石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (1): 173-185.doi: 10.11743/ogg20210115

• 油气地质 • 上一篇    下一篇

富有机质页岩-水蒸气吸附热力学与动力学特性——以鄂尔多斯盆地二叠系山西组页岩为例

党伟1,2,3(), 张金川4, 王凤琴1,2, 李沛4, 单长安1,2, 王睿婧1   

  1. 1. 西安石油大学 地球科学与工程学院, 陕西 西安 710065
    2. 全国石油和化工行业致密油气地质学重点实验室, 陕西 西安 710065
    3. 中国地质大学(武汉) 构造与油气资源教育部重点实验室, 湖北 武汉 430074
    4. 中国地质大学(北京) 能源学院, 北京 100083
  • 收稿日期:2020-06-07 出版日期:2021-02-28 发布日期:2021-02-07
  • 作者简介:党伟(1990-), 男, 博士, 副教授, 非常规油气地质勘探与评价。E-mail: dangw@xsyu.edu.cn
  • 基金资助:
    陕西省自然科学基础研究计划项目(2019JQ-367);构造与油气资源教育部重点实验室开放研究基金项目(TPR-2019-01)

Thermodynamics and kinetics of water vapor adsorption onto shale: A case study of the Permian Shanxi Formation, Ordos Basin

Wei Dang1,2,3(), Jinchuan Zhang4, Fengqin Wang1,2, Pei Li4, Chang'an Shan1,2, Ruijing Wang1   

  1. 1. School of Earth Sciences and Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
    2. Key Laboratory of Tight Oil and Gas Geology of National Petroleum and Chemical Industry, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
    3. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan, Hubei 430074, China
    4. School of Energy Resources, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2020-06-07 Online:2021-02-28 Published:2021-02-07

摘要:

吸附是页岩储层原生水赋存、外来水滞留的关键机理之一,而明确水在富有机质页岩中的吸附特性则对于进一步探讨页岩储层微观气水分布、深化页岩气富集成藏机理以及提高页岩气采收率等地质和工程问题具有重要的理论和实践意义。采用实验测试(页岩-水蒸气等温吸附)和理论模型(7种吸附热力学模型和4种吸附动力学模型)相结合的研究方法,对页岩-水蒸气吸附特性展开基础理论研究。结果表明:页岩-水蒸气吸/脱附等温线为典型的Ⅱ型曲线且吸/脱附滞后环一直延伸至极低相对压力区,而这与粘土矿物层间水难以脱出有关;GAB与Dent模型是描述页岩-水蒸气等温吸附曲线的最佳模型,反映水分子从单分子层吸附到多分子层吸附再到毛细凝聚的物理过程且存在两级吸附点位。当p/p0 < 0.1,水分子主要吸附在基质孔隙表面的一级吸附点位上,形成单分子层吸附。随着相对压力继续增加(0.1 < p/p0 < 0.8),一级吸附点位开始逐渐吸附饱和,而水分子在二级吸附点位上的吸附量开始迅速增加,形成多分子层吸附。当p/p0>0.8,一级吸附点位已基本达到饱和,而二级吸附点位对水分子吸附的贡献则继续增加,出现毛细凝聚现象;此外,页岩-水蒸气吸附的吉布斯自由能变、焓变以及熵变均为负值,表明吸附是一个自发、放热、熵减的过程;双一阶动力学模型是描述页岩-水蒸气吸附动力学过程的最佳理论模型,表明页岩-水蒸气吸附过程可划分为初期外扩散主导的表面吸附和后期内扩散所主导的孔隙吸附,并且内扩散是控制水蒸气吸附的速率控制步骤。

关键词: 吸热热力学, 吸附动力学, 吸附机理, 水蒸气吸附, 富有机质页岩, 山西组, 二叠系, 鄂尔多斯盆地

Abstract:

Adsorption is one of the key mechanisms for the occurrence of connate water and formation water in shale reservoirs. A characterization of water adsorption onto organic-rich shale is of great theoretical and practical significance to tackling such geological and engineering issues as the micro-distribution of water and gas, the mechanisms of shale gas enrichment and the improvement of shale gas recovery. Shale-water vapor isothermal adsorption experiments were therefore combined with some theoretical adsorption models (7 thermodynamic models and 4 kinetics models) to study the fundamental principles of water vapor adsorption on shale. Results indicate that the adsorption/desorption isotherms are showing the typical TypeⅡcurves with hysteresis loops extending to very low relative pressure region, which may be explained by the fact of reluctant dehydration of clay minerals. Two of the models, GAB and Dent, are proven to be the most fitting to the shale-water vapor isotherm curves and reveal a two-stage water molecule adsorption on shale from forming monolayers to multilayers and capillary condensation. With p/p0 less than 0.1, water molecules are mainly adsorbed as monolayer on one site of shale. With p/p0 between 0.1 and 0.8, the site is gradually saturating and more layers start to build upon the first layer, thus forming a secondary adsorption site. With p/p0 greater than 0.8, the first site is almost fully saturated and the adsorption on the secondary site continues in such a rate that capillary condensation of water occurs. Moreover, the negative values of Gibbs free energy change, enthalpy change and entropy change of the adsorption, indicate a spontaneous, exothermic and entropy-reduction process. Thus the double first-order rate model is the most suitable for describing the adsorption process of water vapor on shale. It reveals that the adsorption process can be divided into a surface adsorption dominated by an earlier external diffusion and a pore adsorption dominated by a later internal diffusion, and that the internal diffusion serves to control the adsorption rate of water vapor onto shale.

Key words: thermodynamics, adsorption kinetics, adsorption mechanism, water vapor adsorption, organic-rich shale, Shanxi Formation, Permian, Ordos Basin

中图分类号: