石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (4): 929-953.doi: 10.11743/ogg20240404
周进高1,2(), 徐哲航1, 黄世伟3(), 李文正1,2, 段军茂1, 朱永进1,2, 郑剑锋1,2, 吴东旭1,2, 常少英1,2
收稿日期:
2024-03-26
修回日期:
2024-06-30
出版日期:
2024-09-05
发布日期:
2024-09-05
通讯作者:
黄世伟
E-mail:zhoujg_hz@petrochina.com.cn;huangshiwei@petrochina.com.cn
第一作者简介:
周进高(1967—),男,教授,硕士研究生导师,碳酸盐岩沉积储层及油气地质评价。E-mail:zhoujg_hz@petrochina.com.cn。
基金项目:
Jingao ZHOU1,2(), Zhehang XU1, Shiwei HUAN3(), Wenzheng LI1,2, Junmao DUAN1, Yongjin ZHU1,2, Jianfeng ZHENG1,2, Dongxu WU1,2, Shaoying CHANG1,2
Received:
2024-03-26
Revised:
2024-06-30
Online:
2024-09-05
Published:
2024-09-05
Contact:
Shiwei HUAN
E-mail:zhoujg_hz@petrochina.com.cn;huangshiwei@petrochina.com.cn
摘要:
碳酸盐岩蕴藏着丰富的油气资源,是当前和未来油气勘探开发的重要领域。为明确碳酸盐岩沉积储层研究现状,指出未来发展趋势,通过文献调研,分析了碳酸盐岩研究前沿与未来发展方向,研究了国内外碳酸盐岩沉积、储层研究取得的进展。在碳酸盐岩沉积学领域的进展包括:①完善了碳酸盐工厂分类,明确了5类工厂的生产者、生产环境和产物之间的成生关系,为碳酸盐岩沉积环境恢复、源-储确定以及碳酸盐岩“源-汇”体系研究提供了新思路;②系统阐明了微生物造氧固碳、微生物造岩固碳、微生物诱导形成碳酸盐组构以及微生物参与沉积演化的机理,为重建地质历史时期碳循环、大气氧化和生物演化以及碳封存提供了新的理论依据;③建立了盆地级岩相古地理恢复及个性化沉积模式,推动了油气勘探向碳酸盐台地内部和深层-超深层古老碳酸盐岩领域拓展。在碳酸盐岩储层地质学领域的进展是:①创新白云石形成机理,建立了微生物诱导白云石化、溶蚀-沉淀驱动白云石化和高二氧化硅浓度驱动白云石化3种新模式,为破解“白云石问题”提供了新的理论模型;②阐明了沉积相、白云石化、溶蚀作用和构造改造是储层形成的主控因素,明确了微生物岩储层和断控储层形成与分布规律,推动碳酸盐岩油气勘探取得新突破。在碳酸盐岩实验技术方面的进展是:建立了碳酸盐岩矿物铀-铅(U-Pb)同位素定年技术及碳酸盐团簇同位素和Mg、S同位素测试技术,为储层孔隙演化、储层形成过程和成藏演化恢复提供了新的技术方法。研究认为,物理模拟、数值模拟和智能化是碳酸盐岩沉积储层及实验技术的未来发展方向。
中图分类号:
表1
构造尺度和形态特征相结合的微生物碳酸盐岩分类方案[36]"
形态特征 | 构造尺度/cm | |||
---|---|---|---|---|
大型构造(≥100) | 中型构造(50 ~ 100) | 小型构造(1 ~ 50) | 微型构造(≤1) | |
层状 | 层(席)状微生物碳酸盐岩 | — | — | — |
丘状 | 大型丘状微生物碳酸盐岩 | 中型丘状微生物碳酸盐岩 | 小型丘状微生物碳酸盐岩 | — |
大型灰泥丘 | 中型灰泥丘 | 小型灰泥丘 | — | |
波状 | 大型波状叠层石碳酸盐岩 | 中型波状叠层石碳酸盐岩 | 小型波状叠层石碳酸盐岩 | — |
柱状 | 大型柱状叠层石碳酸盐岩 | 中型柱状叠层石碳酸盐岩 | 小型柱状叠层石碳酸盐岩 | — |
穹窿状 | 大型穹窿状叠层石碳酸盐岩 | 中型穹窿状叠层石碳酸盐岩 | 小型穹窿状叠层石碳酸盐岩 | — |
锥状 | 大型锥状叠层石碳酸盐岩 | 中型锥状叠层石碳酸盐岩 | 小型锥状叠层石碳酸盐岩 | — |
泡沫状 | — | — | — | 泡沫状凝块石碳酸盐岩 |
团块状 | 大型团块状凝块石碳酸盐岩 | 中型团块状凝块石碳酸盐岩 | 小型团块状凝块石碳酸盐岩 | — |
球粒状 | — | — | 核形石(鲕粒)碳酸盐岩 | |
树枝状 | — | — | 小型树枝石碳酸盐岩 | 微型树枝石 碳酸盐岩 |
均一状 | 均一石碳酸盐岩 | — | — | — |
层纹状 | 层纹石碳酸盐岩 | — | — | — |
1 | 金之钧, 龙胜祥, 周雁, 等. 中国南方膏盐岩分布特征[J]. 石油与天然气地质, 2006, 27(5): 571-583, 593. |
JIN Zhijun, LONG Shengxiang, ZHOU Yan, et al. A study on the distribution of saline-deposit in southern China[J]. Oil & Gas Geology, 2006, 27(5): 571-583, 593. | |
2 | 冉隆辉, 陈更生, 徐仁芬. 中国海相油气田勘探实例(之一)四川盆地罗家寨大型气田的发现和探明[J]. 海相油气地质, 2005, 10(1): 43-47. |
RAN Longhui, CHEN Gengsheng, XU Renfen. Discovery and exploration of Luojiazhai gas field, Sichuan Basin[J]. Marine Origin Petroleum Geology, 2005, 10(1): 43-47. | |
3 | 马永生. 中国海相油气田勘探实例之六四川盆地普光大气田的发现与勘探[J]. 海相油气地质, 2006, 11(2): 35-40. |
MA Yongsheng. Cases of discovery and exploration of marine fields in China (part 6): Puguang Gas Field in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2006, 11(2): 35-40. | |
4 | 杜金虎, 邹才能, 徐春春, 等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3): 268-277. |
DU Jinhu, ZOU Caineng, XU Chunchun, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 268-277. | |
5 | 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. |
ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293. | |
6 | 杨海军, 邓兴梁, 张银涛, 等. 塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(3): 13-23. |
YANG Haijun, DENG Xingliang, ZHANG Yintao, et al. Great discovery and its significance of exploration for Ordovician ultra-deep fault-controlled carbonate reservoirs of Well Manshen 1 in Tarim Basin[J]. China Petroleum Exploration, 2020, 25(3): 13-23. | |
7 | 胡素云, 李建忠, 王铜山, 等. 中国石油油气资源潜力分析与勘探选区思考[J]. 石油实验地质, 2020, 42(5): 813-823. |
HU Suyun, LI Jianzhong, WANG Tongshan, et al. CNPC oil and gas resource potential and exploration target selection[J]. Petroleum Geology and Experiment, 2020, 42(5): 813-823. | |
8 | FOLK R L. Spectral subdivision of limestone types[M]//HAM W E. Classification of Carbonate Rocks—A Symposium. Tulsa: American Association of Petroleum Geologists, 1962: 62-84. |
9 | DUNHAM R J. Classification of carbonate rocks according to depositional texture[M]//HAM W E. Classification of Carbonate Rocks—A Symposium. Tulsa: American Association of Petroleum Geologists, 1962: 108-121. |
10 | CHOQUETTE P W, PRAY L C. Geologic nomenclature and classification of porosity in sedimentary carbonates[J]. AAPG Bulletin, 1970, 54(2): 207-250. |
11 | LUCIA F J. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization[J]. AAPG Bulletin, 1995, 79(9): 1275-1300. |
12 | READ J F. Carbonate platform facies models[J]. AAPG Bulletin, 1985, 69(1): 1-21. |
13 | WILSON J L. Summary[M]//WILSON J L. Carbonate Facies in Geologic History. New York: Springer, 1975: 348-379. |
14 | TUCKER M E, WRIGHT V P. Carbonate sedimentology[M]. Oxford: Blackwell Science Ltd, 1990: 1-467. |
15 | SARG J F. The sequence stratigraphy, sedimentology, and economic importance of evaporite-carbonate transitions: A review[J]. Sedimentary Geology, 2001, 140(1/2): 9-34. |
16 | SCHLAGER W. Carbonate sedimentology and sequence stratigraphy[M]. Tulsa: SEPM society for Sedimentary Geology, 2005. |
17 | LUCIA F J. Carbonate reservoir characterization[M]. Berlin: Springer, 1999: 227. |
18 | MOORE C H. Carbonate reservoirs: Porosity evolution and diagenesis in a sequence stratigraphic framework[M]. Amsterdam: Elsevier, 2001: 444. |
19 | SCHLAGER W. Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4): 445-464. |
20 | JAMES N P, REID C M, BONE Y, et al. The macroalgal carbonate factory at a cool-to-warm temperate marine transition, Southern Australia[J]. Sedimentary Geology, 2013, 291: 1-26. |
21 | JAMES N P, MATENAAR J, BONE Y. Cool-water Eocene-Oligocene carbonate sedimentation on a paleobathymetric high, Kangaroo Island, southern Australia[J]. Sedimentary Geology, 2016, 341: 216-231. |
22 | REIJMER J J G. Marine carbonate factories: Review and update[J]. Sedimentology, 2021, 68(5): 1729-1796. |
23 | LI Fei, GONG Qiaolin, BURNE R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354. |
24 | WANG Jiuyuan, TARHAN Lidya G., JACOBSON Andrew D., et al. The evolution of the marine carbonate factory[J]. Nature, 2023, 615(7951): 265-269. |
