石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (4): 931-948.doi: 10.11743/ogg20210414
邱振1(), 韦恒叶2,*(), 刘翰林1, 邵男3, 王玉满1, 张磊夫1, 张琴1
收稿日期:
2021-04-27
出版日期:
2021-08-28
发布日期:
2021-08-27
通讯作者:
韦恒叶
E-mail:qiuzhen316@163.com; qiuzhen@petrochina.com.cn;weihengye@163.com
第一作者简介:
邱振(1984-), 男, 博士、高级工程师, 非常规油气沉积学。E-mail: 基金项目:
Zhen Qiu1(), Hengye Wei2,*(), Hanlin Liu1, Nan Shao3, Yuman Wang1, Leifu Zhang1, Qin Zhang1
Received:
2021-04-27
Online:
2021-08-28
Published:
2021-08-27
Contact:
Hengye Wei
E-mail:qiuzhen316@163.com; qiuzhen@petrochina.com.cn;weihengye@163.com
摘要:
非常规油气甜点段形成与有机质沉积富集过程密切相关,特别是页岩油气,它们所赋存或与之紧密联系的细粒沉积岩中总有机碳含量(TOC)一般大于3.0%。提出TOC含量≥3.0%的细粒沉积(物)岩称为异常高有机质沉积,以及异常高有机质沉积富集的概念性假设,并指出高的初级生产力水平是其形成的前提和决定性因素,缺氧的水体环境更易形成大规模异常高有机质沉积。基于对有机质沉积聚集过程相关元素的生物地球化学循环特征解剖,以四川盆地五峰组-龙马溪组为例,深入探讨高精度元素地球化学数据约束条件下的异常高有机质沉积富集过程,证实了异常高有机质沉积富集的概念性假设,并得出它们的形成是水体表层高的初级生产力及其与水体循环共同控制着的氧化还原条件这两大因素动态演化的结果。异常高有机质沉积富集过程的研究有助于深化对页岩油气甜点段形成机理的认识,是非常规油气沉积学的重要研究内容之一,可为非常规油气资源勘探开发提供重要理论支撑。
中图分类号:
表1
痕量元素和Al的地球化学数据(部分数据来自文献[26])"
元素 | 平均海水中浓度/(10-9 mol·L-1) | 海水居留时间/ka | 平均上地壳[ | 澳大利亚后太古宙平均页岩[ | 世界平均页岩[ |
Ba | 109.00 | 10 | 550.0 | 650.0 | 650.0 |
Cd | 0.62 | 50 | 0.1 | 0.1 | 0.3 |
Cr | 4.04 | 8 | 83.0 | 110.0 | 90.0 |
Cu | 2.36 | 5 | 25.0 | 50.0 | 45.0 |
Mo | 105.00 | 800 | 1.5 | 1.0 | 1.3 |
Ni | 8.18 | 6 | 44.0 | 55.0 | 68.0 |
U | 13.40 | 400 | 2.8 | 3.1 | 3.0 |
V | 39.30 | 50 | 107.0 | 150.0 | 130.0 |
Zn | 5.35 | 50 | 71.0 | 85.0 | 95.0 |
Al | 80 400.0 | 100 024.0 | 88 900.0 |
表2
华南地区五峰组-龙马溪组重要元素地球化学数据分布统计(部分数据来自文献[92-96])"
参数 | 笔石带WF1-2 | 笔石带WF3-4 | |||||||||||||||
巫溪田坝 | 石柱漆辽 | 长宁双河 | 巫溪田坝 | 石柱漆辽 | 长宁双河 | ||||||||||||
TOC/% | 1.7 (0~5) | N=22 | 2.9 (2.6~4.3) | N=6 | 2.5 (0.1~6.4) | N=16 | 4.3 (1.1~16) | N=34 | 6.9 (2.8~14) | N=15 | 3.8 (2.3~5.7) | N=31 | |||||
Babio/10-6 | 1536 (611~3 153) | N=21 | 753 (697~824) | N=6 | 523 (327~930) | N=16 | 1749 (885~2 930) | N=34 | 748 (563~878) | N=15 | 537 (226~925) | N=35 | |||||
P/10-6 | 284 (87~829) | N=20 | 189 (131~393) | N=6 | 355 (175~567) | N=14 | 146 (44~786) | N=33 | 319 (87~698) | N=13 | 572 (218~916) | N=31 | |||||
CuEF | 1.5 (0.2~6.1) | N=22 | 1.3 (0.8~2.3) | N=6 | 3.0 (0.7~5.5) | N=16 | 3.7 (0.5~9.7) | N=34 | 2.7 (0.3~5.5) | N=15 | 3.6 (1.6~6.6) | N=35 | |||||
ZnEF | 0.7 (0.2~5.3) | N=22 | 0.2 (0.1~0.4) | N=6 | 3.1 (0.5~12.4) | N=15 | 1.6 (0.3~7.2) | N=34 | 1.9 (0.2~8.5) | N=15 | 3.7 (0.3~12.4) | N=35 | |||||
MoEF | 15 (0.3~77) | N=22 | 4.1 (3.0~7.9) | N=6 | 17 (0.7~53.6) | N=16 | 72 (11~234) | N=34 | 162 (109~282) | N=15 | 87 (7.1~231) | N=31 | |||||
UEF | 5.2 (0.9~16) | N=22 | 2.9 (1.9~4.4) | N=6 | 5.1 (1~8.4) | N=16 | 15 (6.9~24) | N=34 | 13 (9.7~17) | N=15 | 14 (4.3~44) | N=31 | |||||
Corg/P | 184 (7.4~591) | N=19 | 497 (177~848) | N=6 | 188 (10~343) | N=14 | 950 (59~3 154) | N=33 | 723 (277~1 804) | N=13 | 190 (105~325) | N=31 | |||||
