石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (6): 1440-1450.doi: 10.11743/ogg20210618
孙辉(), 范国章, 邵大力, 左国平, 刘少治, 王红平, 马宏霞, 许小勇, 鲁银涛, 闫春
收稿日期:
2021-04-16
出版日期:
2021-12-28
发布日期:
2021-12-16
第一作者简介:
孙辉(1969-), 女, 高级工程师, 地震深水沉积及储层。E-mail: 基金项目:
Hui Sun(), Guozhang Fan, Dali Shao, Guoping Zuo, Shaozhi Liu, Hongping Wang, Hongxia Ma, Xiaoyong Xu, Yintao Lu, Chun Yan
Received:
2021-04-16
Online:
2021-12-28
Published:
2021-12-16
摘要:
东非鲁武马盆地始新统水道砂岩储层为深水沉积环境下的重力流沉积,水道复合体具有单侧迁移、多级别侵蚀充填的特征。应用岩心观察、测井分析和三维地震属性分析等方法和技术研究水道复合体,厘清了水道复合体的沉积相与级别之间的关系,将始新统局部限制型水道复合体细分为3个亚相、3个级别和4个沉积期次,描述了4期复合水道的演化过程,分析了水道复合体的沉积单元类型、沉积期次以及距水道口距离对储集层性质的影响。鲁武马盆地始新统水道复合体由复合底层、主要限制水道充填和溢岸楔3种沉积亚相组成。水道充填沉积可以细分为水道复合体、复合水道以及水道3个级别。受底流作用影响,复合水道内部以及由早向晚演化的不同期次的复合水道间均呈现由北向南侧向迁移的特征,储集层类型以连片发育的叠置水道为主。始新统局限型水道复合体的储层性质与沉积期次、沉积单元类型和距水道口距离密切相关。砂岩储层主要发育于叠置水道和弯曲水道沉积内,叠置水道是最有利的储层类型。水道沉积越早、单砂层越厚,沉积越晚、物性越好,距水道口越近、储层厚度越大、孔隙度越低。泥质含量及渗透率随延伸距离变化关系比较复杂。研究成果不仅可以深化深水水道复合体沉积储层研究,而且适用于开发前期地质模型构建。
中图分类号:
1 |
Gervais A , Savoye B , Mulder T , et al. Sandy modern turbidite lobes: A new insight from high resolution seismic data[J]. Marine and Petroleum Geology, 2006, 23 (4): 485- 502.
doi: 10.1016/j.marpetgeo.2005.10.006 |
2 | 吴时国, 秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报, 2009, 27 (5): 922- 930. |
Wu Shiguo , Qin Yunshan . The research of deepwater depositional system in the northern South China Sea[J]. Acta Sedimentologica Sinica, 2009, 27 (5): 922- 930. | |
3 | 孙辉, 范国章, 吕福亮, 等. 孟加拉湾缅甸若开盆地上新统斜坡水道复合体沉积特征[J]. 沉积学报, 2011, 21 (9): 695- 703. |
Sun Hui , Fang Guozhang , Lyu Fuliang , et al. Sedimentary characteristics of Pliocene slope channel complexes in the Rakhine basin, offshore Myanmar[J]. Acta Sedimentologica Sinica, 2011, 21 (9): 695- 703. | |
4 |
Cronin B T , GÜrbÜzK , Hurst A , et al. Vertical and lateral organization of a carbonate deep-water slope marginal to a submarine fan system, Miocene, southern Turkey[J]. Sedimentology, 2000, 47 (4): 801- 824.
