石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (1): 164-177.doi: 10.11743/ogg20230113
丁茜1,2,3(), 王静彬1,2,3, 杨磊磊4,5, 朱东亚1,2,3, 江文滨6,7, 何治亮1,3,8()
收稿日期:
2022-05-10
修回日期:
2022-11-15
出版日期:
2023-01-14
发布日期:
2023-01-13
通讯作者:
何治亮
E-mail:dingqian.syky@sinopec.com;hezhiliang@sinopec.com
第一作者简介:
丁茜(1987—),女,博士、高级工程师,碳酸盐岩储层。E?mail: 基金项目:
Qian DING1,2,3(), Jingbin WANG1,2,3, Leilei YANG4,5, Dongya ZHU1,2,3, Wenbin JIANG6,7, Zhiliang HE1,3,8()
Received:
2022-05-10
Revised:
2022-11-15
Online:
2023-01-14
Published:
2023-01-13
Contact:
Zhiliang HE
E-mail:dingqian.syky@sinopec.com;hezhiliang@sinopec.com
摘要:
断裂体系中的流体-岩石相互作用及其成储意义一直都是业界关注的热点问题。流体沿断裂流动运移,溶解围岩矿物,沉淀新矿物,改变储集空间的形态,对碳酸盐岩储层形成与分布、油气运移及分布起十分重要的控制作用。查明深层-超深层含断裂碳酸盐岩储层的成因机理,具有重要的理论和实际意义。为此设计了基于塔里木盆地顺北地区奥陶系一间房组的高温高压溶蚀-沉淀模拟实验,并结合TOUGHREACT等数值模拟软件,以查明沿断裂流动的含CO2盐水和碳酸盐岩相互作用的过程,考察温度、压力、流体性质、物理非均质性等因素的影响程度,计算裂缝内的钙离子扩散特征以及矿物溶解-沉淀的趋势。实验和计算结果显示:实验时间内整体反应以碳酸钙溶解为主,反应后样品储集性能得到改善,样品内裂缝宽度、数量和体积增加,样品渗透率和孔隙度增加。研究明确了样品物理非均质性和流体水力性质促进主裂缝成为主要流动通道。主裂缝内流动过程和反应过程相互促进,并且共同决定了主裂缝不仅是流体流动的优势通道和水-岩反应发生的主要场所,也会是具有潜力的优势储集空间。
中图分类号:
表 2
不同温度、压力条件下流体中离子的初始浓度"
样品编号 | pH | 离子浓度 | |||||
---|---|---|---|---|---|---|---|
[H+]/(10-3 mol·L -1) | [Ca2+]/(10-4 mol·L -1) | [Na+]/(mol·L -1) | [K+]/(10-3 mol·L -1) | [HCO3-]/(10-3 mol·L -1) | [Cl-]/(mol·L -1) | ||
RS3-1, (50 ℃, 10 MPa) | 3.667 0 | 0.529 2 | 0.309 6 | 2.481 0 | 0.421 7 | 0.529 2 | 2.481 0 |
RS3-7, (80 ℃, 20 MPa) | 3.134 0 | 0.575 1 | 0.259 9 | 2.746 0 | 0.775 7 | 0.575 1 | 2.746 0 |
RS3-9, (110 ℃, 30 MPa) | 3.205 0 | 0.678 5 | 0.321 2 | 3.120 0 | 0.304 1 | 0.678 6 | 3.120 0 |
RS3-16, (140 ℃, 40 MPa) | 3.272 0 | 0.853 7 | 0.394 1 | 3.038 0 | 0.303 2 | 0.853 8 | 3.038 0 |
RS3-12, (170 ℃, 50 MPa) | 3.332 0 | 1.053 0 | 0.392 8 | 2.788 0 | 0.282 0 | 1.053 0 | 2.788 0 |
RS3-10, (200 ℃, 60 MPa) | 3.718 0 | 1.292 0 | 0.146 7 | 2.955 0 | 0.288 3 | 1.293 0 | 2.955 0 |
1 | 何治亮, 张军涛, 丁茜, 等. 深层-超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质, 2017, 38(4): 633-644, 763. |
HE Zhiliang, ZHANG Juntao, DING Qian, et al. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2017, 38(4): 633-644, 763. | |
2 | 马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发:研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质, 2020, 41(4): 655-672, 683. |
MA Yongsheng, LI Maowen, CAI Xunyu, et al. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology, 2020, 41(4): 655-672, 683. | |
3 | 马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17. |
MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1-17. | |
4 | 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111. |
QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111. | |
5 | 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355. |
LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355. | |
6 | 韩长城, 林承焰, 鲁新便, 等. 塔河油田奥陶系碳酸盐岩岩溶斜坡断控岩溶储层特征及形成机制[J]. 石油与天然气地质, 2016, 37(5): 644-652. |
HAN Changcheng, LIN Chengyan, LU Xinbian, et al. Characterization and genesis of fault-controlled karst reservoirs in Ordovician carbonate karst slope of Tahe Oilfield, Tarim Basin[J]. Oil & Gas Geology, 2016, 37(5): 644-652. | |
7 | 黄诚, 云露, 曹自成, 等. 塔里木盆地顺北地区中-下奥陶统“断控”缝洞系统划分与形成机制[J]. 石油与天然气地质, 2022, 43(1): 54-68. |
HUANG Cheng, YUN Lu, CAO Zicheng, et al. Division and formation mechanism of fault-controlled fracture-vug system of the Middle-to-Lower Ordovician, Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 54-68. | |
8 | DAVIES G R, SMITH L B, Jr. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690. |
9 | AL-KHULAIFI Y, LIN Qingyang, BLUNT M J, et al. Reservoir-condition pore-scale imaging of dolomite reaction with supercritical CO2 acidified brine: Effect of pore-structure on reaction rate using velocity distribution analysis[J]. International Journal of Greenhouse Gas Control, 2018, 68: 99-111. |
10 | NOIRIEL C, BERNARD D, GOUZE P, et al. Hydraulic properties and microgeometry evolution accompanying limestone dissolution by acidic water[J]. Oil & Gas Science and Technology-Revue d’IFP Energies Nouvelles, 2005, 60(1): 177-192. |
11 | NOIRIEL C, LUQUOT L, MADÉ B, et al. Changes in reactive surface area during limestone dissolution: An experimental and modelling study[J]. Chemical Geology, 2009, 265(1/2): 160-170. |
12 | SMITH M M, SHOLOKHOVA Y, HAO Yue, et al. CO2-induced dissolution of low permeability carbonates. Part I: Characterization and experiments[J]. Advances in Water Resources, 2013, 62(Part C): 370-387. |
13 | SMITH M M, HAO Yue, MASON H E, et al. Experiments and modeling of variably permeable carbonate reservoir samples in contact with CO2-acidified brines[J]. Energy Procedia, 2014, 63: 3126-3137. |
14 | SMITH M M, DAI Zurong, CARROLL S A. Illite dissolution kinetics from 100 to 280 ℃ and pH 3 to 9[J]. Geochimica et Cosmochimica Acta, 2017, 209: 9-23. |
15 | DENG Hang, FITTS J P, CRANDALL D, et al. Alterations of fractures in carbonate rocks by CO2-acidified brines[J]. Environmental Science & Technology, 2015, 49(16): 10226-10234. |
16 | DENG Hang, VOLTOLINI M, MOLINS S, et al. Alteration and erosion of rock matrix bordering a carbonate-rich shale fracture[J]. Environmental Science & Technology, 2017, 51(15): 8861-8868. |
17 | GOUZE P, NOIRIEL C, BRUDERER C, et al. X-ray tomography characterization of fracture surfaces during dissolution[J]. Geophysical Research Letters, 2003, 30(5): 1267. |
18 | NOIRIEL C. Resolving time-dependent evolution of pore-scale structure, permeability and reactivity using X-ray microtomography[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 247-285. |
19 | NOIRIEL C, DENG Hang. Evolution of planar fractures in limestone: The role of flow rate, mineral heterogeneity and local transport processes[J]. Chemical Geology, 2018, 497: 100-114. |
20 | NOIRIEL C, GOUZE P, BERNARD D. Investigation of porosity and permeability effects from microstructure changes during limestone dissolution[J]. Geophysical Research Letters, 2004, 31(24): L24603. |
21 | NOIRIEL C, OURSIN M, SALDI G, et al. Direct determination of dissolution rates at crystal surfaces using 3D X-ray microtomography[J]. ACS Earth and Space Chemistry, 2019, 3(1): 100-108. |
22 | NOIRIEL C, SOULAINE C. Pore-scale imaging and modelling of reactive flow in evolving porous media: Tracking the dynamics of the fluid-rock interface[J]. Transport in Porous Media, 2021, 140(1): 181-213. |
23 | 何治亮, 马永生, 朱东亚, 等. 深层-超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质, 2021, 42(3): 533-546. |
HE Zhiliang, MA Yongsheng, ZHU Dongya, et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2021, 42(3): 533-546. | |
24 | 桂亚倩, 朱光有, 阮壮, 等. 塔里木盆地塔北隆起寒武系地层水化学特征、成因及矿物溶解-沉淀模拟[J].石油与天然气地质, 2022,43(1): 196-206. |
GUI Yaqian, ZHU Guangyou, RUAN Zhuang, et al. Geochemical features and origin of the Cambrian formation water in Tabei Uplift, Tarim Basin and its mineral dissolution-precipitation simulation[J]. Oil & Gas Geology, 2022, 43(1): 196-206. | |
25 | WELLMAN T P, GRIGG R B, MCPHERSON B J, et al. Evaluation of CO2-brine-reservoir rock interaction with laboratory flow tests and reactive transport modeling[C]//International Symposium on Oilfield Chemistry, Houston, 2003. London: SPE, 2003: SPE-80228-MS. |
26 | STEEFEL C I, DEPAOLO D J, LICHTNER P C. Reactive transport modeling: An essential tool and a new research approach for the earth sciences[J]. Earth and Planetary Science Letters, 2005, 240(3/4): 539-558. |
27 | BRANTLEY S L. Kinetics of mineral dissolution[M]//BRANTLEY S, KUBICKI J, WHITE A, ed. Kinetics of Water-Rock Interaction. New York: Springer, 2008: 151-210. |
28 | LUQUOT L, GOUZE P. Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks[J]. Chemical Geology, 2009, 265(1/2): 148-159. |
29 | LUQUOT L, CARRERA J. Role of local heterogeneities on the localization of dissolution and precipitation reactions during acidic fluid percolation through different limestone samples[J]. Geophysical Research Abstracts, 2019, 21: EGU2019-5366. |
30 | LUQUOT L. Dissolution and precipitation reactions during acidic fluid percolation through different limestone samples[C]//EGU General Assembly 2020, Online: European Geosciences Union, 2020: EGU2020-18873. |
31 | CHEN Li, KANG Qinjun, CAREY B, et al. Pore-scale study of diffusion-reaction processes involving dissolution and precipitation using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2014, 75: 483-496. |
32 | NOIRIEL C, DAVAL D. Pore-scale geochemical reactivity associated with CO2 storage: New frontiers at the fluid-solid interface[J]. Accounts of Chemical Research, 2017, 50(4): 759-768. |
33 | HE Zhiliang, DING Qian, Yujin WO, et al. Experiment of carbonate dissolution: Implication for high quality carbonate reservoir formation in deep and ultradeep basins[J]. Geofluids, 2017, 2017: 8439259. |
34 | 丁茜, 何治亮, 沃玉进, 等. 高温高压条件下碳酸盐岩溶蚀过程控制因素[J]. 石油与天然气地质, 2017, 38(4): 784-791. |
DING Qian, HE Zhiliang, Yujin WO, et al. Factors controlling carbonate rock dissolution under high temperature and pressure[J]. Oil & Gas Geology, 2017, 38(4): 784-791. | |
35 | 丁茜, 何治亮, 王静彬, 等. 生烃伴生酸性流体对碳酸盐岩储层改造效应的模拟实验[J]. 石油与天然气地质, 2020, 41(1): 223-234. |
DING Qian, HE Zhiliang, WANG Jingbin, et al. Simulation experiment of carbonate reservoir modification by source rock-derived acidic fluids[J]. Oil & Gas Geology, 2020, 41(1): 223-234. | |
36 | LUQUOT L, GOUZE P, NIEMI A, et al. CO2-rich brine percolation experiments through Heletz reservoir rock samples (Israel): Role of the flow rate and brine composition[J]. International Journal of Greenhouse Gas Control, 2016, 48(Part 1): 44-58. |
37 | MOLINS S, TREBOTICH D, YANG Li, et al. Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments[J]. Environmental Science & Technology, 2014, 48(13): 7453-7460. |
38 | DENG Hang, ELLIS B R, PETERS C A, et al. Modifications of carbonate fracture hydrodynamic properties by CO2-acidified brine flow[J]. Energy & Fuels, 2013, 27(8): 4221-4231. |
39 | DENG Hang, MOLINS S, STEEFEL C, et al. A 2.5D reactive transport model for fracture alteration simulation[J]. Environmental Science & Technology, 2016, 50(14): 7564-7571. |
40 | GARCIA-RIOS M, LUQUOT L, SOLER J M, et al. Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples[J]. Chemical Geology, 2015, 414: 95-108. |
41 | GARCIA-RIOS M, LUQUOT L, SOLER J M, et al. The role of mineral heterogeneity on the hydrogeochemical response of two fractured reservoir rocks in contact with dissolved CO2 [J]. Applied Geochemistry, 2017, 84: 202-217. |
42 | 张文彪, 张亚雄, 段太忠, 等. 塔里木盆地塔河油田托甫台区奥陶系碳酸盐岩断溶体系层次建模方法[J]. 石油与天然气地质, 2022, 43(1): 207-218. |
