石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (1): 173-185.doi: 10.11743/ogg20210115
党伟1,2,3(), 张金川4, 王凤琴1,2, 李沛4, 单长安1,2, 王睿婧1
收稿日期:
2020-06-07
出版日期:
2021-02-28
发布日期:
2021-02-07
第一作者简介:
党伟(1990-), 男, 博士, 副教授, 非常规油气地质勘探与评价。E-mail: 基金项目:
Wei Dang1,2,3(), Jinchuan Zhang4, Fengqin Wang1,2, Pei Li4, Chang'an Shan1,2, Ruijing Wang1
Received:
2020-06-07
Online:
2021-02-28
Published:
2021-02-07
摘要:
吸附是页岩储层原生水赋存、外来水滞留的关键机理之一,而明确水在富有机质页岩中的吸附特性则对于进一步探讨页岩储层微观气水分布、深化页岩气富集成藏机理以及提高页岩气采收率等地质和工程问题具有重要的理论和实践意义。采用实验测试(页岩-水蒸气等温吸附)和理论模型(7种吸附热力学模型和4种吸附动力学模型)相结合的研究方法,对页岩-水蒸气吸附特性展开基础理论研究。结果表明:页岩-水蒸气吸/脱附等温线为典型的Ⅱ型曲线且吸/脱附滞后环一直延伸至极低相对压力区,而这与粘土矿物层间水难以脱出有关;GAB与Dent模型是描述页岩-水蒸气等温吸附曲线的最佳模型,反映水分子从单分子层吸附到多分子层吸附再到毛细凝聚的物理过程且存在两级吸附点位。当p/p0 < 0.1,水分子主要吸附在基质孔隙表面的一级吸附点位上,形成单分子层吸附。随着相对压力继续增加(0.1 < p/p0 < 0.8),一级吸附点位开始逐渐吸附饱和,而水分子在二级吸附点位上的吸附量开始迅速增加,形成多分子层吸附。当p/p0>0.8,一级吸附点位已基本达到饱和,而二级吸附点位对水分子吸附的贡献则继续增加,出现毛细凝聚现象;此外,页岩-水蒸气吸附的吉布斯自由能变、焓变以及熵变均为负值,表明吸附是一个自发、放热、熵减的过程;双一阶动力学模型是描述页岩-水蒸气吸附动力学过程的最佳理论模型,表明页岩-水蒸气吸附过程可划分为初期外扩散主导的表面吸附和后期内扩散所主导的孔隙吸附,并且内扩散是控制水蒸气吸附的速率控制步骤。
中图分类号:
表2
DW、GAB以及Dent模型的拟合参数"
温度/℃ | DW模型 | GAB模型 | Dent模型 | |||||||||||||||
q1/(mg·g-1) | q2/(mg·g-1) | k1 | k2 | R2 | AICc | q0/(mg·g-1) | C | k | R2 | AICc | q0/(mg·g-1) | K | k | R2 | AICc | |||
20 | 6.79 | 10.84 | 10.43 | 0.56 | 0.997 | -2.47 | 7.99 | 13.94 | 0.63 | 0.997 | -11.09 | 7.99 | 8.83 | 0.63 | 0.997 | -11.09 | ||
30 | 7.15 | 10.31 | 10.04 | 0.55 | 0.998 | -7.67 | 7.96 | 14.98 | 0.61 | 0.998 | -16.24 | 7.96 | 9.11 | 0.61 | 0.998 | -16.24 | ||
40 | 4.75 | 26.59 | 13.47 | 0.33 | 0.998 | -11.29 | 7.91 | 12.04 | 0.57 | 0.998 | -15.99 | 7.91 | 6.88 | 0.57 | 0.998 | -15.99 |
表4
不同吸附动力学模型的拟合参数"
模型 | 拟合参数 | p/p0 | T/℃ | |||||
0.05 | 0.30 | 0.90 | 20 | 30 | 40 | |||
拟一阶动力学模型 | k1/min-1 | 0.24 | 0.12 | 0.07 | 0.13 | 0.06 | 0.08 | |
R2 | 0.992 | 0.974 | 0.968 | 0.974 | 0.945 | 0.971 | ||
AICc | -205.12 | -255.41 | -378.46 | -255.41 | -230.73 | -239.06 | ||
拟二阶动力学模型 | k2/(mg3·g-1·min-1) | 0.23 | 0.22 | 0.14 | 0.23 | 0.12 | 0.16 | |
q∞/(mg·g-1) | 2.31 | 1.16 | 1.13 | 1.16 | 1.15 | 1.11 | ||
R2 | 0.949 | 0.952 | 0.959 | 0.952 | 0.97 | 0.948 | ||
AICc | -150.96 | -228.82 | -353.51 | -228.81 | -257.78 | -215.83 | ||
双一阶动力学模型 | q1 | 0.63 | 0.60 | 0.58 | 0.61 | 0.55 | 0.51 | |
q2 | 0.37 | 0.40 | 0.42 | 0.39 | 0.45 | 0.49 | ||
k′/min-1 | 0.47 | 0.23 | 0.14 | 0.23 | 0.25 | 0.32 | ||
