石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (1): 186-200, 240.doi: 10.11743/ogg20210116
朱洪建1,2,3(), 琚宜文1,2, 孙岩4,5, 黄骋1,2, 冯宏业1,2, AliRaza1,2, 余坤1,2, 乔鹏1,2, 肖蕾1,2
收稿日期:
2020-09-09
出版日期:
2021-02-28
发布日期:
2021-02-07
第一作者简介:
朱洪建(1991-), 男, 博士、讲师, 非常规油气地质。E-mail: 基金项目:
Hongjian Zhu1,2,3(), Yiwen Ju1,2, Yan Sun4,5, Cheng Huang1,2, Hongye Feng1,2, Raza Ali1,2, Kun Yu1,2, Peng Qiao1,2, Lei Xiao1,2
Received:
2020-09-09
Online:
2021-02-28
Published:
2021-02-07
摘要:
构造应力能够使页岩发生变形或破坏,从而不同程度地影响页岩的宏微观结构。采用川东南下志留统龙马溪组和川东北下寒武统鲁家坪组海相页岩样品,运用聚焦离子束扫描电镜(FIB-SEM)、气体吸附和压汞法等手段,分析了构造类型和变形机制对页岩孔裂隙结构的改造和控制作用。结果表明:单斜岩层页岩中以有机质孔隙结构为主,而褶皱或断层等强烈构造部位页岩矿物粒间孔、溶蚀孔和裂隙结构占主导;相对于单斜岩层页岩,褶皱部位页岩的微孔略占优势,而断层部位页岩的大孔占绝对优势;不同构造类型页岩孔裂隙结构特征的差异与局部构造应力分布的不均一性相关;脆性变形页岩以发育微米级孔隙和裂隙结构为主,有利于页岩气的运移和聚集;韧性变形页岩以发育纳米级孔隙结构为主,有利于页岩气的吸附和赋存;总孔体积随脆性变形作用的增强而增加,随韧性变形作用的增强而减少;孔隙总比表面积与脆性变形作用的相关性不明显,而随韧性变形作用的增强而增加。在此基础上,探讨了构造变形过程中页岩孔裂隙结构的控制因素和演化模式,认为构造应力对页岩孔裂隙结构的影响首先体现在对页岩组分的改造,进而控制孔裂隙结构的演化,最终制约着页岩气的微观赋存和运移。
中图分类号:
表1
不同变形机制页岩孔体积和孔隙比表面积统计"
样品类型 | 样品编号 | 孔隙体积/(mL·g-1) | 孔隙比表面积/(m2·g-1) | ||||||
占比/% | 占比/% | ||||||||
微孔 | 中孔 | 大孔 | 总和 | 微孔 | 中孔 | 总和 | |||
脆性变形序列 | B1 | 0.004 3 | 0.008 0 | 0.023 0 | 0.035 3 | 13.554 0 | 0.975 0 | 14.529 0 | |
12 | 23 | 65 | 93.3 | 6.7 | |||||
B2 | 0.006 1 | 0.005 8 | 0.018 0 | 0.029 9 | 19.107 0 | 1.023 0 | 20.130 0 | ||
20 | 19 | 61 | 95.0 | 5.0 | |||||
B3 | 0.003 7 | 0.004 6 | 0.023 0 | 0.031 3 | 10.664 0 | 0.670 0 | 11.334 0 | ||
12 | 15 | 73 | 94.1 | 5.9 | |||||
B4 | 0.000 5 | 0.000 6 | 0.044 0 | 0.045 1 | 14.332 0 | 0.067 0 | 14.399 0 | ||
1 | 1 | 98 | 99.5 | 0.5 | |||||
B5 | 0.003 4 | 0.000 5 | 0.040 0 | 0.043 9 | 11.323 0 | 0.051 0 | 11.374 0 | ||
8 | 1 | 91 | 99.6 | 0.4 | |||||
韧性变形序列 | D1 | 0.004 4 | 0.001 5 | 0.075 0 | 0.080 9 | 16.253 0 | 0.167 0 | 16.420 0 | |
5 | 2 | 93 | 99.0 | 1.0 | |||||
D2 | 0.005 1 | 0.002 1 | 0.044 0 | 0.051 2 | 14.933 0 | 0.224 0 | 15.157 0 | ||
10 | 4 | 86 | 98.5 | 1.5 | |||||
D3 | 0.006 9 | 0.001 7 | 0.007 0 | 0.015 6 | 22.816 0 | 0.185 0 | 23.001 0 | ||
44 | 11 | 45 | 99.2 | 0.8 | |||||
D4 | 0.006 4 | 0.001 2 | 0.043 0 | 0.050 6 | 21.393 0 | 0.133 0 | 21.526 0 | ||
13 | 2 | 85 | 99.4 | 0.6 | |||||
D5 | 0.007 2 | 0.001 3 | 0.031 0 | 0.039 5 | 25.078 0 | 0.146 0 | 25.224 0 | ||
18 | 3 | 79 | 99.4 | 0.6 |
1 | 郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016, 43 (3): 317- 326. |
Guo Tonglou . Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43 (3): 317- 326. | |
2 | 郭旭升. 南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88 (7): 1209- 1218. |
Guo Xusheng . Rules of two-factor enrichiment for marine shale gas in southern China——Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88 (7): 1209- 1218. | |
3 | 郭旭升, 胡东风, 魏祥峰, 等. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J]. 石油与天然气地质, 2016, 37 (6): 799- 808. |
Guo Xusheng , Hu Dongfeng , Wei Xiangfeng , et al. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37 (6): 799- 808. | |
4 |
Loucks R G , Reed R M , Ruppel S C , et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79 (12): 848- 61.