ZHANG Wenbiao, ZHANG Yaxiong, DUAN Taizhong, et al. Hierarchy modeling of the Ordovician fault-karst carbonate reservoir in Tuoputai area, Tahe oilfield, Tarim Basin, NW China[J]. Oil & Gas Geology, 2022, 43(1): 207-218. | |
43 | 吕心瑞, 邬兴威, 孙建芳, 等. 深层碳酸盐岩储层溶洞垮塌物理模拟及分布预测[J]. 石油与天然气地质, 2022, 43(6): 1505-1514. |
Xinrui LYU, WU Xingwei, SUN Jianfang, et al. Physical simulation and distribution prediction of karst cave collapsing in deep carbonate reservoirs[J]. Oil & Gas Geology, 2022, 43(6): 1505-1514. | |
44 | 王玉伟. 顺托果勒地区奥陶系储层多成因形成机制及对油气充注的控制作用[D]. 武汉: 中国地质大学, 2019. |
WANG Yuwei. Multiple originanl mechanisms of the Ordovician reservoir and their control on hydrocarbon charging in Shuntuoguole area, Tarim Basin[D]. Wuhan: China University of Geosciences, 2019. | |
45 | 王铁冠, 宋到福, 李美俊, 等. 塔里木盆地顺南-古城地区奥陶系鹰山组天然气气源与深层天然气勘探前景[J]. 石油与天然气地质, 2014, 35(6): 753-762. |
WANG Tieguan, SONG Daofu, LI Meijun, et al. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan-Gucheng region, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 753-762. | |
46 | XU Tianfu, SONNENTHAL E, SPYCHER N, et al. TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration[J]. Computers & Geosciences, 2006, 32(2): 145-165. |
47 | YANG Leilei, YU Linjiao, LIU Keyu, et al. Coupled effects of temperature and solution compositions on metasomatic dolomitization: Significance and implication for the formation mechanism of carbonate reservoir[J]. Journal of Hydrology, 2022, 604: 127199. |
48 | YANG Leilei, ZHU Guangyou, LI Xinwei, et al. Influence of crystal nucleus and lattice defects on dolomite growth: Geological implications for carbonate reservoirs[J]. Chemical Geology, 2022, 587: 120631. |
49 | JIANG Wenbin, LIN Mian, YI Zhixing, et al. Parameter determination using 3D FIB-SEM images for development of effective model of shale gas flow in nanoscale pore clusters[J]. Transport in Porous Media, 2017, 117(1): 5-25. |
50 | CANAL J, DELGADO J, FALCÓN I, et al. Injection of CO2-saturated water through a siliceous sandstone plug from the Hontomin test site (Spain): Experiment and modeling[J]. Environmental Science & Technology, 2013, 47(1): 159-167. |
51 | DEPAOLO D J, COLE D R. Geochemistry of geologic carbon sequestration: An overview[J]. Reviews in Mineralogy and Geochemistry, 2013, 77(1): 1-14. |
52 | XU Ruina, LI Rong, MA Jin, et al. Effect of mineral dissolution/precipitation and CO2 exsolution on CO2 transport in geological carbon storage[J]. Accounts of Chemical Research, 2017, 50(9): 2056-2066. |
53 | DENG Hang, STEEFEL C, MOLINS S, et al. Fracture evolution in multimineral systems: The role of mineral composition, flow rate, and fracture aperture heterogeneity[J]. ACS Earth and Space Chemistry, 2018, 2(2): 112-124. |
54 | SJÖBERG E L, RICKARD D. The influence of experimental design on the rate of calcite dissolution[J]. Geochimica et Cosmochimica Acta, 1983, 47(12): 2281-2285. |
55 | BRADY P V, WALTHER J V. Controls on silicate dissolution rates in neutral and basic pH solutions at 25 ℃[J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 2823-2830. |
56 | CHOI J. Theoretical approach of the quartz dissolution rate under various temperature, pH and applied stress conditions[J]. Economic and Environmental Geology, 2017, 50(6): 509-515. |
57 | DACCORD G, LENORMAND R, LIÉTARD O. Chemical dissolution of a porous medium by a reactive fluid—I. Model for the “wormholing” phenomenon[J]. Chemical Engineering Science, 1993, 48(1): 169-178. |