k″/min-1 | 0.02 | 0.05 | 0.06 | 0.06 | 0.03 | 0.06 | ||
R2 | 0.995 | 0.995 | 0.994 | 0.992 | 0.993 | 0.992 | ||
AICc | -209.66 | -292.44 | -466.61 | -292.44 | -324.83 | -288.78 | ||
单孔扩散模型 | (D/R2)/min-1 | 0.014 | 0.007 | 0.004 | 0.006 | 0.003 | 0.005 | |
R2 | 0.978 | 0.972 | 0.979 | 0.972 | 0.991 | 0.981 | ||
AICc | -174.95 | -251.49 | -394.77 | -251.49 | -303.86 | -254.21 |
1 | 李东晖, 聂海宽. 一种考虑气藏特征的页岩含气量计算方法——以四川盆地及其周缘焦页1井和彭页1井为例[J]. 石油与天然气地质, 2019, 40 (6): 1324- 1332. |
Li Donghui , Nie Haikuan . A new method to calculate shale gas content based on gas reservoir characterization-A case study of Wells JY 1 and PY 1 in Sichuan Basin and its surrounding areas[J]. Oil & Gas Geology, 2019, 40 (6): 1324- 1332. | |
2 | 胡文瑄, 姚素平, 陆现彩, 等. 典型陆相页岩油层系成岩过程中有机质演化对储集性的影响[J]. 石油与天然气地质, 2019, 40 (5): 947- 956. |
Hu Wenxuan , Yao Suping , Lu Xiancai , et al. Effects of organic matter evolution on oil reservoir property during diagenesis of typical continental shale sequences[J]. Oil & Gas Geology, 2019, 40 (5): 947- 956. | |
3 |
Schilthuis R J . Connate water in oil and gas sands[J]. Transactions of the AIME, 1938, 127 (1): 199- 214.
doi: 10.2118/938199-G |
4 | 柳广弟, 张厚福. 石油地质学[M]. 北京: 石油工业出版社, 2009. |
Liu Guangdi , Zhang Houfu . Petroluem Geology[M]. Beijing: Petroleum Industry Press, 2009. | |
5 | Curtis J B . Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86 (11): 1921- 1938. |
6 | 蒋裕强, 董大忠, 漆麟, 等. 页岩气储层的基本特征及其评价[J]. 天然气工业, 2010, 30 (10): 7- 12. |
Jiang Yuqiang , Dong Dazhong , Qi Lin , et al. Basic features and eval-uation of shale gas reservoirs[J]. Natural Gas Industry, 2010, 30 (10): 7- 12. | |
7 |
邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89 (6): 979- 1007.
doi: 10.3969/j.issn.0001-5717.2015.06.001 |
Zou Caineng , Yang Zhi , Zhu Rukai ,et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89 (6): 979- 1007.
doi: 10.3969/j.issn.0001-5717.2015.06.001 |
|
8 | 刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 2013, 33 (7): 140- 144. |
Liu Honglin , Wang Hongyan . Ultra-low water saturation characteristics and the identification of over-pressured play fairways of marine shales in south China[J]. Natural Gas Industry, 2013, 33 (7): 140- 144. | |
9 |
Tang X , Ripepi N , Valentine K A , et al. Water vapor sorption on Marcellus shale: measurement, modeling and thermodynamic analysis[J]. Fuel, 2017, 209, 606- 614.