doi: 10.1046/j.1365-3091.2000.00317.x |
5 | 李胜利, 于兴河, 刘玉梅, 等. 水道加朵体型深水扇形成机制与模式: 以白云凹陷荔湾3-1地区珠江组为例[J]. 地学前缘, 2012, 19 (2): 32- 40. |
Li Shengli , Yu Xinghe , Liu Yumei , et al. Formation mechanism and pattern of deep-water fan with channel and lobe: A case study of the Zhajiang Formation in Liwan3-1 area, Baiyun Depression[J]. Earth Science Frontiers, 2012, 19 (2): 32- 40. | |
6 | 刘曾勤, 王英民, 吕睿, 等. 孟加拉扇上扇某区块深水沉积体的物征及演化模式[J]. 沉积学报, 2012, 30 (1): 84- 91. |
Liu Zengqin , Wang Yingmin , Lyu Rui , et al. The architecture and evolution of deepwater sedimentary elements in one study area within Upper Bengal Fan[J]. Acta Sedimentologica Sinica, 2012, 30 (1): 84- 91. | |
7 |
Deptuck M E , Sylvester Z , Pirmez C , et al. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope[J]. Marin and Petroleum Geology, 2007, 24 (6-9): 406- 433.
doi: 10.1016/j.marpetgeo.2007.01.005 |
8 |
McHargue T , Pyrcz M J , Sullivan M D , et al. Architecture of turbidite channel systems on the continental slope: Patterns and predictions[J]. Marine and Petroleum Geology, 2011, 28 (3): 728- 743.
doi: 10.1016/j.marpetgeo.2010.07.008 |
9 | 孙辉, 吕福亮, 范国章, 等. 三级层序内受底流影响的富砂深水沉积演化规律——以东非鲁武马盆地中中新统为例[J]. 天然气地球科学, 2017, 28 (1): 106- 115. |
Sun Hui , Lyu Fuliang , Fan Guo zhang , et al. Evolution of deepwater sand-rich sediments affected by bottom currents in the 3rd order sequences: A case study of Middle Miocene in the Ruvuma Basin[J]. Natural Gas Geoscience, 2017, 28 (1): 106- 115. | |
10 |
孙辉, 刘少治, 范国章, 等. 深水复合水道体系沉积特征及时空演化规律——以东非鲁武马盆地中中新统为例[J]. 海洋学报, 2019, 41 (1): 87- 97.
doi: 10.3969/j.issn.0253-4193.2019.01.009 |
Sun Hui , Liu Shaozhi , Fan Guozhang , et al. Depositional characteristics and temporal and spatial evolution of deepwater channel complex systems: A case study of Middle Miocene in the Rovuma Basin, East Africa[J]. Haiyang Xuebao, 2019, 41 (1): 87- 97.
doi: 10.3969/j.issn.0253-4193.2019.01.009 |
|
11 |
Deptuck M E , Steffens G S , Barton M , et al. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea[J]. Marine and Petroleum Geology, 2003, 20 (6-8): 649- 676.
doi: 10.1016/j.marpetgeo.2003.01.004 |
12 |
Mayall M , Jones E , Casey M . Turbidite channel reservoirs-Key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23 (8): 821- 841.
doi: 10.1016/j.marpetgeo.2006.08.001 |
13 | 陈亮, 庞雄, 刘军, 等. 珠江口盆地白云凹陷深水重力流优质砂岩储集层特征及识别方法[J]. 石油勘探与开发, 2015, 42 (4): 463- 471. |
Chen Liang , Pang Xiong , Liu Jun , et al. Characteristics and identification of high quality deep-water gravity flow sandstone reservoirs in Baiyun sag, Pearl River Mouth Basin, South China Sea[J]. Petroleum exploration and development, 2015, 42 (4): 463- 471. | |
14 | HIS Energy. Basin monitors: Ruvuma basin[DB/CD]. Houston: IHS Inc, 2019. |
15 |
Janssen M E , Stephenson R A , Cloetingh S . Temporal and spatial correlation between changes in plate motion and the evolution of rifted basins in Africa[J]. GSA Bulletin, 1995, 107 (11): 1317- 1332.
