 96- 102. |
Wo Yujin , Zhou Yan , Xiao Kaihua . The burial history and models for hydrocarbon generation and evolution in the marine strata in southern China[J]. Sedimentary Geology and Tethyan Geology, 2007, 27 (3): 96- 102. | |
28 | Chen J , Xiao X.M . Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129 (4): 173- 181. |
29 | 胡海燕. 富有机质Woodford页岩孔隙演化的热模拟实验[J]. 石油学报, 2013, 34 (5): 820- 825. |
Hu Haiyan . Porosity evolution of the organic-rich shale with thermal maturity increasing[J]. Acta Petrolei Sinica, 2013, 34 (5): 820- 825. | |
30 | 何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018, 39 (3): 472- 484. |
He Chencheng , He Sheng , Guo Xusheng , et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation's first Member, Jiaoshiba Block, Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (3): 472- 484. | |
31 |
Slatt R , O'brien N . Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in finegrained rocks[J]. AAPG Bulletin, 2011, 95, 2017- 2030.
doi: 10.1306/03301110145 |
32 | 张光荣, 聂海宽, 唐玄, 等. 页岩中黄铁矿类型及其对页岩气富集的影响——以四川盆地及其周缘五峰组-龙马溪组页岩为例[J]. 石油实验地质, 2020, 42 (3): 459- 466. |
Zhang Guangrong , Nie Haikuan , Tang Xuan , et al. Pyrite type and its effect on shale gas accumulation: A case study of Wufeng-Longmaxi shale in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2020, 42 (3): 459- 466. | |
33 | 孙川翔, 聂海宽, 刘光祥, 等. 石英矿物类型及其对页岩气富集开采的控制——以四川盆地及其周缘五峰组-龙马溪组为例[J]. 地球科学, 2019, 44 (11): 3690- 3704. |
Sun Chuanxiang , Nie Haikuan , Liu Guangxiang , et al. Quartz type and its control on shale gas enrichment and production: A Case Study of the Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science, 2019, 44 (11): 3690- 3704. | |
34 | Loucks R , Reed R . Scanning-electron-microscope petrographic evidence for distinguishing organic matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J]. GCAGS Journal, 2014, 3, 51- 60. |
35 | 聂海宽, 何治亮, 刘光祥, 等. 四川盆地五峰组-龙马溪组页岩气优质储层成因机制[J]. 天然气工业, 2020, 40 (6): 31- 41. |
Nie Haikuan , He Zhiliang , Liu Guangxiang , et al. Genetic mechanism of high-quality shale reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40 (6): 31- 41. | |
36 | Wu S , Yang Z , Zhai X , et al. An experimental study of organic matter, minerals and porosity evolution in shales within high-temperature and high-pressure constraints[J]. Marine and Petroleum Geology, 2019, 102, 377- 390. |
37 | 王飞宇, 关晶, 冯伟平, 等. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 2013, 40 (6): 764- 768. |
Wang Feiyu , Guan Jing , Feng Weiping , et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40 (6): 764- 768. | |
38 | Kuila U , Prasad M . Specific surface area and pore-size distribution in clays and shales[J]. Geophysical Prospecting, 2013, 61 (2): 341- 362. |
[1] | 何治亮, 聂海宽, 李双建, 刘光祥, 丁江辉, 边瑞康, 卢志远. 特提斯域板块构造约束下上扬子地区二叠系龙潭组页岩气的差异性赋存[J]. 石油与天然气地质, 2021, 42(1): 1-15. |
[2] | 蔡勋育, 赵培荣, 高波, 朱彤, 田玲珏, 孙川翔. 中国石化页岩气“十三五”发展成果与展望[J]. 石油与天然气地质, 2021, 42(1): 16-27. |
[3] | 张金川, 刘树根, 魏晓亮, 唐玄, 刘飏. 页岩含气量评价方法[J]. 石油与天然气地质, 2021, 42(1): 28-40. |
[4] | 姜振学, 李鑫, 王幸蒙, 王国臻, 仇恒远, 朱德宇, 姜鸿阳. 中国南方典型页岩孔隙特征差异及其控制因素[J]. 石油与天然气地质, 2021, 42(1): 41-53. |
[5] | 王濡岳, 胡宗全, 董立, 高波, 孙川翔, 杨滔, 王冠平, 尹帅. 页岩气储层表征评价技术进展与思考[J]. 石油与天然气地质, 2021, 42(1): 54-65. |
[6] | 王红岩, 施振生, 孙莎莎, 张磊夫. 四川盆地及周缘志留系龙马溪组一段深层页岩储层特征及其成因[J]. 石油与天然气地质, 2021, 42(1): 66-75. |
[7] | 卢志远, 何治亮, 余川, 叶欣, 李东晖, 杜伟, 聂海宽. 复杂构造区页岩气富集特征—以四川盆地东南部丁山地区下古生界五峰组-龙马溪组为例[J]. 石油与天然气地质, 2021, 42(1): 86-97. |
[8] | 沈骋, 任岚, 赵金洲, 陈铭培. 页岩岩相组合划分标准及其对缝网形成的影响——以四川盆地志留系龙马溪组页岩为例[J]. 石油与天然气地质, 2021, 42(1): 98-106, 123. |
[9] | 蔡全升, 陈孝红, 张国涛, 张保民, 韩京, 陈琳, 李培军, 李炎桂. 鄂西宜昌地区下古生界五峰组-龙马溪组页岩气储层发育特征与勘探潜力[J]. 石油与天然气地质, 2021, 42(1): 107-123. |
[10] | 孙莎莎, 董大忠, 李育聪, 王红岩, 施振生, 黄世伟, 昌燕, 拜文华. 四川盆地侏罗系自流井组大安寨段陆相页岩油气地质特征及成藏控制因素[J]. 石油与天然气地质, 2021, 42(1): 124-135. |
[11] | 刘忠宝, 胡宗全, 刘光祥, 刘珠江, 刘晧天, 郝景宇, 王鹏威, 李鹏. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素[J]. 石油与天然气地质, 2021, 42(1): 136-145. |
[12] | 张培先, 何希鹏, 高全芳, 高玉巧, 孙斌, 蔡潇, 何贵松, 张志萍, 刘娜娜. 四川盆地东南缘二叠系茅口组一段页岩气藏地质特征及富集模式[J]. 石油与天然气地质, 2021, 42(1): 146-157. |
[13] | 丁江辉, 张金川, 石刚, 申宝剑, 唐玄, 杨振恒, 李兴起, 李楚雄. 皖南地区上二叠统大隆组页岩沉积环境与有机质富集机理[J]. 石油与天然气地质, 2021, 42(1): 158-172. |
[14] | 党伟, 张金川, 王凤琴, 李沛, 单长安, 王睿婧. 富有机质页岩-水蒸气吸附热力学与动力学特性——以鄂尔多斯盆地二叠系山西组页岩为例[J]. 石油与天然气地质, 2021, 42(1): 173-185. |
[15] | 朱洪建, 琚宜文, 孙岩, 黄骋, 冯宏业, AliRaza, 余坤, 乔鹏, 肖蕾. 构造变形作用下页岩孔裂隙结构演化特征及其模式——以四川盆地及其周缘下古生界海相页岩为例[J]. 石油与天然气地质, 2021, 42(1): 186-200, 240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||