25 | WALCOT C D. Cambrian geology and palaeontology III No.2-Precambrian, Algonkian algal flora[J]. Smithson. Miscellan. Collect, 1914, 64: 44-156. |
26 | RIDING R. Microbial carbonates: The geological record of calcified bacterial–algal mats and biofilms[J]. Sedimentology, 2000, 47(S1): 179-214. |
27 | SHAPIRO R S. A comment on the systematic confusion of thrombolites[J]. Palaios, 2000, 15(2): 166-169. |
28 | CATLING D C, ZAHNLE K J. The Archean atmosphere[J]. Science Advances, 2020, 6(9): eaax1420. |
29 | LARGE Ross R. Evolution of Earth’s Atmosphere[M]//Alderton D, Elias S A. Encyclopedia of Geology (Second Edition). Oxford: Academic Press, 2021:571-584. |
30 | CHEN Si, ZENG Min, TIAN Jingchun, et al. Microbe-mediated, marine authigenic formation of ooidal chamosite: Insights from upper Ordovician carbonates of the South-Western Yangtze platform (China)[J]. Sedimentology, 2023, 70(5): 1655-1678. |
31 | DIAZ M R, EBERLI G P. Decoding the mechanism of formation in marine ooids: A review[J]. Earth-Science Reviews, 2019, 190: 536-556. |
32 | DIAZ M R, EBERLI G P. Microbial contribution to early marine cementation[J]. Sedimentology, 2022, 69(2): 798-822. |
33 | DIAZ M R, EBERLI G P, WEGER R J. Indigenous microbial communities as catalysts for early marine cements: An in vitro study[J]. The Depositional Record, 2023, 9(3): 437-456. |
34 | 谢树成, 颜佳新, 杨义, 等. 微生物与沉积岩的协同演化[J]. 沉积学报, 2023, 41(6): 1635-1644. |
XIE Shucheng, YAN Jiaxin, YANG Yi, et al. Coevolution of microorganisms and sedimentary rocks[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1635-1644. | |
35 | BURNE R V, MOORE L S. Microbialites; organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3): 241-254. |
36 | 胡安平, 沈安江, 郑剑锋, 等. 微生物碳酸盐岩分类、沉积环境与沉积模式[J]. 海相油气地质, 2021, 26(1): 1-15. |
HU Anping, SHEN Anjiang, ZHENG Jianfeng, et al. The classification, facies and sedimentary models of microbialites[J]. Marine Origin Petroleum Geology, 2021, 26(1): 1-15. | |
37 | 吴亚生. 生物岩的分类[J]. 古地理学报, 2023, 25(3): 511-523. |
WU Yasheng. Classification of biolith (biogenic rocks)[J]. Journal of Palaeogeography(Chinese Edition), 2023, 25(3): 511-523. | |
38 | 周进高, 张建勇, 邓红婴, 等. 四川盆地震旦系灯影组岩相古地理与沉积模式[J]. 天然气工业, 2017, 37(1): 24-31. |
ZHOU Jingao, ZHANG Jianyong, DENG Hongying, et al. Lithofacies paleogeography and sedimentary model of Sinian Dengying Fm in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(1): 24-31. | |
39 | 罗垚, 谭秀成, 赵东方, 等. 埃迪卡拉系微生物碳酸盐岩沉积特征及其地质意义:以川中磨溪8井区灯影组四段为例[J]. 古地理学报, 2022, 24(2): 278-291. |
LUO Yao, TAN Xiucheng, ZHAO Dongfang, et al. Sedimentary characteristics of the Ediacaran microbial carbonates and their geological implications: A case study of the Member 4 of Dengying Formation from Wellblock MX8 in central Sichuan Basin[J]. Journal of Palaeogeography, 2022, 24(2): 278-291. | |
40 | 胡明毅, 孙春燕, 高达. 塔里木盆地下寒武统肖尔布拉克组构造-岩相古地理特征[J]. 石油与天然气地质, 2019, 40(1): 12-23. |
HU Mingyi, SUN Chunyan, GAO Da. Characteristics of tectonic-lithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2019, 40(1): 12-23. | |
41 | 郑剑锋, 黄理力, 袁文芳, 等. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709. |
ZHENG Jianfeng, HUANG Lili, YUAN Wenfang, et al. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(5): 698-709. | |
42 | 吴亚生, 姜红霞, 虞功亮, 等. 微生物岩的概念和重庆老龙洞剖面P-T界线地层微生物岩成因[J]. 古地理学报, 2018, 20(5): 737-775. |
WU Yasheng, JIANG Hongxia, YU Gongliang, et al. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong, Chongqing, China[J]. Journal of Palaeogeography, 2018, 20(5): 737-775. | |
43 | 胡安平, 沈安江, 张杰, 等. 碳酸盐岩-膏盐岩高频沉积旋回组合生-储特征——以鄂尔多斯盆地奥陶系马家沟组中-下组合为例[J]. 石油与天然气地质, 2022, 43(4): 943-956. |
HU Anping, SHEN Anjiang, ZHANG Jie, et al. Source-reservoir characteristics of high-frequency cyclic carbonate-evaporite assemblages: A case study of the lower and middle assemblages in the Ordovician Majiagou Formation, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(4): 943-956. | |
44 | 魏柳斌, 王前平, 师平平, 等. 鄂尔多斯盆地碳酸盐岩-膏盐岩体系微生物岩特征、成因及分布[C]//中国矿物岩石地球化学学会岩相古地理专业委员会, 国际古地理学会, 中国矿物岩石地球化学学会沉积学专业委员会, 等. 第十七届全国古地理学及沉积学学术会议摘要集——专题13 生物岩的形成机制、古地理及资源、环境意义, 青岛, 2023. 贵阳: 中国矿物岩石地球化学学会岩相古地理专业委员会, 2023: 3-5. |
WEI Liubin, WANG Qianping, SHI Pinging, et al. Characterization, genesis and distribution of microbialites in the carbonate-evaporite system of the Ordos Basin[C]//The Professional Committee of Lithology and Paleogeography of the Chinese Society of Mineral and Rock Geochemistry, International Society of Palaeogeography, Sedimentology Professional Committee of the Chinese Society of Mineral and Rock Geochemistry, et al. Summary of the 17th National Conference on Paleogeography and Sedimentology-Topic 13: Formation Mechanisms, Paleogeography and Resources, and Environmental Significance of Biorocks, Qingdao, 2023. Guiyang: The Professional Committee of Lithology and Paleogeography of the Chinese Society of Mineral and Rock Geochemistry, 2023: 3-5. | |
45 | 钟勇, 李亚林, 张晓斌, 等. 四川盆地下组合张性构造特征[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 498-510. |
ZHONG Yong, LI Yalin, ZHANG Xiaobin, et al. Features of extensional structures in pre-Sinian to Cambrian strata, Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(5): 498-510. | |
46 | 李忠权, 刘记, 李应, 等. 四川盆地震旦系威远—安岳拉张侵蚀槽特征及形成演化[J]. 石油勘探与开发, 2015, 42(1): 26-33. |
LI Zhongquan, LIU Ji, LI Ying, et al. Formation and evolution of Weiyuan-Anyue extension-erosion groove in Sinian system, Sichuan Basin[J]. Petroleum Exploration and Development, 2015, 42(1): 26-33. | |
47 | 魏国齐, 杨威, 杜金虎, 等. 四川盆地震旦纪—早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 2015, 35(1): 24-35. |
WEI Guoqi, YANG Wei, DU Jinhu, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35. | |
48 | 刘殊, 甯濛, 谢刚平. 川西坳陷古坳拉槽的地质意义及礁滩相天然气藏勘探潜力[J]. 天然气工业, 2015, 35(7): 17-26. |
LIU Shu, NING Meng, XIE Gangping. Geological significance of paleo-aulacogen and exploration potential of reef flat gas reservoir in the Western Sichuan Depression[J]. Natural Gas Industry, 2015, 35(7): 17-26. | |
49 | 杨雨, 王一刚, 文应初, 等. 川东飞仙关组沉积相与鲕滩气藏的分布[J]. 天然气勘探与开发, 2001, 24(3): 18-21. |