doi: 10.1016/j.fuel.2017.07.062 |
10 |
Seemann T , Bertier P , Krooss B M , et al. Water vapour sorption on mudrocks[J]. Geological Society, London, Special Publications, 2017, 454 (1): 201- 233.
doi: 10.1144/SP454.8 |
11 |
Hao F , Zou H , Lu Y . Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG bulletin, 2013, 97 (8): 1325- 1346.
doi: 10.1306/02141312091 |
12 | 曾溅辉. 沉积盆地中地质流体运动与油气成藏[J]. 海相油气地质, 2005, 10 (1): 37- 42. |
Zeng Jianhui . Geofluids flow and hydrocarbon accumulation in sedimentary basin[J]. Marine Origin Petroleum Geology, 2005, 10 (1): 37- 42. | |
13 | 庞小婷, 陈国辉, 许晨曦, 等. 涪陵地区五峰组-龙马溪组页岩吸附-游离气定量评价及相互转化[J]. 石油与天然气地质, 2019, 40 (6): 1247- 1258. |
Pang Xiaoting , Chen Guohui , Xu Chenxi , et al. Quantitative evaluation of adsorbed and free gas and their mutual conversion in Wufeng-Longmaxi shale, Fuling area[J]. Oil & Gas Geology, 2019, 40 (6): 1247- 1258. | |
14 |
Wang F , Guan J , Feng W , et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40 (6): 819- 824.
doi: 10.1016/S1876-3804(13)60111-1 |
15 |
党伟, 张金川, 黄潇, 等. 陆相页岩含气性主控地质因素-以辽河西部凹陷沙河街组三段为例[J]. 石油学报, 2015, 36 (12): 1516- 1530.
doi: 10.7623/syxb201512006 |
Dang Wei , Zhang Jinchuan , Huang Xiao , et al. Main-controlling geological factors of gas-bearing property of continental shale gas: a case study of Member 3rd of Shahejie Formation in western Liaohe sag[J]. Acta Petrolei Sinica, 2015, 36 (12): 1516- 1530.
doi: 10.7623/syxb201512006 |
|
16 | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49 (1): 13- 35. |
Nie Haikuan , He Zhiliang , Liu Guangxiang , et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49 (1): 13- 35. | |
17 |
Dang W , Zhang J C , Tang X , et al. Investigation of gas content of organic-rich shale: A case study from Lower Permian shale in southern North China Basin, central China[J]. Geoscience Frontiers, 2018, 9 (2): 559- 575.
doi: 10.1016/j.gsf.2017.05.009 |
18 |
Zhou Y , Sun W , Chu W , et al. Theoretical insight into the enhanced CH4 desorption via H2O adsorption on different rank coal surfaces[J]. Journal of energy chemistry, 2016, 25 (4): 677- 682.
doi: 10.1016/j.jechem.2016.04.011 |
19 |
Tan J , Weniger P , Krooss B , et al. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, Part Ⅱ: Methane sorption capacity[J]. Fuel, 2014, 129, 204- 218.
doi: 10.1016/j.fuel.2014.03.064 |
20 |
Tang X , Zhang T , Zhang J , et al. Effects of pore fluids on methane sorption in the Lower Bakken Shales, Williston Basin, USA[J]. Fuel, 2020, 282, 118457.
doi: 10.1016/j.fuel.2020.118457 |
21 | Li P , Ma D , Zhang J , et al. Effect of wettability on adsorption and desorption of coalbed methane: A case study from low-rank coals in the southwestern Ordos Basin, China[J]. Industrial & Engineering Chemistry Research, 2018, 57 (35): 12003- 12015. |
22 | Li P , Zhang J , Rezaee R , et al. Effect of adsorbed moisture on the pore size distribution of marine-continental transitional shales: Insights from lithofacies differences and clay swelling[J]. Applied Clay Science, 2020, 105926. |
23 |
Ma L , Yu Q . Dynamic behaviors of methane adsorption on partially saturated shales[J]. Journal of Petroleum Science and Engineering, 2020, 190, 107071.