doi: 10.1130/0016-7606(1995)107<1317:TASCBC>2.3.CO;2 |
16 | Mahanjane E S , Franke D . The Rovuma Delta deep-water fold-and-thrust belt, offshore Mozambique[J]. Tectonophysics, 2014, 614 (3): 91- 99. |
17 |
Hancox P J , Brandt D , Edwards H . Sequence stratigraphic analysis of the Early Cretaceous Maconde Formation (Rovuma basin), northern Mozambique[J]. Journal of African Earth Sciences, 2002, 34 (3-4): 291- 297.
doi: 10.1016/S0899-5362(02)00028-3 |
18 | 孙辉, 刘少治, 吕福亮, 等. 东非鲁武马盆地渐新统深水沉积层序地层格架组成和时空分布[J]. 石油与天然气地质, 2019, 40 (1): 170- 181. |
Sun Hui , Liu Shaozhi , Lyu Fuliang , et al. Stratigraphic framework and temporal-spatial distribution of Oligocene deepwater sedimentary sequence in Ruvuma Basin, East Africa[J]. Oil and gas geology, 2019, 40 (1): 170- 181. | |
19 | Salazar M U , Baker D , Francis M , et al. Frontier exploration offshore the Zambezi delta, Mozambique[J]. EAGE, 2013, 31 (1): 135- 144. |
20 | 周总瑛, 陶冶, 李淑筠, 等. 非洲东海岸重点盆地油气资源潜力[J]. 石油勘探与开发, 2013, 40 (5): 543- 551. |
Zhou Zongying , Tao Ye , Li Shujun , et al. Hydrocarbon potential in the key basins in the East Coast of Africa[J]. Petroleum Exploration and Development, 2013, 40 (5): 543- 551. | |
21 | Crane W H , Lowe D R . Architecture and evolution of the Paine channel complex, Cerro Toro Formation (Upper Cretaceous), Silla Syncline, Magallanes Basin, Chile[J]. Sedimentology, 2008, 55 (4): 979- 1009. |
22 | HIS Energy. Basin monitors: Ruvuma basin[DB/CD]. Houston: IHS Inc, 2009. |
23 |
Bosellini A . East Africa continental margins[J]. Geology, 1986, 14 (1): 76- 78.
doi: 10.1130/0091-7613(1986)14<76:EACM>2.0.CO;2 |
24 | 温志新, 王兆明, 宋成鹏, 等. 东非被动大陆边缘盆地结构构造差异与油气勘探[J]. 石油勘探与开发, 2015, 42 (5): 671- 680. |
Wen Zhixin , Wang Zhaoming , Song Chengpeng , et al. Structural architecture difference and petroleum exploration of passive continental margin basins in east Africa[J]. Petroleum Exploration and Development, 2015, 42 (5): 671- 680. | |
25 |
Salman G , Abdula I . Development of the Mozambique and Ruvuma sedimentary basins, offshore Mozambique[J]. Sedimentary Geology, 1995, 96 (1-2): 7- 41.
doi: 10.1016/0037-0738(95)00125-R |
26 |
Fonnesu M , Palermo D , Galbiati M , et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique[J]. Marine and Petroleum Geology, 2020, 111, 179- 201.
doi: 10.1016/j.marpetgeo.2019.07.047 |
27 | SpragueA R G, SullivanM D, Campion KM, et al. The physical stratigraphy of deep-water strata: A hierarchical approach to the analysis of genetically related stratigraphic elements for improved reservoir prediction[C]. AAPG Annual Meeting. Houston, TX: AAPG, 2002, 10-13. |
28 | Mayall M, Stewart I. The architecture of turbidite slope channels. In Weimer P, Slatt R M, Coleman J L, Rosen N, Nelson C H, Bouma A H, Styzen M, Lawrence D T, eds. [C], Deep-water Reservoirs of the World: Gulf Coast Section SEPM Foundation 20th Annual Bob F Perkins Research Conference. Tulsa, OK, 2000, 578-586. |
29 |
Alpak F O , Barton M D , Naruk S J . The impact of fine-scale turbidite channel architecture on deep-water reservoir performance[J]. AAPG Bulletin, 2013, 97 (2): 251- 284.
doi: 10.1306/04021211067 |
30 |
Pyles D R , Jennette D C , Tomasso M , et al. Concepts learned from a 3-D outcrop of a sinuous slope-channel complex: Beacon Channel complex, Brushy Canyon Formation, West Texas, U.S.A[J]. Journal of Sedimentary Research, 2010, 80 (1): 67- 96.
doi: 10.2110/jsr.2010.009 |
31 | Rossen C, Beaubouef R T. Slope-channel complexes at Guadalupe Canyon, upper Brushy Canyon Formation, Texas, U.S. A[M]. In Nilsen T H, Shew R D, Steffens G S, Studlick J R J, eds. Atlas of deep-water outcrops: AAPG Studies in Geology, 2007, 56: 429-431. |
32 | Chapin M, Keller F. Channel-fill sandstones at San Clemente State Beach, California, U.S. A[M]. In Nilsen T H, Shew R D, Steffens G S, Studlick J R J, eds. Atlas of deep-water outcrops: AAPG Studies in Geology, 2007, 56, 401-405. |
33 | Barton M, Byrne C O, Pirmez C, et al. Turbidite channel architecture: Recognizing and quantifying the distribution of channel-base drapes using core and dipmeter data[M]. In Poppelreiter M, García-Carballido C, Kraaijveld M A, eds. Dipmeter and borehole image-log technology: AAPG Memoir, 2010, 92: 195-211. |
34 | Lowe D R . Sediment-gravity flows, Ⅱ: Depostional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Petrology, 1982, 52 (1): 279- 297. |
35 |
Baas J H . Conditions for formation of massive turbiditic sandstones by primary depositional processes[J]. Sedimentary Geo⁃logy, 2004, 166 (3-4): 293- 310.
doi: 10.1016/j.sedgeo.2004.01.011 |
36 | 王龙樟, 姚永坚, 林卫兵, 等. 南海南部沉积物波: 软变形及其触发机制[J]. 地球科学, 2018, 43 (10): 3462- 3470. |
Wang Longzhang , Yao Yongjian , Lin Weibing , et al. Sedimentwaves in the south of South China Sea: Soft sediment deformation and its triggering mechanism[J]. Earth Science, 2018, 43 (10): 3462- 3470. | |
37 | 杨勤林, 张静, 郝涛, 等. 滨里海盆地盐下碳酸盐岩储层地震逐级预测方法[J]. 天然气地球科学, 2014, 25 (8): 1261- 1266. |
Yang Qinlin , Zhang Jing , Hao Tao , et al. Seismic stepped prediction methods of sub-salt carbonate reservoirs in Pre-Caspian Basin[J]. Natural Gas Geoscience, 2014, 25 (8): 1261- 1266. | |
38 |
陈波, 郝媛媛, 石海信, 等. 冷东地区下干柴沟组上段沉积储层特征研究[J]. 油气藏评价与开发, 2018, 8 (3): 1- 6.
doi: 10.3969/j.issn.2095-1426.2018.03.001 |
Chen Bo , Hao Yuanyuan , Shi Haixing , et al. Sedimentary facies and reservoir characteristics of upper reservoir of lower Gangchaigou formation in eastern Lenghu region[J]. Reservoir Evaluation and Development, 2018, 8 (3): 1- 6.
doi: 10.3969/j.issn.2095-1426.2018.03.001 |
|
39 | 张毅, 孙东升, 薛丹. 曲流河道砂体三维构型建模[J]. 断块油气田, 2019, 26 (04): 470- 474. |
Zhang Yi , Sun Dongsheng , Xue Dan . 3D architecture modeling of meandering river sand body[J]. Fault-Block Oil and Gas Field, 2019, 26 (04): 470- 474. |
[1] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[2] | 黎瑞, 杨娇, 柴愈坤, 王华, 戴建文, 邓永辉, 孙爽, 马肖琳, 田腾飞. 大角度波浪控制下的浪成砂坝新模式[J]. 石油与天然气地质, 2024, 45(2): 530-541. |
[3] | 田纳新, 龚承林, 吴高奎, 齐昆, 朱一杰, 刘静静. 重力流与海底地貌动态相互作用下深水沉积体系发育演化[J]. 石油与天然气地质, 2024, 45(1): 15-30. |
[4] | 刘佳庚, 王艳忠, 操应长, 王淑萍, 李雪哲, 王铸坤. 渤海湾盆地东营凹陷民丰洼陷陡坡带深层-超深层碎屑岩优质储层控制因素[J]. 石油与天然气地质, 2023, 44(5): 1203-1217. |
[5] | 刘昇, 范存辉, 张本健, 张亚, 王尉, 罗冰, 白晓亮. 四川盆地东部中二叠统茅口组孤峰段展布特征及其油气地质意义[J]. 石油与天然气地质, 2023, 44(4): 993-1008. |
[6] | 侯明才, 何小胡, 金秋月, 曹海洋, 贺礼文, 阙有缘, 陈安清. 琼东南盆地中生代潜山成储主控因素及分布规律[J]. 石油与天然气地质, 2023, 44(3): 637-650. |
[7] | 单玄龙, 王蔚, 张新涛, 衣健, 徐春强, 岳军培, 刘鹏程, 傅锚. 渤海海域渤中凹陷中生界火山机构地质模式及建造过程[J]. 石油与天然气地质, 2023, 44(3): 675-688. |
[8] | 刘自亮, 张明何, 刘四兵, 王均杰, 郝景宇, 陈义才, 周月. 广西雪峰山南缘石炭系寺门组储层特征及其控制因素[J]. 石油与天然气地质, 2022, 43(4): 902-916. |
[9] | 吕传炳, 庞雄奇, 马奎友, 庞宏, 火勋港, 付亮亮, 张心罡, 梁星如, 吴松. 渤海湾盆地束鹿凹陷“牙刷状”油藏成藏特征与模式[J]. 石油与天然气地质, 2022, 43(3): 566-581. |
[10] | 段金宝, 金民东, 范志伟, 朱祥, 刘雁婷. 四川盆地东北部中三叠统雷口坡组四段优质储层发育特征及勘探方向[J]. 石油与天然气地质, 2021, 42(4): 898-908. |
[11] | 张春林, 姚泾利, 李程善, 邢凤存, 范立勇, 莫午零, 朱秋影, 曾旭. 鄂尔多斯盆地深层寒武系碳酸盐岩储层特征与主控因素[J]. 石油与天然气地质, 2021, 42(3): 604-614. |
[12] | 王红岩, 施振生, 孙莎莎, 张磊夫. 四川盆地及周缘志留系龙马溪组一段深层页岩储层特征及其成因[J]. 石油与天然气地质, 2021, 42(1): 66-75. |
[13] | 蔡全升, 陈孝红, 张国涛, 张保民, 韩京, 陈琳, 李培军, 李炎桂. 鄂西宜昌地区下古生界五峰组-龙马溪组页岩气储层发育特征与勘探潜力[J]. 石油与天然气地质, 2021, 42(1): 107-123. |
[14] | 李进步, 李娅, 张吉, 杨特波, 樊爱萍, 杨仁超, 崔明明. 苏里格气田西南部致密砂岩气藏资源评价方法及评价参数的影响因素[J]. 石油与天然气地质, 2020, 41(4): 730-743, 762. |
[15] | 邵曌一, 吴朝东, 张大智, 杨步增. 松辽盆地徐家围子断陷沙河子组储层特征及控制因素[J]. 石油与天然气地质, 2019, 40(1): 101-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||