YANG Yu, WANG Yigang, WEN Yingchu, et al. The sedimentary facies and the distribution of oolitic reservoir in the Feixianguan Formation, northeastern Sichuan Basin[J]. Natural Gas Exploration and Development, 2001, 24(3): 18-21. | |
50 | 王一刚, 张静, 刘兴刚, 等. 四川盆地东北部下三叠统飞仙关组碳酸盐蒸发台地沉积相[J]. 古地理学报, 2005, 7(3): 357-371. |
WANG Yigang, ZHANG Jing, LIU Xinggang, et al. Sedimentary facies of evaporative carbonate platform of the Feixianguan Formation of Lower Triassic in northeastern Sichuan Basin[J]. Journal of Palaeogeography, 2005, 7(3): 357-371. | |
51 | 陈友智, 付金华, 杨高印, 等. 鄂尔多斯地块中元古代长城纪盆地属性研究[J]. 岩石学报, 2016, 32(3): 856-864. |
CHEN Youzhi, FU Jinhua, YANG Gaoyin, et al. Researches on basin property of Ordos block during Mesoproterozoic Changcheng period[J]. Acta Petrologica Sinica, 2016, 32(3): 856-864. | |
52 | 管树巍, 吴林, 任荣, 等. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景[J]. 石油学报, 2017, 38(1): 9-22. |
GUAN Shuwei, WU Lin, REN Rong, et al. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Sinica, 2017, 38(1): 9-22. | |
53 | 王坤, 王铜山, 汪泽成, 等. 华北克拉通南缘长城系裂谷特征与油气地质条件[J]. 石油学报, 2018, 39(5): 504-517. |
WANG Kun, WANG Tongshan, WANG Zecheng, et al. Characteristics and hydrocarbon geological conditions of the Changchengian rifts in the southern North China Craton[J]. Acta Petrolei Sinica, 2018, 39(5): 504-517. | |
54 | 宋文海. 乐山-龙女寺古隆起大中型气田成藏条件研究[J]. 天然气工业, 1996, 16(): 13-26, 105-106. |
SONG Wenhai. Research on reservoir-formed conditions of large-medium gas fields of Leshan-Longnusi palaeohigh[J]. Natural Gas Industry, 1996, 16(S1): 13-26, 105-106. | |
55 | 许海龙, 魏国齐, 贾承造, 等. 乐山-龙女寺古隆起构造演化及对震旦系成藏的控制[J]. 石油勘探与开发, 2012, 39(4): 406-416. |
XU Hailong, WEI Guoqi, JIA Chengzao, et al. Tectonic evolution of the Leshan-Longnüsi paleo-uplift and its control on gas accumulation in the Sinian strata, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(4): 406-416. | |
56 | 何登发, 周新源, 杨海军, 等. 塔里木盆地克拉通内古隆起的成因机制与构造类型[J]. 地学前缘, 2008, 15(2): 207-221. |
HE Dengfa, ZHOU Xinyuan, YANG Haijun, et al. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 207-221. | |
57 | 付金华, 孙六一, 冯强汉, 等. 鄂尔多斯盆地下古生界海相碳酸盐岩油气地质与勘探[M]. 北京: 石油工业出版社, 2018: 10. |
FU Jinhua, SUN Liuyi, FENG Qianghan, et al. Oil & gas geology and exploration of Lower Paleozoic marine carbonate rocks in Ordos Basin[M]. Beijing: Petroleum Industry Press, 2018: 10. | |
58 | IRWIN M L. General theory of epeiric clear water sedimentation[J]. AAPG Bulletin, 1965, 49(4): 445-459. |
59 | BURCHETTE T P, WRIGHT V P. Carbonate ramp depositional systems[J]. Sedimentary Geology, 1992, 79(1/4): 3-57. |
60 | BOSENCE Dan. A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic[J]. Sedimentary Geology, 2005, 175(1/4): 49-72. |
61 | EBERLI G P, BETZLER C. Characteristics of modern carbonate contourite drifts[J]. Sedimentology, 2019, 66(4): 1163-1191. |
62 | DIAZ M R, PIGGOT A M, EBERLI G P, et al. Bacterial community of oolitic carbonate sediments of the Bahamas Archipelago[J]. Marine Ecology Progress Series, 2013, 485: 9-24. |
63 | AURELL M, BÁDENAS B. Facies architecture of a microbial-siliceous sponge-dominated carbonate platform: The Bajocian of Moscardón (Middle Jurassic, Spain)[M]//BOSENCE D W J, GIBBONS K A, LE HERON D P, et al. Microbial Carbonates in Space and Time: Implications for Global Exploration and Production. London: Geological Society of London, 2015: 155-174. |
64 | PETROVIC A, LÜDMANN T, AFIFI A M, et al. Fragmentation, rafting, and drowning of a carbonate platform margin in a rift-basin setting[J]. Geology, 2023, 51(3): 242-246. |
65 | BETZLER C, LINDHORST S, REIJMER J J G, et al. Carbonate platform drowning caught in the act: The sedimentology of Saya de Malha Bank (Indian Ocean)[J]. Sedimentology, 2023, 70(1): 78-99. |
66 | 姚根顺, 周进高, 邹伟宏, 等. 四川盆地下寒武统龙王庙组颗粒滩特征及分布规律[J]. 海相油气地质, 2013, 18(4): 1-8. |
YAO Genshun, ZHOU Jingao, ZOU Weihong, et al. Characteristics and distribution rule of Lower Cambrian Longwangmiao grain beach in Sichuan basin[J]. Marine Origin Petroleum Geology, 2013, 18(4): 1-8. | |
67 | 周进高, 刘新社, 沈安江, 等. 中国海相含油气盆地构造-岩相古地理特征[J]. 海相油气地质, 2019, 24(4): 27-37. |
ZHOU Jingao, LIU Xinshe, SHEN Anjiang, et al. The characteristics of tectonic-lithofacies paleogeography of marine petroliferous basins of China[J]. Marine Origin Petroleum Geology, 2019, 24(4): 27-37. | |
68 | 周进高, 姚根顺, 杨光, 等. 四川盆地栖霞组—茅口组岩相古地理与天然气有利勘探区带[J]. 天然气工业, 2016, 36(4): 8-15. |
ZHOU Jingao, YAO Genshun, YANG Guang, et al. Lithofacies palaeogeography and favorable gas exploration zones of Qixia and Maokou Fms in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(4): 8-15. | |
69 | 杨伟强, 刘正, 陈浩如, 等. 四川盆地下寒武统龙王庙组颗粒滩沉积组合及其对储集层的控制作用[J]. 古地理学报, 2020, 22(2): 251-265. |
YANG Weiqiang, LIU Zheng, CHEN Haoru, et al. Depositional combination of carbonate grain banks of the Lower Cambrian Longwangmiao Formation in Sichuan Basin and its control on reservoirs[J]. Journal of Palaeogeography, 2020, 22(2): 251-265. | |
70 | EHRENBERG S N. The etiology of carbonate porosity[J]. AAPG Bulletin, 2022, 106(12): 2351-2386. |
71 | 王广伟. 白云岩化作用与白云岩孔隙的形成——来自实验模拟交代反应的启示[J]. 沉积学报, 2024, 42(2): 632-642. |
WANG Guangwei. Dolomitization and dolomite pore formation: Insights from experimentally simulated replacement[J]. Acta Sedimentologica Sinica, 2024, 42(2): 632-642. | |
72 | LAND L S. Failure to precipitate dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3): 361-368. |
73 | GREGG J M, BISH D L, KACZMAREK S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review[J]. Sedimentology, 2015, 62(6): 1749-1769. |
74 | MCKENZIE J A, VASCONCELOS C R. Dolomite mountains and the origin of the dolomite rock of which they mainly consist: Historical developments and new perspectives[J]. Sedimentology, 2009, 56(1): 205-219. |
75 | LI Mingtao, WIGNALL P B, DAI Xu, et al. Phanerozoic variation in dolomite abundance linked to oceanic anoxia[J]. Geology, 2021, 49(6): 698-702. |
76 | WACEY D, WRIGHT D T, BOYCE A J. A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia[J]. Chemical Geology, 2007, 244(1/2): 155-174. |
77 | SÁNCHEZ-ROMÁN M, MCKENZIE J A, DE LUCA REBELLO WAGENER A, et al. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139. |