doi: 10.2110/jsr.2009.092 |
5 |
Loucks R G , Reed R M , Ruppel S , et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96 (6): 1071- 98.
doi: 10.1306/08171111061 |
6 |
Slatt R , O'Brien N . Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95 (12): 2017- 2130.
doi: 10.1306/03301110145 |
7 |
Ma Y , Zhong N N , Li D H , et al. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north-eastern part of the upper Yangtze area, China: A possible microscopic mechanism for gas preservation[J]. International Journal of Coal Geology, 2015, 137, 38- 54.
doi: 10.1016/j.coal.2014.11.001 |
8 |
Liang M L , Wang Z X , Gao L , et al. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel, 2017, 197, 310- 319.
doi: 10.1016/j.fuel.2017.02.035 |
9 |
Zhu H J , Ju Y W , Qi Y , et al. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel, 2018, 228, 272- 289.
doi: 10.1016/j.fuel.2018.04.137 |
10 |
Zhu H J , Ju Y W , Huang C , et al. Pore structure variations across structural deformation of Silurian Longmaxi Shale: An example from the Chuandong Thrust-Fold Belt[J]. Fuel, 2019, 241, 914- 932.
doi: 10.1016/j.fuel.2018.12.108 |
11 | 徐政语, 姚根顺, 梁兴, 等. 扬子陆块下古生界页岩气保存条件分析[J]. 石油实验地质, 2015, 37 (4): 407- 417. |
Xu Zhengyu , Yao Genshun , Liang Xing , et al. Shale gas preservation conditions in the Lower Paleozoic, Yangtze block[J]. Petroleum geology & experiment, 2015, 37 (4): 407- 417. | |
12 | 董大忠, 程克明, 王玉满, 等. 中国上扬子区下古生界页岩气形成条件及特征[J]. 石油与天然气地质, 2010, 31 (3): 288- 299. |
Dong Dazhong , Cheng Keming , Wang Yuman , et al. Forming conditions and characteristics of shale gas in the Lower Paleozoic of the Upper Yangtze region, China[J]. Oil & Gas Geology, 2010, 31 (3): 288- 299. | |
13 | 高波, 刘忠宝, 舒志国, 等. 中上扬子地区下寒武统页岩气储层特征及勘探方向[J]. 石油与天然气地质, 2020, 41 (2): 284- 294. |
Gao Bo , Liu Zhongbao , Shu Zhiguo , et al. Reservoir characteristics and exploration of the Lower Cambrian shale gas in the Middle-Upper Yangtze area[J]. Oil & Gas Geology, 2020, 41 (2): 284- 294. | |
14 | 肖佃师, 赵仁文, 杨潇, 等. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 2019, 40 (6): 1215- 1225. |
Xiao Dianshi , Zhao Renwen , Yang Xiao , et al. Characterization, classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology, 2019, 40 (6): 1215- 1225. | |
15 |
Guo T L . Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43 (3): 349- 359.
doi: 10.1016/S1876-3804(16)30042-8 |
16 |
何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46 (3): 589- 606.
doi: 10.3969/j.issn.0563-5020.2011.03.001 |
He Dengfa , Li Desheng , Zhang Guowei , et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese journal of geology, 2011, 46 (3): 589- 606.