doi: 10.1016/j.petrol.2020.107071 |
24 | Shaoul J R , van Zelm L F , De Pater C . Damage mechanisms in unconventional-gas-well Stimulation-a new look at an old problem[J]. SPE Production & Operations, 2011, 26 (4): 388- 400. |
25 |
Dang W , Zhang J , Nie H , et al. Isotherms, thermodynamics and kine-tics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process[J]. Chemical Engineering Journal, 2020, 383, 123191.
doi: 10.1016/j.cej.2019.123191 |
26 |
Sang G , Liu S , Elsworth D . Water vapor sorption properties of Illinois shales under dynamic water vapor conditions: Experimentation and modeling[J]. Water Resources Research, 2019, 55 (8): 7212- 7228.
doi: 10.1029/2019WR024992 |
27 |
Zolfaghari A , Dehghanpour H , Holyk J . Water sorption behaviour of gas shales: I.Role of clays[J]. International Journal of Coal Geology, 2017, 179, 130- 138.
doi: 10.1016/j.coal.2017.05.008 |
28 | 冯东, 李相方, 李靖, 等. 黏土矿物吸附水蒸气特征及对孔隙分布的影响[J]. 中国石油大学学报(自然科学版), 2018, 42 (2): 116- 124. |
Feng Dong , Li Xiangfang , Li Jing , et al. Water adsorption isotherm and its effect on pore size distribution of clay minerals[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42 (2): 116- 124. | |
29 |
Wang T , Tian S , Li G , et al. Experimental study of water vapor adsorption behaviors on shale[J]. Fuel, 2019, 248, 168- 177.
doi: 10.1016/j.fuel.2019.03.029 |
30 |
Qiu H , Lv L , Pan B C , et al. Critical review in adsorption kinetic models[J]. Journal of Zhejiang University-Science A, 2009, 10 (5): 716- 724.
doi: 10.1631/jzus.A0820524 |
31 |
Duan S , Li G . Equilibrium and kinetics of water vapor adsorption on shale[J]. Journal of Energy Resources Technology, 2018, 140 (12): 122001- 122010.
doi: 10.1115/1.4040530 |
32 | Langmuir I . The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of Chemical Physics, 2015, 40 (12): 1361- 1403. |
33 |
Dubinin M M , Serpinsky V V . Isotherm equation for water vapor adsorption by microporous carbonaceous adsorbents[J]. Carbon, 1981, 19, 402- 403.
doi: 10.1016/0008-6223(81)90066-X |
34 | Dubinin M M , Serpinsky V V . Water vapour adsorption on microporous activated carbons[J]. Doklady Akademii Nauk SSSR., 1981, 285, 1151- 1157. |
35 |
D'Arcy R , Watt I . Analysis of sorption isotherms of non-homogeneous sorbents[J]. Transactions of the Faraday Society, 1970, 66, 1236- 1245.
doi: 10.1039/tf9706601236 |
36 |
Furmaniak S , Gauden P A , Terzyk A P , et al. Water adsorption on carbons-Critical review of the most popular analytical approaches[J]. Advances in Colloid and Interface Science, 2008, 137 (2): 82- 143.
doi: 10.1016/j.cis.2007.08.001 |
37 |
Brunauer S , Emmett P H , Teller E . Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60 (2): 309- 319.
doi: 10.1021/ja01269a023 |
38 |
Anderson R B . Modifications of the Brunauer, Emmett and Teller equation1[J]. Journal of the American Chemical Society, 1946, 68 (4): 686- 691.
doi: 10.1021/ja01208a049 |
39 | De Boer J H . The dynamical character of adsorption[M]. Oxford: Clarendon Press, 1953. |
40 | Guggenheim E A . Applications of statistical mechanics[M]. Oxford: Clarendon Press, 1966. |
41 | Lagergren S . Zurtheorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens[J]. Handligar, 1898, 24, 1- 39. |
42 |
Ho Y S , McKay G . Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34 (5): 451- 465.
doi: 10.1016/S0032-9592(98)00112-5 |
43 |
Wilczak A , Keinath T M . Kinetics of sorption and desorption of copper (Ⅱ) and lead (Ⅱ) on activated carbon[J]. Water Environment Research, 1993, 65 (3): 238- 244.