78 | ROBERTS J A, KENWARD P A, FOWLE D A, et al. Surface chemistry allows for abiotic precipitation of dolomite at low temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14540-14545. |
79 | XU Fan, LIN Changsong, YOU Xuelian, et al. Microbial dolomite in culture experiment and natural environments: Implication for dolomite genesis[J]. Geomicrobiology Journal, 2021, 38(4): 365-374. |
80 | 由雪莲, 孙枢, 朱井泉, 等. 微生物白云岩模式研究进展[J]. 地学前缘, 2011, 18(4): 52-64. |
YOU Xuelian, SUN Shu, ZHU Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2011, 18(4): 52-64. | |
81 | 许杨阳, 刘邓, 于娜, 等. 微生物(有机)白云石成因模式研究进展与思考[J]. 地球科学, 2018, 43(): 63-70. |
XU Yangyang, LIU Deng, YU Na, et al. Advance and review on microbial/organogenic dolomite model[J]. Earth Science, 2018, 43(S1): 63-70. | |
82 | 赵东方, 谭秀成, 罗冰, 等. 微生物诱导白云石沉淀研究进展及面临的挑战[J]. 沉积学报, 2022, 40(2): 335-349. |
ZHAO Dongfang, TAN Xiucheng, LUO Bing, et al. A review of microbial dolomite: Advances and challenges[J]. Acta Sedimentologica Sinica, 2022, 40(2): 335-349. | |
83 | 刘邓, 曹锦鹏, 杨珊珊, 等. 微生物异化还原水铁矿介导的Ca-Fe碳酸盐矿物形成: 对铁白云石成因的启示[J]. 中国科学: 地球科学, 2024, 54(1): 216-230. |
LIU Deng, CAO Jinpeng, YANG Shanshan, et al. Microbially-mediated formation of Ca-Fe carbonates during dissimilatory ferrihydrite reduction: Implications for the origin of sedimentary ankerite[J]. Science China Earth Sciences, 2024, 54(1): 216-230. | |
84 | LIU Deng, CHEN Ting, DAI Zhaoyi, et al. A non-classical crystallization mechanism of microbially-induced disordered dolomite[J/OL]. Geochimica et Cosmochimica Acta: 页码范围缺失[网络访问日期缺失]. . |
85 | 林孝先, 彭军, 侯中健, 等. 四川汉源—峨边地区上震旦统灯影组藻白云岩特征及成因研究[J]. 沉积学报, 2018, 36(1): 57-71. |
LIN Xiaoxian, PENG Jun, HOU Zhongjian, et al. Study on characteristics and geneses of algal dolostone of the Upper Sinian Dengying Formation in the Hanyuan-Ebian area of Sichuan Province, China[J]. Acta Sedimentologica Sinica, 2018, 36(1): 57-71. | |
86 | KIM J, KIMURA Y, PUCHALA B, et al. Dissolution enables dolomite crystal growth near ambient conditions[J]. Science, 2023, 382(6673): 915-920. |
87 | HASHIM M S, ROSE K G, COHEN H F, et al. Effects of sodium and potassium concentrations on dolomite formation rate, stoichiometry and crystallographic characteristics[J]. Sedimentology, 2023, 70(7): 2355-2370. |
88 | FANG Yihang, HOBBS F, YANG Yiping, et al. Dissolved silica-driven dolomite precipitation in the Great Salt Lake, Utah, and its implication for dolomite formation environments[J]. Sedimentology, 2023, 70(4): 1328-1347. |
89 | LI Rong, WANG Yongxiao, WANG Zecheng, et al. Geological characteristics of the southern segment of the Late Sinian—Early Cambrian Deyang—Anyue rift trough in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(2): 321-333. |
90 | SALLER A, WINTERBOTTOM C. Deep marine diagenesis, offshore Hawaii and Enewetak, with implications for older carbonates[J]. The Depositional Record, 2023, 9(3): 526-572. |
91 | PERRI E, TUCKER M. Bacterial fossils and microbial dolomite in Triassic stromatolites[J]. Geology, 2007, 35(3): 207-210. |
92 | YOU Xuelian, SUN Shu, ZHU Jingquan, et al. Microbially mediated dolomite in Cambrian stromatolites from the Tarim Basin, north-west China: Implications for the role of organic substrate on dolomite precipitation[J]. Terra Nova, 2013, 25(5): 387-395. |
93 | GUO Pei, WEN Huaguo, LI Changzhi, et al. Tectonic and climatic controls on carbonate sedimentation in active orogen proximal lakes, Cenozoic Qaidam Basin, northern Tibetan Plateau[J]. Basin Research, 2023, 35(5): 1744-1771. |
94 | GUO Pei, WEN Huaguo, LI Changzhi, et al. Lacustrine dolomite in deep time: What really matters in early dolomite formation and accumulation?[J]. Earth-Science Reviews, 2023, 246: 104575. |
95 | GUO Pei, WEN Huaguo, SÁNCHEZ-ROMÁN M. Constraints on dolomite formation in a Late Palaeozoic saline alkaline lake deposit, Junggar Basin, north-west China[J]. Sedimentology, 2023, 70(7): 2302-2330. |
96 | RAUDSEPP M J, WILSON S A, MORGAN B, et al. Non-classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia[J]. Sedimentology, 2022, 69(5): 2246-2266. |
97 | EHRENBERG S N, EBERLI G P, BAECHLE G. Porosity-permeability relationships in Miocene carbonate platforms and slopes seaward of the Great Barrier Reef, Australia (ODP Leg 194, Marion Plateau)[J]. Sedimentology, 2006, 53(6): 1289-1318. |
98 | IMMENHAUSER A. On the delimitation of the carbonate burial realm[J]. The Depositional Record, 2022, 8(2): 524-574. |
99 | 金之钧. 中国海相碳酸盐岩层系油气形成与富集规律[J]. 中国科学: 地球科学, 2011, 41(7): 910-926. |
JIN Zhijun. Formation and accumulation of oil and gas in marine carbonate strata in Chinese sedimentary basins[J]. Science China Earth Sciences, 2011, 41(7): 910-926. | |
100 | 赵文智, 沈安江, 乔占峰, 等. 白云岩成因类型、识别特征及储集空间成因[J]. 石油勘探与开发, 2018, 45(6): 923-935. |
ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs[J]. Petroleum Exploration and Development, 2018, 45(6): 923-935. | |
101 | 赵文智, 沈安江, 乔占峰, 等. 中国碳酸盐岩沉积储层理论进展与海相大油气田发现[J]. 中国石油勘探, 2022, 27(4): 1-15. |
ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al. Theoretical progress in carbonate reservoir and discovery of large marine oil and gas fields in China[J]. China Petroleum Exploration, 2022, 27(4): 1-15. | |
102 | 沈安江, 赵文智, 胡安平, 等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5): 545-554. |
SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 545-554. | |
103 | 沈安江, 罗宪婴, 胡安平, 等. 从准同生到埋藏环境的白云石化路径及其成储效应[J]. 石油勘探与开发, 2022, 49(4): 637-647. |
SHEN Anjiang, LUO Xianying, HU Anping, et al. Dolomitization evolution and its effects on hydrocarbon reservoir formation from penecontemporaneous to deep burial environment[J]. Petroleum Exploration and Development, 2022, 49(4): 637-647. | |
104 | ZHOU Jingao, DENG Hongying, YU Zhou, et al. The genesis and prediction of dolomite reservoir in reef-shoal of Changxing Formation-Feixianguan Formation in Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2019, 178: 324-335. |
105 | 周进高, 徐春春, 姚根顺, 等. 四川盆地下寒武统龙王庙组储集层形成与演化[J]. 石油勘探与开发, 2015, 42(2): 158-166. |