参数 | 笔石带LM1—5 | 笔石带LM6—8 | 笔石带LM9 | ||||||||||||||
巫溪田坝 | 石柱漆辽 | 长宁双河 | 巫溪田坝 | 巫溪田坝 | |||||||||||||
TOC/% | 5.6 (3.8~8.4) | N=19 | 6.3 (3.5~9.5) | N=14 | 5.1 (3.1~8.8) | N=23 | 2.9 (1.2~4.4) | N=24 | 0.1 (0.1~0.2) | N=5 | |||||||
Babio /10-6 | 2 370 (1 704~4 173) | N=19 | 1 269 (988~1 882) | N=14 | 638 (513~887) | N=23 | 3 822 (2 393~5 497) | N=24 | 1 901 (1 652~2 302) | N=5 | |||||||
P /10-6 | 161 (44~742) | N=19 | 293 (131~339) | N=14 | 451 (305~1 135) | N=23 | 343 (98~983) | N=24 | 528 (500~548) | N=5 | |||||||
CuEF | 0.8 (0.2~1.8) | N=19 | 1.7 (0.1~6.5) | N=14 | 3.4 (1.4~12.7) | N=23 | 0.8 (0.1~2.6) | N=24 | 0.8 (0.7~0.9) | N=5 | |||||||
ZnEF | 1.1 (0.2~7.5) | N=19 | 0.9 (0.2~1.5) | N=14 | 10.7 (2.4~100.6) | N=23 | 1.2 (0.3~3.7) | N=24 | 1.2 (0.9~1.3) | N=5 | |||||||
MoEF | 80 (7.7~332) | N=19 | 164 (38~264) | N=14 | 251 (112~859) | N=23 | 21 (2.6~42) | N=24 | 0.4 (0.3~0.7) | N=5 | |||||||
UEF | 17 (8.3~53) | N=19 | 18 (4.5~32) | N=14 | 22 (9.2~93) | N=23 | 5.0 (1.4~8.7) | N=24 | 1.1 (1.0~1.1) | N=5 | |||||||
Corg/P | 1 299 (278~2 661) | N=19 | 622 (394~1 695) | N=14 | 304 (172~461) | N=23 | 289 (108~1 078) | N=24 | 5.6 (3.8~7.7) | N=5 |
1 | 王红军, 马锋, 童晓光, 等. 全球非常规油气资源评价[J]. 石油勘探与开发, 2016, 43 (6): 850- 863. |
Wang Hongjun , Ma Feng , Tong Xiaoguang , et al. Assessment of global unconventional oil and gas resources[J]. Petroleum Exploration and Development, 2016, 43 (6): 850- 863. | |
2 | 邹才能, 邱振. 中国非常规油气沉积学新进展-"非常规油气沉积学"专辑前言[J]. 沉积学报, 2021, 39 (1): 1- 9. |
Zou Caineng , Qiu Zhen . Preface: new advances in unconventional petroleum sedimentology in China[J]. Acta Sedimentologica Sinica, 2021, 39 (1): 1- 9. | |
3 | 邹才能. 非常规油气地质[M]. 北京: 地质出版社, 2011: 1- 310. |
Zou Caineng . Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2011: 1- 310. | |
4 | 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40 (3): 451- 458. |
Jin Zhijun , Bai Zhenrui , Gao Bo , et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40 (3): 451- 458. | |
5 | 杨华, 李士祥, 刘显阳, 等. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34 (1): 1- 11. |
Yang Hua , Li Shixiang , Liu Xianyang , et al. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34 (1): 1- 11. | |
6 | 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45 (4): 1- 14. |
Ma Yongsheng , Cai Xunyu , Zhao Peirong . China's shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45 (4): 1- 14. | |
7 | 焦方正. 非常规油气之"非常规"再认识[J]. 石油勘探与开发, 2019, 46 (5): 803- 810. |
Jiao Fangzheng . Re-recognition of "unconventional" in unconventional oil and gas[J]. Petroleum Exploration and Development, 2019, 46 (5): 803- 810. | |
8 | 马新华, 谢军, 雍锐. 四川盆地南部龙马溪组页岩气地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47 (5): 841- 855. |
Ma Xinhua , Xie Jun , Yong Rui . Geological characteristics and high production control factors of shale gas in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47 (5): 841- 855. | |
9 | 邱振, 邹才能. 非常规油气沉积学: 内涵与展望[J]. 沉积学报, 2020, 38 (1): 1- 29. |
Qiu Zhen , Zou Caineng . Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38 (1): 1- 29. | |
10 | 邱振, 邹才能, 王红岩, 等. 中国南方五峰组-龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31 (2): 163- 175. |
Qiu Zhen , Zou Caineng , Wang Hongyan , et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China[J]. Natural Gas Geoscience, 2020, 31 (2): 163- 175. | |
11 | Tyson R V. Organic matter preservation: the effects of oxygen deficiey[M]//Tyson R V. Sedimentary organic matter: Organic facies and palynofacies. Berlin: Springer-Verlag, Chapman and Hall, 1995: 119-142. |
12 | Algeo T J , Ingall E . Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric PO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256 (3): 130- 155. |
13 | 姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积研究的几个问题[J]. 石油学报, 2013, 34 (6): 1031- 1039. |
Jiang Zaixing , Liang Chao , Wu Jing , et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34 (6): 1031- 1039. | |
14 | 冉波, 刘树根, 孙玮, 等. 四川盆地及周缘下古生界五峰组-龙马溪组页岩岩相分类[J]. 地学前缘, 2016, 23 (2): 96- 107. |
Ran Bo , Liu Shugen , Sun Wei , et al. Lithfacies classification of shales of the Lower PaleozoicWufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science Frontiers, 2016, 23 (2): 96- 107. | |
15 | 刘招君, 杨虎林, 董清水, 等. 中国油页岩[M]. 北京: 石油工业出版社, 2009: 38- 116. |
Liu Zhaojun , Yang Hulin , Dong Qingshui , et al. Oil Shale in China[M]. Beijing: Petroleum Industry Press, 2009: 27- 27. | |
16 |
Xu Jinjun , Liu Zhaojun , Bechtel A , et al. Organic matter accumulation in the Upper Cretaceous Qingshankou and Nenjiang Formations, Songliao Basin (NE China): Implications from highresolution geochemical analysis[J]. Marine and Petroleum Geology, 2019, 102, 187- 201.
doi: 10.1016/j.marpetgeo.2018.12.037 |
17 | 郑国栋, 孟庆涛, 刘招君. 松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息[J]. 吉林大学学报(地球科学版), 2020, 50 (2): 392- 404. |
Zheng Guodong , Meng Qingtao , Liu Zhaojun . Geochemical characteri-stics and paleolimnological information of oil shale in 1st member of Qingshankou Formation in Northern Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2020, 50 (2): 392- 404. | |
18 |
Qiu Zhen , Zou Caineng . Controlling factors on the formation and distribution of "sweet-spot areas" of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2020, 194, 103989.
doi: 10.1016/j.jseaes.2019.103989 |
19 |
Li Jinbu , Wang Min , Lu Shuangfang , et al. A new method for predicting sweet spots of shale oil using conventional well logs[J]. Marine and Petroleum Geology, 2020, 113, 104097.