58 | DACCORD G, LIÉTARD O, LENORMAND R. Chemical dissolution of a porous medium by a reactive fluid—II. Convection vs reaction, behavior diagram[J]. Chemical Engineering Science, 1993, 48(1): 179-186. |
59 | GOUZE P, LUQUOT L. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution[J]. Journal of Contaminant Hydrology, 2011, 120-121: 45-55. |
60 | HOEFNER M L, FOGLER H S. Pore evolution and channel formation during flow and reaction in porous media[J]. AIChE Journal, 1988, 34(1): 45-54. |
61 | NOIRIEL C, MADÉ B, GOUZE P. Impact of coating development on the hydraulic and transport properties in argillaceous limestone fracture[J]. Water Resources Research, 2007, 43(9): 09406. |
62 | AL-KHULAIFI Y, LIN Qingyang, BLUNT M J, et al. Pore-scale dissolution by CO2 saturated brine in a multimineral carbonate at reservoir conditions: Impact of physical and chemical heterogeneity[J]. Water Resources Research, 2019, 55(4): 3171-3193. |
63 | ELLIS J S, BAZYLAK A. Investigation of contact angle heterogeneity on CO2 saturation in brine-filled porous media using 3D pore network models[J]. Energy Conversion and Management, 2013, 68: 253-259. |
64 | DENG Hang, SPYCHER N. Modeling reactive transport processes in fractures[J]. Reviews in Mineralogy and Geochemistry, 2019, 85(1): 49-74. |
65 | STARCHENKO V, LADD A J C. The development of wormholes in Laboratory-Scale fractures: Perspectives from three-dimensional simulations[J]. Water Resources Research, 2018, 54(10): 7946-7959. |
66 | ANDREANI M, LUQUOT L, GOUZE P, et al. Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites[J]. Environmental Science & Technology, 2009, 43(4): 1226-1231. |
67 | ZHANG Yutian, JIANG Fei, TSUJI T. Influence of pore space heterogeneity on mineral dissolution and permeability evolution investigated using lattice Boltzmann method[J]. Chemical Engineering Science, 2022, 247: 117048. |
68 | YANG Yongfei, LI Yingwen, YAO Jun, et al. Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure[J]. Water Resources Research, 2020, 56(4): e2019WR026112. |
69 | RUIZ-AGUDO E, KUDŁACZ K, PUTNIS C V, et al. Dissolution and carbonation of portlandite [Ca(OH)2] single crystals[J]. Environmental Science & Technology, 2013, 47(19): 11342-11349. |
70 | RUIZ-AGUDO E, PUTNIS C V, PUTNIS A. Coupled dissolution and precipitation at mineral-fluid interfaces[J]. Chemical Geology, 2014, 383: 132-146. |
71 | OFFEDDU F G, CAMA J, SOLER J M, et al. Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum[J]. Beilstein Journal of Nanotechnology, 2014, 5: 1245-1253. |
72 | RENARD F, WEISS J, MATHIESEN J, et al. Critical evolution of damage toward system-size failure in crystalline rock[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1969-1986. |
73 | DE YOREO J J, VEKILOV P G. Principles of crystal nucleation and growth[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 57-93. |
74 | NOORAIEPOUR M, MASOUDI M, SHOKRI N, et al. Probabilistic nucleation and crystal growth in porous medium: New insights from calcium carbonate precipitation on primary and secondary substrates[J]. ACS Omega, 2021, 6(42): 28072-28083. |
75 |
ABBASI S, KHAMEHCHI E. Precipitation/dissolution and precipitants movement mechanisms effects on injectivity variations during diluted produced water re-injection into a layered reservoir-experimental investigation[J/OL]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects: 1-19[2022-05-01]. . DOI: 10.1080/15567036.2021.1901803 .