ZHOU Jingao, XU Chunchun, YAO Genshun, et al. Genesis and evolution of Lower Cambrian Longwangmiao Formation reservoirs, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(2): 158-166. | |
106 | 周进高, 郝毅, 邓红婴, 等. 四川盆地中西部栖霞组—茅口组孔洞型白云岩储层成因与分布[J]. 海相油气地质, 2019, 24(4): 77-88. |
ZHOU Jingao, HAO Yi, DENG Hongying, et al. Genesis and distribution of vuggy dolomite reservoirs of the Lower Permian Qixia Formation and Maokou Formation, western-central Sichuan Basin[J]. Marine Origin Petroleum Geology, 2019, 24(4): 77-88. | |
107 | 胡安平, 沈安江, 杨翰轩, 等. 碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合[J]. 石油勘探与开发, 2019, 46(5): 916-928. |
HU Anping, SHEN Anjiang, YANG Hanxuan, et al. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system[J]. Petroleum Exploration and Development, 2019, 46(5): 916-928. | |
108 | 李文正, 周进高, 张建勇, 等. 四川盆地洗象池组储集层的主控因素与有利区分布[J]. 天然气工业, 2016, 36(1): 52-60. |
LI Wenzheng, ZHOU Jingao, ZHANG Jianyong, et al. Main controlling factors and favorable zone distribution of Xixiangchi Formation reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(1): 52-60. | |
109 | 徐哲航, 兰才俊, 郝芳, 等. 四川盆地震旦系灯影组不同古地理环境下丘滩储集体的差异性[J]. 古地理学报, 2020, 22(2): 235-250. |
XU Zhehang, LAN Caijun, HAO Fang, et al. Difference of mound-bank complex reservoir under different palaeogeographic environment of the Sinian Dengying Formation in Sichuan Basin[J]. Journal of Palaeogeography, 2020, 22(2): 235-250. | |
110 | 赵文智, 沈安江, 胡安平, 等. 塔里木、四川和鄂尔多斯盆地海相碳酸盐岩规模储层发育地质背景初探[J]. 岩石学报, 2015, 31(11): 3495-3508. |
ZHAO Wenzhi, SHEN Anjiang, HU Anping, et al. A discussion on the geological background of marine carbonate reservoirs development in Tarim, Sichuan and Ordos Basin, China[J]. Acta Petrologica Sinica, 2015, 31(11): 3495-3508. | |
111 | 赵文智, 汪泽成, 黄福喜, 等. 中国陆上叠合盆地超深层油气成藏条件与勘探地位[J]. 石油学报, 2023, 44(12): 2020-2032. |
ZHAO Wenzhi, WANG Zecheng, HUANG Fuxi, et al. Hydrocarbon accumulation conditions and exploration position of ultra-deep reservoirs in onshore superimposed basins of China[J]. Acta Petrolei Sinica, 2023, 44(12): 2020-2032. | |
112 | KOESHIDAYATULLAH A, CORLETT H, HOLLIS C. An overview of structurally-controlled dolostone-limestone transitions in the stratigraphic record[J]. Earth-Science Reviews, 2021, 220: 103751. |
113 | KOESHIDAYATULLAH A, AL-SINAWI N, SWART P K, et al. Coevolution of diagenetic fronts and fluid-fracture pathways[J]. Scientific Reports, 2022, 12(1): 9278. |
114 | KOESHIDAYATULLAH A, CORLETT H, STACEY J, et al. Evaluating new fault-controlled hydrothermal dolomitization models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin[J]. Sedimentology, 2020, 67(6): 2945-2973. |
115 | GASPARRINI M, MORAD D, MANGENOT X, et al. Dolomite recrystallization revealed by Δ47/U-Pb thermochronometry in the Upper Jurassic Arab Formation, United Arab Emirates[J]. Geology, 2023, 51(5): 471-475. |
116 | ARAÚJO C C, MADRUCCI V, HOMEWOOD P, et al. Stratigraphic and sedimentary constraints on presalt carbonate reservoirs of the South Atlantic Margin, Santos Basin, offshore Brazil[J]. AAPG Bulletin, 2022, 106(12): 2513-2546. |
117 | TAMOTO H, PESTILHO A L S, RUMBELSPERGER A M B. Impacts of diagenetic processes on petrophysical characteristics of the Aptian presalt carbonates of the Santos Basin, Brazil[J]. AAPG Bulletin, 2024, 108(1): 75-105. |
118 | SOARES M V T, SILVA BOMFIM L DA, VIDAL A C, et al. Pre-salt carbonate cyclicity and depositional environment: NMR petrophysics and Markov cyclicity of lacustrine acoustic facies (Santos Basin, Brazil)[J]. Marine and Petroleum Geology, 2023, 157: 106494. |
119 | BAPTISTA R J, FERRAZ A E, SOMBRA C, et al. The presalt Santos Basin, a super basin of the twenty-first century[J]. AAPG Bulletin, 2023, 107(8): 1369-1389. |
120 | 姚根顺, 郝毅, 周进高, 等. 四川盆地震旦系灯影组储层储集空间的形成与演化[J]. 天然气工业, 2014, 34(3): 31-37. |
YAO Genshun, HAO Yi, ZHOU Jingao, et al. Formation and evolution of reservoir spaces in the Sinian Dengying Fm of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 31-37. | |
121 | 周进高, 姚根顺, 杨光, 等. 四川盆地安岳大气田震旦系—寒武系储层的发育机制[J]. 天然气工业, 2015, 35(1): 36-44. |
ZHOU Jingao, YAO Genshun, YANG Guang, et al. Genesis mechanism of the Sinian-Cambrian reservoirs in the Anyue Gas Field, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 36-44. | |
122 | XU Zhehang, LAN Caijun, ZHANG Benjian, et al. Impact of diagenesis on the microbial reservoirs of the terminal Ediacaran Dengying Formation from the Central to Northern Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2022, 146: 105924. |
123 | 徐哲航, 兰才俊, 马肖琳, 等. 四川盆地震旦系灯影组丘滩体储层沉积模式与物性特征[J]. 地球科学, 2020, 45(4): 1281-1294. |
XU Zhehang, LAN Caijun, MA Xiaolin, et al. Sedimentary models and physical properties of mound-shoal complex reservoirs in Sinian Dengying Formation, Sichuan Basin[J]. Earth Science, 2020, 45(4): 1281-1294. | |
124 | 杨雨, 黄先平, 张健, 等. 四川盆地寒武系沉积前震旦系顶界岩溶地貌特征及其地质意义[J]. 天然气工业, 2014, 34(3): 38-43. |
YANG Yu, HUANG Xianping, ZHANG Jian, et al. Features and geologic significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 38-43. | |
125 | 杨威, 魏国齐, 赵蓉蓉, 等. 四川盆地震旦系灯影组岩溶储层特征及展布[J]. 天然气工业, 2014, 34(3): 55-60. |
YANG Wei, WEI Guoqi, ZHAO Rongrong, et al. Characteristics and distribution of karst reservoirs in the Sinian Dengying Fm, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 55-60. | |
126 | 郑剑锋, 潘文庆, 沈安江, 等. 塔里木盆地柯坪露头区寒武系肖尔布拉克组储集层地质建模及其意义[J]. 石油勘探与开发, 2020, 47(3): 499-511. |
ZHENG Jianfeng, PAN Wenqing, SHEN Anjiang, et al. Reservoir geological modeling and significance of Cambrian Xiaoerblak Formation in Keping outcrop area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 499-511. | |
127 | 王振宇, 宁科科, 屈海洲, 等. 阿克苏地区寒武系肖尔布拉克组不同白云岩的孔隙特征、成因及演化[J]. 沉积学报, 2023, 41(1): 256-269. |
WANG Zhenyu, NING Keke, QU Haizhou, et al. Pore characteristics, origin, and evolution of different dolomites in the Cambrian Xiaoerbulak Formation in the Aksu area[J]. Acta Sedimentologica Sinica, 2023, 41(1): 256-269. | |
128 | 沈安江, 胡安平, 张杰, 等. 微生物碳酸盐岩 “三因素” 控储地质认识和分布规律[J]. 石油与天然气地质, 2022, 43(3): 582-596. |
SHEN Anjiang, HU Anping, ZHANG Jie, et al. “Three-factor” driven microbial carbonate reservoirs and their distribution[J]. Oil & Gas Geology, 2022, 43(3): 582-596. | |