doi: 10.1016/j.marpetgeo.2019.104097 |
20 |
Bhattacharya S , Carr T R . Integrated data-driven 3D shale lithofacies modeling of the Bakken Formation in the Williston basin, North Dakota, United States[J]. Journal of Petroleum Science and Enginee-ring, 2019, 177, 1072- 1086.
doi: 10.1016/j.petrol.2019.02.036 |
21 |
Rageneau O , Tréguer P , Leynaert A , et al. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global and Planetary Change, 2000, 26 (4): 317- 365.
doi: 10.1016/S0921-8181(00)00052-7 |
22 | Levinton J S . Marine biology: function, biodiversity, ecology[M]. Oxford: Oxford University Pres, 2008: 1- 640. |
23 |
Tribovillard N , Algeo T J , Lyons T W , et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232 (1-2): 12- 32.
doi: 10.1016/j.chemgeo.2006.02.012 |
24 | Calvert SE, Pedersen T. Elemental proxies for paleoclimatic and palaeoceanographic variability in marine sediments: interpretation and application[M]//Hillaire-Marcel C, Vernal A. Developments in marine geology, proxies in Late Cenozoic Paleoceanography. Oxford: Elsevie, 2007. |
25 |
Algeo T J , Li C . Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta, 2020, 287, 8- 26.
doi: 10.1016/j.gca.2020.01.055 |
26 |
Algeo T J , Tribovillard N . Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268 (3-4): 211- 225.
doi: 10.1016/j.chemgeo.2009.09.001 |
27 |
Keeling RF , Körtzinger A , Gruber N . Ocean deoxygenation in a warming world[J]. Annual Review of Marine Science, 2010, 2, 199- 229.
doi: 10.1146/annurev.marine.010908.163855 |
28 |
Piper D Z , Calvert S E . A marine biogeochemical perspective on black shale deposition[J]. Earth-Science Reviews, 2009, 95 (1-2): 63- 96.
doi: 10.1016/j.earscirev.2009.03.001 |
29 |
Crusius J , Calvert S E , Pedersen T F , et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and anoxic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145 (1-4): 65- 78.
doi: 10.1016/S0012-821X(96)00204-X |
30 | Correll D L . The role of phosphorus in the Eutrophication of receiving waters: A review[J]. Journal of Environmental Quality, 1998, 27 (2): 261- 266. |
31 | Broecker W S , Peng T H . Tracers in the Sea[M]. New York: Eldigio Press, 1982: 1- 690. |
32 |
Tyrrell T . The relative influences of nitrogen and phosphorus on ocean primary production[J]. Nature, 1999, 400, 525- 531.
doi: 10.1038/22941 |
33 |
Tsandev I , Slomp C P . Modeling phosphorus cycling and carbon burial during Cretaceous Oceanic Anoxic Events[J]. Earth and Planetary Science Letters, 2009, 286 (1-2): 71- 79.
doi: 10.1016/j.epsl.2009.06.016 |
34 | Wallmann K . Phosphorus imbalance in the global ocean?[J]. Global Biogeochemical Cycles, 2010, 24 (4): GB4030. |
35 |
Van Cappellen P , Ingall E D . Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycle of carbon and phosphorus[J]. Paleoceanography, 1994, 9 (5): 677- 692.
doi: 10.1029/94PA01455 |
36 |
Slomp C , Van Cappellen P . The global marine phosphorus cycle: sensitivity to oceanic circulation[J]. Biogeosciences, 2007, 4, 155- 171.
doi: 10.5194/bg-4-155-2007 |
37 |
Spivakov B Y , Maryutina T A , Huntau H . Phosphorus speciation in water and sediments[J]. Pure and Applied Chemistry, 1999, 71 (11): 2161- 2176.
doi: 10.1351/pac199971112161 |
38 |
Ruttenberg K C , Berner R A . Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments[J]. Geochimica et Cosmochimica Acta, 1993, 57 (5): 991- 1007.
doi: 10.1016/0016-7037(93)90035-U |
39 |
Egger M , Jilbert T , Behrends T , et al. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments[J]. Geochimica et Cosmochimica Acta, 2015, 169, 217- 235.
doi: 10.1016/j.gca.2015.09.012 |
40 |
Xiong Y , Guilbaud R , Peacock C L , et al. Phosphorus cycling in Lake Cadagno, Switzerland: A low sulfate euxinic ocean analogue[J]. Geochimicaet Cosmochimica Acta, 2019, 251, 116- 135.