doi: 10.1080/15567036.2021.1901803 |
76 | SINGURINDY O, BERKOWITZ B. The role of fractures on coupled dissolution and precipitation patterns in carbonate rocks[J]. Advances in Water Resources, 2005, 28(5): 507-521. |
77 | MENEFEE A H, LI Peiyuan, GIAMMAR D E, et al. Roles of transport limitations and mineral heterogeneity in carbonation of fractured basalts[J]. Environmental Science & Technology, 2017, 51(16): 9352-9362. |
78 | DÁVILA G, LUQUOT L, SOLER J M, et al. Interaction between a fractured marl caprock and CO2-rich sulfate solution under supercritical CO2 conditions[J]. International Journal of Greenhouse Gas Control, 2016, 48(Part 1): 105-119. |
79 | LUHMANN A J, KONG Xiangzhao, TUTOLO B M, et al. Experimental dissolution of dolomite by CO2-charged brine at 100 ℃ and 150 bar: Evolution of porosity, permeability, and reactive surface area[J]. Chemical Geology, 2014, 380: 145-160. |
80 | LUQUOT L, RODRIGUEZ O, GOUZE P. Experimental characterization of porosity structure and transport property changes in limestone undergoing different dissolution regimes[J]. Transport in Porous Media, 2014, 101(3): 507-532. |
81 | EROL S, FOWLER S J, NEHLER M, et al. An analytical algorithm of porosity-permeability for porous and fractured media: Extension to reactive transport conditions and fitting via flow-through experiments within limestone and dolomite[J]. Transport in Porous Media, 2019, 129(1): 343-383. |
82 | LI Li, STEEFEL C I, YANG Li. Scale dependence of mineral dissolution rates within single pores and fractures[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 360-377. |
83 | TARTAKOVSKY A M, MEAKIN P, SCHEIBE T D, et al. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2007, 222(2): 654-672. |
84 | TARTAKOVSKY A M, MEAKIN P, SCHEIBE T D, et al. A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media[J]. Water Resources Research, 2007, 43(5): W05437. |
85 | NOIRIEL C, STEEFEL C I, YANG Li, et al. Upscaling calcium carbonate precipitation rates from pore to continuum scale[J]. Chemical Geology, 2012, 318-319: 60-74. |
86 | GODINHO J R A, WITHERS P J. Time-lapse 3D imaging of calcite precipitation in a microporous column[J]. Geochimica et Cosmochimica Acta, 2018, 222: 156-170. |
87 | 刘诗琦, 陈森然, 刘波, 等. 基于原位溶蚀模拟实验的四川盆地二叠系栖霞组-茅口组白云岩孔隙演化[J]. 石油与天然气地质, 2021, 42(3): 702-716. |
LIU Shiqi, CHEN Senran, LIU Bo, et al. Pore evolution of the Permian Qixia-Maokou Formations dolomite in Sichuan Basin based on in-situ dissolution simulation experiment[J]. Oil & Gas Geology, 2021, 42(3): 702-716. | |
88 | KASHEF-HAGHIGHI S, SHAO Yixin, GHOSHAL S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing[J]. Cement and Concrete Research, 2015, 67: 1-10. |
89 | EDERY Y, SCHER H, BERKOWITZ B. Dissolution and precipitation dynamics during dedolomitization[J]. Water Resources Research, 2011, 47(8): W08535. |
90 | VARZINA A, CIZER Ö, YU Li, et al. A new concept for pore-scale precipitation-dissolution modelling in a lattice Boltzmann framework-application to portlandite carbonation[J]. Applied Geochemistry, 2020, 123: 104786. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[8] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[9] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[10] | 屈海洲, 郭新宇, 徐伟, 李文皓, 唐松, 邓雅霓, 何仕鹏, 张云峰, 张兴宇. 碳酸盐岩微孔隙的分类、成因及对岩石物理性质的影响[J]. 石油与天然气地质, 2023, 44(5): 1102-1117. |
[11] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[12] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[13] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[14] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
[15] | 李斌, 赵星星, 邬光辉, 韩剑发, 关宝珠, 沈春光. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||