129 | 吕修祥, 李建交, 汪伟光. 海相碳酸盐岩储层对断裂活动的响应[J]. 地质科技情报, 2009, 28(3): 1-5, 9. |
Xiuxiang LYU, LI Jianjiao, WANG Weiguang. Responses of marine carbonate reservoirs to fault activities[J]. Geological Science and Technology Information, 2009, 28(3): 1-5, 9. | |
130 | 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015(3): 347-355. |
LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015(3): 347-355. | |
131 | 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. |
JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. | |
132 | 丁志文, 汪如军, 陈方方, 等. 断溶体油气藏成因、成藏及油气富集规律——以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例[J]. 石油勘探与开发, 2020, 47(2): 286-296. |
DING Zhiwen, WANG Rujun, CHEN Fangfang, et al. Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang Oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 2020, 47(2): 286-296. | |
133 | 王清华. 塔里木盆地富满油田凝析气藏成因[J]. 石油勘探与开发, 2023, 50(6): 1128-1139. |
WANG Qinghua. Origin of gas condensate reservoir in Fuman Oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1128-1139. | |
134 | 何骁, 唐青松, 邬光辉, 等. 四川盆地安岳气田震旦系走滑断裂控储作用[J]. 石油勘探与开发, 2023, 50(6): 1116-1127. |
HE Xiao, TANG Qingsong, WU Guanghui, et al. Control of strike-slip faults on Sinian carbonate reservoirs in Anyue Gas Field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1116-1127. | |
135 | 梁瀚, 唐浩, 冉崎, 等. 四川盆地川中地区走滑断裂的分布、类型与成因[J]. 地质学报, 2023, 97(8): 2609-2620. |
LIANG Han, TANG Hao, RAN Qi, et al. The distribution, type and origin of the strike-slip faults in the central Sichuan Basin[J]. Acta Geologica Sinica, 2023, 97(8): 2609-2620. | |
136 | 邬光辉, 邹禺, 徐伟, 等. 四川盆地川中古隆起北斜坡震旦系走滑断裂分布及其勘探意义[J]. 天然气工业, 2023, 43(7): 35-43. |
WU Guanghui, ZOU Yu, XU Wei, et al. Distribution and petroleum exploration significance of Sinian strike-slip faults in the northern slope of Central Sichuan paleouplift[J]. Natural Gas Industry, 2023, 43(7): 35-43. | |
137 | 冯建伟, 郭宏辉, 汪如军, 等. 塔里木盆地塔北地区深层走滑断裂分段性成因机制[J]. 地球科学, 2023, 48(7): 2506-2519. |
FENG Jianwei, GUO Honghui, WANG Rujun, et al. Segmentation genesis mechanism of strike-slip fracture of deep carbonate rocks in Tabei area, Tarim Basin[J]. Earth Science, 2023, 48(7): 2506-2519. | |
138 | 陈红汉. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展[J]. 地球科学, 2023, 48(6): 2039-2066. |
CHEN Honghan. Advances on relationship between strike-slip structures and hydrocarbon accumulations in large superimposed craton basins, China[J]. Earth Science, 2023, 48(6): 2039-2066. | |
139 | 付晓飞, 冯军, 王海学, 等. 走滑断裂 “分期-异向” 变形过程砂箱物理模拟: 以塔里木盆地顺北5号断层北段为例[J]. 地球科学, 2023, 48(6): 2104-2116. |
FU Xiaofei, FENG Jun, WANG Haixue, et al. Sandbox physical simulation on “different period-different direction” deformation process of strike-slip faults: A case study of northern segment of Shunbei no.5 fault in Tarim Basin[J]. Earth Science, 2023, 48(6): 2104-2116. | |
140 | 付小东, 张本健, 汪泽成, 等. 四川盆地中西部走滑断裂及其对油气成藏控制作用[J]. 地球科学, 2023, 48(6): 2221-2237. |
FU Xiaodong, ZHANG Benjian, WANG Zecheng, et al. Strike-slip faults in central and western Sichuan Basin and their control functions on hydrocarbon accumulation[J]. Earth Science, 2023, 48(6): 2221-2237. | |
141 | 张威, 杨明慧, 李春堂, 等. 鄂尔多斯盆地大牛地区块板内走滑断裂构造特征及演化[J]. 地球科学, 2023, 48(6): 2267-2280. |
ZHANG Wei, YANG Minghui, LI Chuntang, et al. Structural characteristics and evolution of intraplate strike-slip faults in Daniudi Block, Ordos Basin[J]. Earth Science, 2023, 48(6): 2267-2280. | |
142 | 宋金民, 王佳蕊, 刘树根, 等. 含海泡石层系泥质灰岩中自生黏土矿物的类型、组成与成岩演化过程——以川东地区中二叠统茅口组茅一段为例[J]. 石油勘探与开发, 2024, 51(2): 311-322. |
SONG Jinmin, WANG Jiarui, LIU Shugen, et al. Types, composition and diagenetic evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata: A case study of Mao-1 Member of Middle Permian Maokou Formation, eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2024, 51(2): 311-322. | |
143 | 李强, 师江波, 周聪, 等. 四川盆地中部合川—潼南地区茅一段泥灰岩储层特征与评价[J]. 天然气地球科学, 2022, 33(12): 1986-1996. |
LI Qiang, SHI Jiangbo, ZHOU Cong, et al. Characteristics and evaluation of muddy limestone reservoir in the first member of Maokou Formation of Hechuan-Tongnan area, central Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(12): 1986-1996. | |
144 | 江青春, 汪泽成, 苏旺, 等. 四川盆地中二叠统茅口组一段泥灰岩源内非常规天然气成藏条件及有利勘探方向[J]. 中国石油勘探, 2021, 26(6): 82-97. |
JIANG Qingchun, WANG Zecheng, SU Wang, et al. Accumulation conditions and favorable exploration orientation of unconventional natural gas in the marl source rock of the first member of the Middle Permian Maokou Formation, Sichuan Basin[J]. China Petroleum Exploration, 2021, 26(6): 82-97. | |
145 | 诸丹诚, 喻雅敏, 黎霆, 等. 四川盆地北部元坝地区茅口组岩溶:发育特征与分布模式[J]. 古地理学报, 2023, 25(3): 701-714. |
ZHU Dancheng, YU Yamin, LI Ting, et al. Karst development and distribution pattern of the Maokou Formation in Yuanba area, northern Sichuan Basin[J]. Journal of Palaeogeography, 2023, 25(3): 701-714. | |
146 | 汪泽成, 辛勇光, 谢武仁, 等. 川中地区三叠系雷口坡组泥灰岩油气地质特征及充探1井发现意义[J]. 石油勘探与开发, 2023, 50(5): 950-961. |
WANG Zecheng, XIN Yongguang, XIE Wuren, et al. Petroleum geology of marl in Triassic Leikoupo Formation and discovery significance of Well Chongtan1 in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(5): 950-961. | |
147 | 辛勇光, 文龙, 张豪, 等. 四川盆地中三叠统雷口坡组储层特征与勘探领域探讨[J]. 中国石油勘探, 2022, 27(4): 91-102. |
XIN Yongguang, WEN Long, ZHANG Hao, et al. Study on reservoir characteristics and exploration field of the Middle Triassic Leikoupo Formation in Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(4): 91-102. | |
148 | 谢武仁, 文龙, 汪泽成, 等. 四川盆地二叠系—中三叠统海相非常规资源类型及有利勘探方向[J]. 天然气地球科学, 2024, 35(6): 961-971. |
XIE Wuren, WEN Long, WANG Zecheng, et al. Types of unconventional marine resources and favorable exploration directions in the Permian-Middle Triassic of the Sichuan Basin[J]. Natural Gas Geoscience, 2024, 35(6): 961-971. | |
149 | 梁兴, 徐政语, 栗维民, 等. 蜀南—渝西地区中二叠统茅一段灰质源岩气储层特征及主控因素——以DB1井为例[J]. 石油实验地质, 2023, 45(4): 714-725. |
LIANG Xing, XU Zhengyu, LI Weimin, et al. Characteristics and main controlling factors of the limy source rock gas reservoir in the first member of the Middle Permian Maokou Formation in the southern Sichuan and western Chongqing area: A case study of Well DB1[J]. Petroleum Geology and Experiment, 2023, 45(4): 714-725. | |
150 | YANAY N, WANG Zhennan, DETTMAN D L, et al. Rapid and precise measurement of carbonate clumped isotopes using laser spectroscopy[J]. Science Advances, 2022, 8(43): eabq0611. |
151 | PEREZ-BELTRAN S, ZAHEER W, SUN Zeyang, et al. Density functional theory and ab initio molecular dynamics reveal atomistic mechanisms for carbonate clumped isotope reordering[J]. Science Advances, 2023, 9(26): eadf1701. |
152 | FIEBIG J, BAJNAI D, LÖFFLER N, et al. Combined high-precision ∆48 and ∆47 analysis of carbonates[J]. Chemical Geology, 2019, 522: 186-191. |
153 | BAJNAI D, GUO Weifu, SPÖTL C, et al. Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures[J]. Nature Communications, 2020, 11(1): 4005. |
154 | SWART P K, LU Chaojin, MOORE E W, et al. A calibration equation between Δ48 values of carbonate and temperature[J]. Rapid Communications in Mass Spectrometry, 2021, 35(17): e9147. |
155 | DICKSON J A D, HODELL D A, SWART P K, et al. Clumped isotope analysis of zoned calcite cement, Carboniferous, Isle of Man[J]. The Depositional Record, 2023, 9(3): 635-646. |
156 | GOLDBERG S L, PRESENT T M, FINNEGAN S, et al. A high-resolution record of early Paleozoic climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(6): e2013083118. |
157 | FERNANDEZ A, KORTE C, ULLMANN C V, et al. Reconstructing the magnitude of Early Toarcian (Jurassic) warming using the reordered clumped isotope compositions of belemnites[J]. Geochimica et Cosmochimica Acta, 2021, 293: 308-327. |
158 | 邱楠生, 刘鑫, 熊昱杰, 等. 碳酸盐团簇同位素在海相盆地热史研究中的进展[J]. 石油实验地质, 2023, 45(5): 891-903. |
QIU Nansheng, LIU Xin, XIONG Yujie, et al. Progress in the study of carbonate clumped isotope in the thermal history of marine basins[J]. Petroleum Geology and Experiment, 2023, 45(5): 891-903. | |
159 | 胡安平, 沈安江, 陈亚娜, 等. 基于U-Pb同位素年龄和团簇同位素(Δ47)温度约束的四川盆地震旦系灯影组构造—埋藏史重建[J]. 石油实验地质, 2021, 43(5): 896-905, 914. |
HU Anping, SHEN Anjiang, CHEN Yana, et al. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer (Δ47)[J]. Petroleum Geology and Experiment, 2021, 43(5): 896-905, 914. | |
160 | PING Hongwei, DENG Wenfeng, CHEN Honghan, et al. Fluid inclusion calibration of clumped-isotope solid-state reordering in dolomite: Implication for thermal history reconstruction in deeply buried reservoirs[J]. Marine and Petroleum Geology, 2024, 163: 106773. |
161 | 乔占峰, 于洲, 佘敏, 等. 中国古老超深层海相碳酸盐岩储集层成因研究新进展[J]. 古地理学报, 2023, 25(6): 1257-1276. |
QIAO Zhanfeng, YU Zhou, SHE Min, et al. Progresses on ancient ultra-deeply buried marine carbonate reservoir in China[J]. Journal of Palaeogeography, 2023, 25(6): 1257-1276. | |
162 | 刘嘉庆, 李忠, 颜梦珂, 等. 塔里木盆地塔中地区下奥陶统白云岩的成岩流体演化:来自团簇同位素的证据[J]. 石油与天然气地质, 2020, 41(1): 68-82. |
LIU Jiaqing, LI Zhong, YAN Mengke, et al. Diagenetic fluid evolution of dolomite from the Lower Ordovician in Tazhong area, Tarim Basin: Clumped isotopic evidence[J]. Oil & Gas Geology, 2020, 41(1): 68-82. | |
163 | JIANG Lei, SHEN Anjiang, WANG Zichen, et al. U–Pb geochronology and clumped isotope thermometry study of Neoproterozoic dolomites from China[J]. Sedimentology, 2022, 69(7): 2925-2945. |
164 | 李平平, 王淳, 邹华耀, 等. 团簇同位素在白云岩化流体恢复中的应用与局限性[J]. 石油与天然气地质, 2021, 42(3): 738-746. |
LI Pingping, WANG Chun, ZOU Huayao, et al. Application of clumped isotopes to restoration of dolomitizing fluids and its limitations[J]. Oil & Gas Geology, 2021, 42(3): 738-746. | |
165 | PAN Liyin, SHEN Jiangng, ZHAO Jianxin, et al. LA-ICP-MS U-Pb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir: The Middle Permian of northwest Sichuan Basin (SW China)[J]. Sedimentary Geology, 2020, 407: 105728. |
166 | WANG Rui, XIAO Yang, YU Kefu, et al. Temperature regimes during formation of Miocene island dolostones as determined by clumped isotope thermometry: Xisha Islands, South China Sea[J]. Sedimentary Geology, 2022, 429: 106079. |
167 | LU Chaojin, ZOU Huayao, WANG Guangwei, et al. Clumped isotopes of paired dolomite and calcite constraining alteration histories of ancient carbonate successions[J]. Chemical Geology, 2023, 617: 121264. |
168 | LU Chaojin, KOESHIDAYATULLAH A, LI Fei, et al. A clumped isotope diagenetic framework for the Ediacaran dolomites: Insights to fabric-specific geochemical variabilities[J]. Sedimentology, 2024, 71(2): 546-572. |
169 | LU Chaojin, SWART P K. The application of dual clumped isotope thermometer (Δ47 and Δ48) to the understanding of dolomite formation[J]. Geology, 2024, 52(1): 56-60. |
170 | 沈安江, 胡安平, 程婷, 等. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩-孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1062-1074. |
SHEN Anjiang, HU Anping, CHENG Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1062-1074. | |
171 | 沈安江, 赵文智, 胡安平, 等. 碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用[J]. 石油勘探与开发, 2021, 48(3): 476-487. |
SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(3): 476-487. | |
172 | 周进高, 于洲, 吴东旭, 等. 基于激光U-Pb定年技术的白云岩储集层形成过程恢复——以鄂尔多斯盆地奥陶系马家沟组为例[J]. 石油勘探与开发, 2022, 49(2): 285-295. |
ZHOU Jingao, YU Zhou, WU Dongxu, et al. Restoration of formation processes of dolomite reservoirs based on laser U-Pb dating: A case study of Ordovician Majiagou Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(2): 285-295. | |
173 | 乔占峰, 张哨楠, 沈安江, 等. 基于激光U-Pb定年的埋藏白云岩形成过程——以塔里木盆地永安坝剖面下奥陶统蓬莱坝组为例[J]. 岩石学报, 2020, 36(11): 3493-3509. |
QIAO Zhanfeng, ZHANG Shaonan, SHEN Anjiang, et al. Laser ablated U-Pb dating-based determination of burial dolomitization process: A case study of Lower Ordovician Penglaiba Formation of Yonganba Outcrop in Tarim Basin[J]. Acta Petrologica Sinica, 2020, 36(11): 3493-3509. | |
174 | 沈安江, 胡安平, 郑剑锋, 等. 基于U-Pb同位素年龄和团簇同位素(Δ47)温度约束的构造-埋藏史重建——以塔里木盆地阿克苏地区震旦系奇格布拉克组为例[J]. 海相油气地质, 2021, 26(3): 200-210. |
SHEN Anjiang, HU Anping, ZHENG Jianfeng, et al. Reconstruction of tectonic-burial evolution based on the constraints of laser in situ U-Pb date and clumped isotopic temperature: A case study from Sinian Qigebulak Formation in Akesu area, Tarim Basin[J]. Marine Origin Petroleum Geology, 2021, 26(3): 200-210. | |