doi: 10.2175/WER.65.3.7 |
44 | Wheeler A . Reaction rates and selectivity in catalyst pores[J]. Advances in Catalysis, 1951, 3 (5): 433- 439. |
45 | Iglesias H A , Chirife J , Viollaz P . Thermodynamics of water vapour sorption by sugar beet root[J]. International Journal of Food Science & Technology, 1976, 11 (1): 91- 101. |
46 |
Sing K S . Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57 (4): 603- 619.
doi: 10.1351/pac198557040603 |
47 |
汪政德, 张茂林, 梅海燕, 等. 毛细凝聚和吸附-脱附回路的物理化学解释[J]. 新疆石油地质, 2002, 23 (3): 233- 235.
doi: 10.3969/j.issn.1001-3873.2002.03.017 |
Wang Zhengde , Zhang Maolin , Mei Haiyan , et al. The physical chemistry explanation of the capillary condensation and the circuit of adsorption-desorption[J]. Xinjiang Petroleum Geology, 2002, 23 (3): 233- 235.
doi: 10.3969/j.issn.1001-3873.2002.03.017 |
|
48 |
Hueckel T . Reactive plasticity for clays during dehydration and rehydration.Part 1: concepts and options[J]. International Journal of Plasticity, 2002, 18 (3): 281- 312.
doi: 10.1016/S0749-6419(00)00099-1 |
49 | Saffron C M , Park J H , Dale B E , et al. Kinetics of contaminant desorption from soil: comparison of model formulations using the Akaike information criterion[J]. Environmental science & technology, 2006, 40 (24): 7662- 7667. |
50 |
Hurvich C M , Tsai C L . Regression and time series model selection in small samples[J]. Biometrika, 1989, 76 (2): 297- 307.
doi: 10.1093/biomet/76.2.297 |
51 |
Wan K , He Q , Miao Z , et al. Water desorption isotherms and net isosteric heat of desorption on lignite[J]. Fuel, 2016, 171, 101- 107.
doi: 10.1016/j.fuel.2015.12.054 |
[1] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[2] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[3] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[4] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[5] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[6] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[7] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[8] | 刘成林, 丁振刚, 陈践发, 范立勇, 康锐, 王海东, 洪思婕, 田安琦, 陈学勇. 鄂尔多斯盆地氦源岩特征及生氦潜力[J]. 石油与天然气地质, 2023, 44(6): 1546-1554. |
[9] | 李勇, 朱治同, 吴鹏, 申陈州, 高计县. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
[10] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[11] | 梁岳立, 赵晓明, 张喜, 李树新, 葛家旺, 聂志宏, 张廷山, 祝海华. 轨道周期约束下海-陆过渡相页岩层系高精度层序界面识别及其地质意义[J]. 石油与天然气地质, 2023, 44(5): 1231-1242. |
[12] | 李涵, 付金华, 季汉成, 张雷, 佘钰蔚, 官伟, 井向辉, 王红伟, 曹茜, 刘刚, 魏嘉怡. 鄂尔多斯盆地西南部上古生界风化壳型铝土岩系发育过程及优势储层分布规律[J]. 石油与天然气地质, 2023, 44(5): 1243-1255. |
[13] | 李晓, 郭鹏, 胡彦智, 李士祥, 杨伟伟. 陆相页岩压裂试验与数值模拟[J]. 石油与天然气地质, 2023, 44(4): 1009-1019. |
[14] | 白斌, 戴朝成, 侯秀林, 杨亮, 王瑞, 王岚, 孟思炜, 董若婧, 刘羽汐. 松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价[J]. 石油与天然气地质, 2023, 44(4): 846-856. |
[15] | 高嘉洪, 金之钧, 梁新平, 李士祥, 杨伟伟, 朱如凯, 杜晓宇, 刘全有, 李彤, 董琳, 李鹏, 张旺. 火山活动对鄂尔多斯盆地三叠系长7段淡水湖盆富营养化与沉积水体介质环境的影响[J]. 石油与天然气地质, 2023, 44(4): 887-898. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||