doi: 10.3969/j.issn.0563-5020.2011.03.001 |
|
17 | 徐政语, 梁兴, 王维旭, 等. 上扬子区页岩气甜点分布控制因素探讨——以上奥陶统五峰组-下志留统龙马溪组为例[J]. 天然气工业, 2016, 36 (9): 35- 43. |
Xu Zhengyu , Liang Xing , Wang Weixu , et al. Controlling factors for shale gas sweet spots distribution in the Upper Yangtze region: A case study of the Upper Ordovician Wufeng Fm-Lower Silurian Longmaxi Fm, Sichuan Basin[J]. Nature gas industry, 2016, 36 (9): 35- 43. | |
18 | 聂海宽, 张柏桥, 刘光祥, 等. 四川盆地五峰组-龙马溪组页岩气高产地质原因及启示——以涪陵页岩气田JY6-2HF为例[J]. 石油与天然气地质, 2020, 41 (1): 1- 11. |
Nie Haikuan , Zhang Baiqiao , Liu Guangxiang , et al. Geological factors contributing to high shale gas yield in the Wufeng-Longmaxi Fms of Sichuan Basin: A case study of Well JY6-2HF in Fuling shale gas field[J]. Oil & Gas Geology, 2020, 41 (1): 1- 11. | |
19 | 李智武. 中-新生代大巴山前陆盆地-冲断带的形成演化[D]. 成都: 成都理工大学, 2006. |
Li Zhiwu. Meso-Cenozoic evolution of Dabashan of reland basin-thrust belt, central China[D]. Chengdu: Chengdu University of Technology, 2006. | |
20 |
琚宜文, 姜波, 侯泉林, 等. 构造煤结构-成因新分类及其地质意义[J]. 煤炭学报, 2004, 29 (5): 513- 517.
doi: 10.3321/j.issn:0253-9993.2004.05.001 |
Ju Yiwen , Jiang Bo , Hou Quanlin , et al. The new structure-genetic classification system in tectonically deformed coals and its geological significance[J]. Journal of china coal society, 2004, 29 (5): 513- 517.
doi: 10.3321/j.issn:0253-9993.2004.05.001 |
|
21 | 琚宜文, 姜波, 侯泉林, 等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报, 2005, 79 (2): 269- 285. |
Ju Yiwen , Jiang Bo , Hou Quanlin , et al. Structural evolution of nano-scale pores of tectonic coals in southern north China and its mechanism[J]. Acta Geologica Sinica, 2005, 79 (2): 269- 285. | |
22 |
琚宜文, 姜波, 王桂梁, 等. 层滑构造煤岩体微观特征及其应力应变分析[J]. 地质科学, 2004, 39 (1): 50- 62.
doi: 10.3321/j.issn:0563-5020.2004.01.006 |
Ju Yiwen , Jiang Bo , Wang Guiliang , et al. Characteristics of microcosm of interlayer-gliding tectonic coal-tectonite and their stress-finite strain analyses[J]. Chinese Journal of Geology, 2004, 39 (1): 50- 62.
doi: 10.3321/j.issn:0563-5020.2004.01.006 |
|
23 |
韩军, 张宏伟, 霍丙杰. 向斜构造煤与瓦斯突出机理探讨[J]. 煤炭学报, 2008, 33 (8): 908- 913.
doi: 10.3321/j.issn:0253-9993.2008.08.014 |
Han Jun , Zhang Hongwei , Huo Bingjie . Discussion of coal and gas outburst mechanism of syncline[J]. Journal of china coal society, 2008, 33 (8): 908- 913.
doi: 10.3321/j.issn:0253-9993.2008.08.014 |
|
24 | 曾联波. 低渗透砂岩油气储层裂缝及其渗流特征[J]. 地质科学, 2004, 39 (1): 11- 17. |
Zeng Lianbo . Fissure and its seepage characteristics in low-permeable sandstone reservoir[J]. Chinese Journal Geology, 2004, 39 (1): 11- 17. | |
25 |
Zhu H J , Ju Y W , Huang C , et al. Petrophysical properties of the major marine shales in the Upper Yangtze Block, South China: A function of structural deformation[J]. Marine and Petroleum Geology, 2019, 110, 768- 786.
doi: 10.1016/j.marpetgeo.2019.08.003 |
26 |
苏现波, 谢洪波, 华四良. 煤体脆-韧性变形微观识别标志[J]. 煤田地质与勘探, 2003, 31 (6): 18- 21.