175 | 胡安平, 沈安江, 梁峰, 等. 激光铀铅同位素定年技术在塔里木盆地肖尔布拉克组储层孔隙演化研究中的应用[J]. 石油与天然气地质, 2020, 41(1): 37-49. |
HU Anping, SHEN Anjiang, LIANG Feng, et al. Application of laser in-situ U-Pb dating to reconstruct the reservoir porosity evolution in the Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 37-49. | |
176 | QIAO Zhanfeng, SHEN Anjiang, ZHANG Shaonan, et al. Origin of giant Ordovician cavern reservoirs in the Halahatang oil field in the Tarim Basin, northwestern China[J]. AAPG Bulletin, 2023, 107(7): 1105-1135. |
177 | 马晓宁. 碳酸盐岩Mg同位素分析方法及研究进展[J]. 地质学刊, 2023, 47(4): 428-437. |
MA Xiaoning. Methods and research progress of Mg isotope analysis in carbonate rocks[J]. Journal of Geology, 2023, 47(4): 428-437. | |
178 | GALY A, BAR-MATTHEWS M, HALICZ L, et al. Mg isotopic composition of carbonate: insight from speleothem formation[J]. Earth and Planetary Science Letters, 2002, 201(1): 105-115. |
179 | HIGGINS J A, SCHRAG D P. Constraining magnesium cycling in marine sediments using magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5039-5053. |
180 | HUANG Kangjun, SHEN Bing, LANG Xianguo, et al. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates[J]. Geochimica et Cosmochimica Acta, 2015, 164: 333-351. |
181 | PENG Yang, SHEN Bing, LANG Xianguo, et al. Constraining dolomitization by Mg isotopes: A case study from partially dolomitized limestones of the Middle Cambrian Xuzhuang Formation, North China[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3): 1109-1129. |
182 | 李茜, 朱光有, 李婷婷, 等. 塔里木盆地鹰山组白云岩成因与Mg同位素证据[J]. 地学前缘, 2023, 30(4): 352-375. |
LI Xi, ZHU Guangyou, LI Tingting, et al. Genesis of dolostone of the Yingshan Formation in Tarim Basin and Mg isotope evidence[J]. Earth Science Frontiers, 2023, 30(4): 352-375. | |
183 | 李茜, 朱光有, 李婷婷, 等. 川中地区寒武系洗象池组白云岩Mg同位素特征与成因机制[J]. 石油学报, 2022, 43(11): 1585-1603. |
LI Xi, ZHU Guangyou, LI Tingting, et al. Mg isotopic characteristics and genetic mechanism of dolomite of Cambrian Xixiangchi Formation in central Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(11): 1585-1603. | |
184 | 朱光有, 李茜. 白云岩成因类型与研究方法进展[J]. 石油学报, 2023, 44(7): 1167-1190. |
ZHU Guangyou, LI Xi. Progress in genetic types and research methods of dolomite[J]. Acta Petrolei Sinica, 2023, 44(7): 1167-1190. | |
185 | 朱光有, 李茜, 李婷婷, 等. 镁同位素示踪白云石化流体迁移路径——以四川盆地石炭系黄龙组为例[J]. 地质学报, 2023, 97(3): 753-771. |
ZHU Guangyou, LI Xi, LI Tingting, et al. Magnesium isotope trace dolomitization fluid migration path: A case study of the Carboniferous Huanglong Formation in the Sichuan Basin[J]. Acta Geologica Sinica, 2023, 97(3): 753-771. | |
186 | 朱光有, 李茜, 李婷婷, 等. 塔里木盆地震旦纪-寒武纪之交白云岩成因机理及Mg同位素差异[J]. 中国科学: 地球科学, 2023, 53(2): 319-344. |
ZHU Guangyou, LI Xi, LI Tingting, et al. Genesis mechanism and Mg isotope difference between the Sinian and Cambrian dolomites in Tarim Basin[J]. Science China Earth Sciences, 2023, 53(2): 319-344. | |
187 | TEICHERT S, WOELKERLING W, MUNNECKE A. Coralline red algae from the Silurian of Gotland indicate that the ordercorallinales (Corallinophycidae, Rhodophyta) is much older than previously thought[J]. Palaeontology, 2019, 62(4): 599-613. |
188 | NEMRA A, OUALI MEHADJI A, MUNNECKE A, et al. Carbonate concretions in Miocene mudrocks in NW Algeria: Types, geochemistry, and origins[J]. Facies, 2019, 65(2): 17. |
189 | FARQUHAR J, WING B A. Multiple sulfur isotopes and the evolution of the atmosphere[J]. Earth and Planetary Science Letters, 2003, 213(1/2): 1-13. |
190 | JOHNSTON D T, FARQUHAR J, WING B A, et al. Multiple sulfur isotope fractionations in biological systems: A case study with sulfate reducers and sulfur disproportionators[J]. American Journal of Science, 2005, 305(6/8): 645-660. |
191 | SANSJOFRE P, CARTIGNY P, TRINDADE R I F, et al. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth[J]. Nature Communications, 2016, 7(1): 12192. |
192 | KUNZMANN M, BUI T H, CROCKFORD P W, et al. Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation[J]. Geology, 2017, 45(3): 207-210. |
193 | WU Nanping, FARQUHAR J, FIKE D A. Ediacaran sulfur cycle: Insights from sulfur isotope measurements (Δ33S and δ34S) on paired sulfate-pyrite in the Huqf Supergroup of Oman[J]. Geochimica et Cosmochimica Acta, 2015, 164: 352-364. |
194 | LUO Genming, RICHOZ S, VAN DE SCHOOTBRUGGE B, et al. Multiple sulfur-isotopic evidence for a shallowly stratified ocean following the Triassic-Jurassic boundary mass extinction[J]. Geochimica et Cosmochimica Acta, 2018, 231: 73-87. |
[1] | 施振生, 周天琪. 海相细粒沉积成因机制与有机质富集模式研究进展[J]. 石油与天然气地质, 2024, 45(4): 910-928. |
[2] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[3] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[4] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[5] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[6] | 董鑫旭, 周兴海, 李昆, 蒲仁海, 王爱国, 关蕴文, 张鹏. 海上稀疏井区高精度地层格架约束下的地震沉积学刻画[J]. 石油与天然气地质, 2024, 45(1): 293-308. |
[7] | 屈海洲, 郭新宇, 徐伟, 李文皓, 唐松, 邓雅霓, 何仕鹏, 张云峰, 张兴宇. 碳酸盐岩微孔隙的分类、成因及对岩石物理性质的影响[J]. 石油与天然气地质, 2023, 44(5): 1102-1117. |
[8] | 何发岐, 张威, 丁晓琪, 祁壮壮, 李春堂, 孙涵静. 鄂尔多斯盆地乌审旗古隆起对岩溶气藏的控制机理[J]. 石油与天然气地质, 2023, 44(2): 276-291. |
[9] | 史今雄, 赵向原, 潘仁芳, 曾联波, 朱正平. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质, 2023, 44(2): 393-405. |
[10] | 邹才能, 谢增业, 李剑, 张璐, 杨春龙, 崔会英, 王晓波, 郭泽清, 潘松圻. 典型碳酸盐岩大气田规模聚集差异性及其主控因素[J]. 石油与天然气地质, 2023, 44(1): 1-15. |
[11] | 张涛, 张亚雄, 金晓辉, 周雁, 张军涛, 谷宁, 张威, 王濡岳, 鲁锴. 鄂尔多斯盆地奥陶系马家沟组碳酸盐岩-蒸发岩层系层序地层模式及其对源-储的控制作用[J]. 石油与天然气地质, 2023, 44(1): 110-124. |
[12] | 刘建章, 蔡忠贤, 滕长宇, 张恒, 陈诚. 塔里木盆地顺北地区克拉通内走滑断裂带中-下奥陶统储集体方解石脉形成及其与油气充注耦合关系[J]. 石油与天然气地质, 2023, 44(1): 125-137. |
[13] | 何治亮, 赵向原, 张文彪, 吕心瑞, 朱东亚, 赵峦啸, 胡松, 郑文波, 刘彦锋, 丁茜, 段太忠, 胡向阳, 孙建芳, 耿建华. 深层-超深层碳酸盐岩储层精细地质建模技术进展与攻关方向[J]. 石油与天然气地质, 2023, 44(1): 16-33. |
[14] | 丁茜, 王静彬, 杨磊磊, 朱东亚, 江文滨, 何治亮. 基于模拟实验探讨断裂-流体-岩石体系中的矿物溶解-沉淀过程[J]. 石油与天然气地质, 2023, 44(1): 164-177. |
[15] | 李剑, 杨春龙, 谢武仁, 芮宇润, 王晓波, 张璐, 谢增业, 郭泽清. 四川盆地安岳气田震旦系台缘带和台内地区天然气成藏差异性及勘探领域[J]. 石油与天然气地质, 2023, 44(1): 34-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||