doi: 10.1016/j.gca.2019.02.011 |
41 |
Poulton S W . Biogeochemistry: Early phosphorus redigested[J]. Nature Geoscience, 2017, 10, 75.
doi: 10.1038/ngeo2884 |
42 |
Alcott L J , Mills B J W , Poulton S W . Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling[J]. Science, 2019, 366 (6471): 1333- 1337.
doi: 10.1126/science.aax6459 |
43 | Redfield A C , Ketchum B H , Richards F A . The influence of organisms on the composition of seawater[M]. New York: Wiley, 1963: 26- 77. |
44 | Li Y H , Peng T H . Latitudinal change of remineralization ratios in the oceans and its implication for nutrient cycles[J]. Global Biogeoche-mical Cycles, 2002, 16 (4): 1130- 1145. |
45 |
Van der Zee C , Slomp C P , Van Raaphorst W . Authigenic P formation and reactive P burial in sediments of the Nazare canyon on the Iberian margin (NE Atlantic)[J]. Marine Geology, 2002, 185 (3-4): 379- 392.
doi: 10.1016/S0025-3227(02)00189-5 |
46 |
Anderson L A , Sarmiento J L . Refield ratios of remineralization determined by nutrient data analysis[J]. Global Biogeochemical Cycles, 1994, 8 (1): 65- 80.
doi: 10.1029/93GB03318 |
47 |
Vance D , de Souza G F , Zhao Y , et al. The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific[J]. Earth and Planetary Science Letters, 2019, 525, 115748.
doi: 10.1016/j.epsl.2019.115748 |
48 | Bruland K W, Middag R, Lohan M C. Controls of trace metals in seawate[M]//Holland H D, Turekian K K. Treatise on geochemistry (2nd edition). Holland: Elsevier, 2014. |
49 | Morel F M M, Milligan A J, Saito M A. Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of the major nutrients[M]//Holland H D, Turekian KK. Treatise on Geochemistry (2nd edition). Holland: Elsevier, 2014. |
50 |
Boyle E A , Sclater F R , Edmond J M . The distribution of dissolved copper in the Pacific[J]. Earth and Planetary Science Letters, 1977, 37 (1): 38- 54.
doi: 10.1016/0012-821X(77)90144-3 |
51 |
John S G , Conway T M . A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes[J]. Earth and Planetary Science Letters, 2014, 394, 159- 167.
doi: 10.1016/j.epsl.2014.02.053 |
52 | Nameroff T J , Calvert S E , Murray J W . Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals[J]. Paleoceanography, 2004, 19 (1): PA1010. |
53 |
Naimo D , Adamo P , Imperato M , Stanzione D . Mineralogy and geochemistry of a marine sequence, Gulf of Salerno, Italy[J]. Quaternary International, 2005, 140-141, 53- 63.
doi: 10.1016/j.quaint.2005.05.004 |
54 |
Huerta-Diaz M A , Morse J W . Pyritisation of trace metals in anoxic marine sediments[J]. Geochimica et Cosmochimica Acta, 1992, 56, 2681- 2702.
doi: 10.1016/0016-7037(92)90353-K |
55 |
Pinedo-Gonzalez P , West A J , Tovar-Sanchez A , et al. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplantonic biomass and productivity[J]. Global Biogeochemistry Cycles, 2015, 29 (10): 1763- 1781.
doi: 10.1002/2015GB005149 |
56 | Moore J W , Ramamoorthy S . Heavy metals in natural waters: applied monitoring and impact assessment[M]. New York: Springer, 1984: 1- 268. |
57 | Goldman C R , Horne A J . Limnology[M]. New York: McGraw-Hill, 1983: 1- 464. |
58 | Goldman C R. Micronutrient limiting factors and their detection in natural phytoplankton populations[M]//Goldman CR. Primary productivity in aquatic environments. California: University of California Press, 1966. |
59 |
Sunda W G , Huntsman S A . Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications[J]. Limnology and Oceanography, 1995, 40, 1404- 1417.
doi: 10.4319/lo.1995.40.8.1404 |
60 | Wang W X , Guo L . Bioavailability of colloid-bound Cd, Cr and Zn to marine plankton[M]. New York: Marine Ecology Progress Series, 2000. |
61 |
Calvert S E , Pedersen T F . Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record[J]. Marine Geology, 1993, 113 (1-2): 67- 88.
doi: 10.1016/0025-3227(93)90150-T |
62 |
Algeo T J , Maynard J B . Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206 (3-4): 289- 318.
doi: 10.1016/j.chemgeo.2003.12.009 |
63 |
Morse J W , Luther Ⅲ G W . Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63 (19-20): 3373- 3378.
doi: 10.1016/S0016-7037(99)00258-6 |
64 |
Chan L H , Drummond D , Edmond J M , et al. On the barium data from the Atlantic GEOSECS Expedition[J]. Deep Sea Research, 1977, 24 (7): 613- 649.
doi: 10.1016/0146-6291(77)90505-7 |
65 |
Paytan A , Griffith E . Marine barite: recorder of variations in ocean export productivity[J]. Deep-Sea Research Part ii-Topical Studies in Oceanography, 2007, 54 (5-7): 687- 705.
doi: 10.1016/j.dsr2.2007.01.007 |
66 |
Dehairs F , Goeyens L , Stroobants N , et al. On suspended barite and the oxygen minimum in the Southern Ocean[J]. Global Biogeochemistry Cycles, 1990, 4 (1): 85- 102.
doi: 10.1029/GB004i001p00085 |
67 |
Bishop J K B . The barite-opal-organic carbon association in oceanic particulate matter[J]. Nature, 1988, 332, 341- 343.
doi: 10.1038/332341a0 |
68 |
Church T M Wolgemuth K . Marine barite saturation[J]. Earth and Planetary Science Letters, 1972, 15 (1): 35- 44.
doi: 10.1016/0012-821X(72)90026-X |
69 |
Dymond J , Suess E , Lyle M . Barium in deep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7 (2): 163- 181.
doi: 10.1029/92PA00181 |
70 | McManus J , Berelson W M , Klinkhammer G P , et al. Remobilization of barium in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58 (22): 4849- 4907. |
71 |
Francois R , Honjo S , Manganini S , et al. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction[J]. Global Biogeochemistry Cycles, 1995, 9 (2): 289- 303.
doi: 10.1029/95GB00021 |
72 |
Griffith E , Paytan A . Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications[J]. Sedimentology, 2012, 59 (6): 1817- 1835.
doi: 10.1111/j.1365-3091.2012.01327.x |
73 |
Paytan A , Kastner M , Chavez F P . Glacial to interglacial fluctuation in productivity in the Equitorial Pacific as indicated by marine barite[J]. Science, 1996, 274, 1355- 1357.
doi: 10.1126/science.274.5291.1355 |
74 |
Schoepfer S D , Shen J , Wei H , et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth Science Reviews, 2015, 149, 23- 52.
doi: 10.1016/j.earscirev.2014.08.017 |
75 | Von Breymann M T, Emeis K C, Suess E. Water depth and diagenetic constraints on the use of barium as a palaeoproductivity indicator[M]//Summerhayes C P, Prell W L, Emeis K C. Upwelling Systems: Evolution since the Early Miocene. London: Geological Society, 1992. |
76 |
Zheng Y , Anderson R F , van Geen A , et al. Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica et Cosmochimica Acta, 2000, 64 (24): 4165- 4178.
doi: 10.1016/S0016-7037(00)00495-6 |
77 |
Morford J L , Martin W R , Carney C M . Uranium diagenesis in sediments underlying bottom waters with high oxygen content[J]. Geochimica et Cosmochimica Acta, 2009, 73 (10): 2920- 2937.
doi: 10.1016/j.gca.2009.02.014 |
78 |
Helz G R , Miller C V , Charnock J M , Mosselmans J L W , et al. Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidences[J]. Geochimica et Cosmochimica Acta, 1996, 60 (19): 3631- 3642.
doi: 10.1016/0016-7037(96)00195-0 |
79 |
Tribovillard N , Riboulleau A , Lyons T , et al. Enhanced trapping of molybdenum by sulfurized organic matter of marine origin as recorded by various Mesozoic formations[J]. Chemical Geology, 2004, 213, 385- 401.
doi: 10.1016/j.chemgeo.2004.08.011 |
80 |
Klinkhammer G P , Palmer M R . Uranium in the oceans: where it goes and why[J]. Geochimica et Cosmochimica Acta, 1991, 55 (7): 1799- 1806.
doi: 10.1016/0016-7037(91)90024-Y |
81 |
Morford J L , Martin W R , Francois R , Carney C M . A model for uranium, rhenium, and molybdenum diagenesis in marine sediments based on results from coastal locations[J]. Geochimica et Cosmochimica Acta, 2009, 73 (10): 2938- 2960.
doi: 10.1016/j.gca.2009.02.029 |
82 |
Johnson K S , Berelson W M , Coale K H , et al. Manganese flux from continental margin sediments in a transect through the oxygen minimum zone[J]. Science, 1992, 257 (5074): 1242- 1245.
doi: 10.1126/science.257.5074.1242 |
83 |
Morford J L , Emerson S . The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63 (11-12): 1735- 1750.
doi: 10.1016/S0016-7037(99)00126-X |
84 | Algeo T J , Lyons T W . Mo-total organic carbon covariation in modern anoxic marine environments: implication for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21 (1): PA1016. |
85 |
Jones B , Manning D A C . Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111 (1-4): 111- 129.
doi: 10.1016/0009-2541(94)90085-X |
86 | McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry Geophysics Geosystems, 2001, 2(4): 2000GC000109. |
87 | Taylor S R , McLennan S M . The continental crust: Its composition and evolution[M]. United States: Blackwell, Malden, Mass, 1985: 1- 312. |
88 | Ahrens LH, Press F, Runcom SK, Urey HC (Eds. ), Physics and Chemistry of the Earth[M]//Wedepohl K H. Environmental influences on the chemical composition of shales and clays. Oxford: Pergamon, 1971: 305-333. |
89 | Wedepohl K H. The composition of the upper Earth's crust and the natural cycles of selected metals. In: Merian E (Eds. ), Metals and their Compounds in the Environment[M]. Weinheim: VCH-Verlagsgesellschaft, 1991: 3-17. |
90 |
Tribovillard N , Algeo T J , Baudin F , Riboulleau A . Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325, 46- 58.
doi: 10.1016/j.chemgeo.2011.09.009 |
91 | 陈旭, 樊隽轩, 张元动, 等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39 (4): 351- 358. |
Chen Xu , Fan Junxuan , Zhang Yuandong , et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of stratigraphy, 2015, 39 (4): 351- 358. | |
92 |
Zou C N , Qiu Z , Poulton S W , et al. Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction[J]. Geology, 2018, 46 (6): 535- 538.
doi: 10.1130/G40121.1 |
93 |
Zou C N , Qiu Z , Wei H Y , et al. Euxinia caused the Late Ordovician extinction: Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511, 1- 11.
doi: 10.1016/j.palaeo.2017.11.033 |
94 | 邱振, 江增光, 董大忠, 等. 巫溪地区五峰组-龙马溪组页岩有机质沉积模式[J]. 中国矿业大学学报, 2017, 46 (5): 1134- 1143. |
Qiu Zhen , Jiang Zengguang , Dong Dazhong , et al. Organic matter enrichment model of the shale in Wufeng-Longmachi Formation of Wuxi area[J]. Journal of China University of Mining & Technology, 2017, 46 (5): 134- 1143. | |
95 | 邱振, 卢斌, 陈振宏, 等. 火山灰沉积与页岩有机质富集关系探讨-以五峰组-龙马溪组含气页岩为例[J]. 沉积学报, 2019, 37 (6): 1296- 1308. |
Qiu Zhen , Lu Bin , Chen Zhenhong , et al. Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37 (6): 1296- 1308. | |
96 |
Lu Bin , Qiu Zhen , Zhang Baohua , et al. Geochemical characteristics and geological significance of the bedded chert during the Ordovician and Silurian transition in the Shizhu area, Chongqing, South China[J]. Canadian Journal of Earth Sciences, 2019, 56 (4): 419- 430.
doi: 10.1139/cjes-2018-0160 |
97 | 戎嘉余, 黄冰. 华南奥陶纪末生物大灭绝的肇端标志[J]. 地质学报, 2019, 93 (3): 509- 527. |
Rong Jiayu , Huang Bing . An indicator of the onset of the end Ordovician mass extinction in South China[J]. Acta Geologica Sinica, 2019, 93 (3): 509- 527. | |
98 |
Rong Jiayu , Harper D A T , Huang Bing , et al. The latest Ordovician Hirnantian brachiopod faunas: New global insights[J]. Earth-Science Reviews, 2020, 208, 103280.
doi: 10.1016/j.earscirev.2020.103280 |
99 |
Stockey R G , Cole D B , Planavsky N J , et al. Sperling E A. Persistent global marine euxinia in the early Silurian[J]. Nature Communications, 2020, 11, 1804.
doi: 10.1038/s41467-020-15400-y |
100 | Richards F A. The enhanced preservation of organic matter in anoxic marine environments[M]//Hood DW. Organic matter in natural waters. University of Alaska: Occasional Publication of the Institute of Marine Science, 1976, 1: 399-411. |
101 | Slater R D. Kroopnick R. Controls on the dissolved oxygen distribution and organic carbon deposition in the Arabian Sea[M]//Haq B U, Milliman JD. Marine geology and oceanography of Arabian Sea and Coastal Pakistan. New York: Van Nostrand Reinhold, 1984: 305-313. |
102 | Raiswell R , Buckley F , Berner R A , et al. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation[J]. Journal of Sedimentary Petrology, 1988, 58 (5): 812- 819. |
103 |
Lash G G , Blood D R . Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennylvanian, Appalachian basin[J]. Marine and Petrleum Geology, 2014, 57, 244- 263.
doi: 10.1016/j.marpetgeo.2014.06.001 |
104 | Tyson RV. The genesis and palynofacies charateristics of marine petroleum source rocks[M]//Brooks J, Fleet AJ. Marine petroleum source rocks. London: Geological Society Special Publication, 1987. |
105 |
Schulte S , Rostek F , Bard E , et al. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea[J]. Earth and Planetary Science Letters, 1999, 173 (3): 205- 221.
doi: 10.1016/S0012-821X(99)00232-0 |
106 |
Schulte P , Schwark L , Stassen P , et al. Black shale formation during the Latest Danian Event and the Paleocene-Eocene Thermal Maximum in central Egypt: Two of a kind?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 371, 9- 25.
doi: 10.1016/j.palaeo.2012.11.027 |
107 |
Karstensen J , Stramma L , Visbeck M . Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans[J]. Progress Oceanography, 2008, 77 (4): 331- 350.
doi: 10.1016/j.pocean.2007.05.009 |
108 | Li C , Love G D , Lyons T W , et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328 (5874): 80- 83. |
109 |
Glenn C R , Arthur M A . Sedimentary and geochemical indicators of productivity and oxygen contents in modern and ancient basins: the Holocene Black Sea as the "type" anoxic basin[J]. Chemical Geology, 1985, 48 (1-4): 325- 354.
doi: 10.1016/0009-2541(85)90057-9 |
110 |
Murray J W , Jannasch H W , Honjo S , et al. Unexpected changes in the oxic/anoxic interface in the Black Sea[J]. Nature, 1989, 338, 411- 413.
doi: 10.1038/338411a0 |
111 |
Sageman B B , Murphy A E , Werne J P , et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin[J]. Chemical Geology, 2003, 195 (1-4): 229- 273.
doi: 10.1016/S0009-2541(02)00397-2 |
112 |
Cebrian J . Variability and control of carbon consumption, export and accumulation in marine communities[J]. Limnology and Oceanography, 2002, 47 (1): 11- 22.
doi: 10.4319/lo.2002.47.1.0011 |
113 | Duarte C M , Cebrian J . The fate of marine autotrophic production[J]. Limnology and Oceanography, 1996, 41 (8): 1759- 1766. |
114 |
Middleburg J J , Soetaert K , Herman P M J . Empirical relationships for use in global diagenetic models[J]. Deep-sea Research I, 1997, 44 (2): 327- 344.
doi: 10.1016/S0967-0637(96)00101-X |
115 |
Tyson RV . Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study[J]. Organic Geochemistry, 2001, 32 (2): 333- 339.
doi: 10.1016/S0146-6380(00)00161-3 |
116 | Nielsen S L, Pedersen M F, Banta G T. Attempting a synthesis-plant/nutrient interactions[M]//Nielsen SL, Banta GT, Pedersen MF. Estuarine nutrient cycling: The influence of primary producer. London: Kluwer Academic Publishers, 2004: 281-292. |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[3] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[4] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[5] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[6] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[7] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[8] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[9] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[10] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[11] | 施振生, 赵圣贤, 周天琪, 孙莎莎, 袁渊, 张成林, 李博, 祁灵. 海相含气页岩水平层理类型、成因及其页岩气意义[J]. 石油与天然气地质, 2023, 44(6): 1499-1514. |
[12] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[13] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
[14] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[15] | 张谦, 金之钧, 朱如凯, 刘全有, 张瑞, 王冠平, 陈万利, Littke Ralf. 岩石热解方法应用于页岩油气研究需注意的几个问题[J]. 石油与天然气地质, 2023, 44(4): 1020-1032. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||