doi: 10.3969/j.issn.1001-1986.2003.06.006 |
Su Xianbo , Xie Hongbo , Hua Siliang . The microscopic identification of coal brittle-ductile deformation[J]. Coal Geology & Exploration, 2003, 31 (6): 18- 21.
doi: 10.3969/j.issn.1001-1986.2003.06.006 |
|
27 | 袁玉松, 刘俊新, 周雁. 泥页岩脆-延转化带及其在页岩气勘探中的意义[J]. 石油与天然气地质, 2018, 39 (5): 899- 906. |
Yuan Yusong , Liu Junxin , Zhou Yan . Brittle-ductile transition zone of shale and its implications in shale gas exploration[J]. Oil & Gas Geology, 2018, 39 (5): 899- 906. | |
28 | 郑益军. 四川盆地东南缘五峰-龙马溪组页岩地球化学、物性特征及其影响因素[D]. 广州: 中国科学院广州地球化学研究所, 2017. |
Zheng Yijun. Geochemical, petrophysical properties and its effecting factors of the Wufeng-Longmaxi Shale in southeastern margins of the Sichuan Basin[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2017. | |
29 | 张灿. 构造挤压对页岩孔隙影响的地质实例与模拟实验研究[D]. 广州: 中国科学院广州地球化学研究所, 2019. |
Zhang Can. Influence of tectonic compression on shale pore structure development: A case study and simulation experiments[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2019. | |
30 | 郭旭升, 李宇平, 刘若冰, 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业, 2014, 34 (6): 9- 16. |
Guo Xusheng , Li Yuping , Liu Ruobing , et al. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jioashiba area, Sichuan Basin[J]. Nature Gas Industry, 2014, 34 (6): 9- 16. | |
31 | 郭彤楼, 刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013, 24 (4): 643- 651. |
Guo Tonglou , Liu Ruobing . Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: Taking Longmaxi Formation in well JY1 as an example[J]. Natural Gas Geoscience, 2013, 24 (4): 643- 651. | |
32 | 何登发, 鲁人齐, 黄涵宇, 等. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发, 2019, 46 (5): 993- 1006. |
He Dengfa , Lu Renqi , Huang Hanyu , et al. Tectonic and geological background of the earthquake hazards in Changning shale gas develo-pment zone, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46 (5): 993- 1006. | |
33 | 王玉满, 黄金亮, 王淑芳, 等. 四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J]. 天然气地球科学, 2016, 27 (3): 423- 432. |
Wang Yuman , Huang Jinliang , Wang Shufang , et al. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27 (3): 423- 432. | |
34 | Zhu H J , Ju Y W , Huang C , et al. Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale[J]. Energy, 2020, 197, 117256. |
35 | Ju Y W , Wang G C , Bu H L , et al. China organic-rich shale geologic features and special shale gas production issues[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6, 196- 207. |
36 | 琚宜文, 黄骋, 孙岩, 等. 纳米地球科学: 内涵与意义[J]. 地球科学, 2018, 43 (5): 1367- 1383. |
Ju Yiwen , Huang Cheng , Sun Yan , et al. Nanogeoscience: Connotation and significance[J]. Earth Science, 2018, 43 (5): 1367- 1383. | |
37 | 岳锋, 李永臣, 赵宝山, 等. 重庆下古生界页岩顺层滑脱变形域的形成及其地质意义[J]. 石油与天然气地质, 2018, 39 (2): 229- 238. |
Yue Feng , Li Yongchen , Zhao Baoshan , et al. Bedding decollement deformation domain in the Lower Paleozoic shales in Chongqing: Formation and geological significance[J]. Oil & Gas Geology, 2018, 39 (2): 229- 238. | |
38 | Ju Y W , Huang C , Sun Y , et al. Nanogeosciences: Research history, current status, and development trends[J]. Journal of Nanoscience and Nanotechnology, 2017, 17 (9): 5930- 5965. |
39 | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49 (1): 16- 38. |
Nie Haikuan , He Zhiliang , Liu Guangxiang , et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49 (1): 16- 38. | |
40 | 聂海宽, 何治亮, 刘光祥, 等. 四川盆地五峰组-龙马溪组页岩气优质储层成因机制[J]. 天然气工业, 2020, 40 (6): 31- 41. |
Nie Haikuan , He Zhiliang , Liu Guangxiang , et al. Genetic mechanism of high-quality shale gas reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40 (6): 31- 41. |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[3] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[4] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[5] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[6] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[7] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[8] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[9] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[10] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[11] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[12] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[13] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[14] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
[15] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||