石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (2): 251-264.doi: 10.11743/ogg20220201
朱如凯1,2,3(), 李梦莹1, 杨静儒1, 张素荣1, 蔡毅1, 曹琰3, 康缘3
收稿日期:
2021-11-09
修回日期:
2022-01-20
出版日期:
2022-04-01
发布日期:
2022-03-11
第一作者简介:
朱如凯(1968—),男,博士、教授级高级工程师,沉积储层与非常规油气地质研究。E?mail: 基金项目:
Rukai Zhu1,2,3(), Mengying Li1, Jingru Yang1, Surong Zhang1, Yi Cai1, Yan Cao3, Yuan Kang3
Received:
2021-11-09
Revised:
2022-01-20
Online:
2022-04-01
Published:
2022-03-11
摘要:
细粒沉积岩在全球不同地质时代广泛分布,约占全球各类沉积岩分布的2/3以上。细粒沉积学是研究细粒沉积岩的物质成分、结构构造、分类和成因、沉积过程与分布模式的基础学科。细粒沉积岩的形成与分布受构造沉积背景、物源、气候变化、水动力条件、火山活动、海底(湖底)热液活动等影响,时空变化大,有机质分布非均质性强,纹层结构及组合类型差异大,确定不同水体环境有机质形成和保存作用机理、纹层结构成因类型及沉积动力条件、沉积模式是其关键科学问题。近年来,在细粒沉积岩石学及分类系统、层序地层格架与时空分布、沉积古水深与古环境、纹层结构及组合类型、泥页岩实验沉积学与沉积动力条件、有机质富集主控因素等方面取得了重要进展。未来将重点关注术语规范与分类、页岩层系旋回地层与层序地层格架、古气候与沉积模式、有机质富集机理、纹层类型及组合的微观观察与宏观分布的测井评价预测等方面研究。细粒沉积学的发展,对于盆地内富有机质页岩分布预测、页岩油气甜点段/区评价有重要的指导意义,将推动常规和非常规油气勘探进入新阶段。
中图分类号:
表1
沉积环境判识主要参数与方法"
古环境信息 | 研究方法与手段 |
---|---|
古气候 | 14C、C3植物、Sr/Cu、Pb、Cs、孢粉分析、纹层泥、粘土矿物、粒度分析、XPF、古地磁、生物组合 |
古生产力 | Cl、Br、Ag、Cd、Mo、Mn、Cu、Co、Ba等的含量,U和Th的测井曲线 |
古盐度 | Sr/Ba、Sr/Ca、B、Ca、同位素法(O、C、S)、Rb/K、沉积磷酸盐法、植烷、伽马蜡烷、藿烷 |
古氧化还原性 | Pr/Ph,有机C/S,C36藿烷,V/(V+Ni),V/Cr,Ni/Co,U/Th,Au,∑REE,U,V/Ni, Ba/Al,Ba/Ca,U、Mo、Mn、铁组合 |
古生物 | 生态分析、遗迹化石标志 |
古水温 | 氧同位素比值法、生物化石中δ18O |
古水深 | 生态分析法,遗迹化石标志,沉积物分布,Mo、Co、Cu、Ba、Pr、U、Sn等,Co含量推测法 |
湖盆地形 | 地层厚度校正、古湖水深校正 |
物源分析 | 岩石类型、矿物组分、重矿物类型及组合、粒度分布、稀土配分、泥岩微量元素变化、古流向特征和砂体展布方向 |
沉积速率 | DOP、Ua、地层划分法分析 |
事件作用 | 火山喷发、湖底热液活动 |
1 | Krumbein W C. The dispersion of fine⁃grained sediments for mechanical analysis[J]. Journal of Sedimentary Research, 1933, 3(3): 121-135. |
2 | Picard M D. Classification of fine⁃grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195. |
3 | 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6): 1031-1039. |
Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon⁃bearing fine⁃grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039. | |
4 | 袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式—以鄂尔多斯盆地延长组长7油层组为例[J].石油勘探与开发,2015,42(1): 34-43. |
Yuan Xuanjun, Lin Senhu, Liu Qun, et al.Lacustrine fine⁃grained sedimentary features and organic⁃rich shale distribution pattern: A case study of Chang7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Deve⁃lopment, 2015, 42(1): 34-43. | |
5 | Gorsline D S. Introduction to a symposium on fine⁃grained sedimentology[J]. Geo⁃Marine Letters, 1984, 4: 133-138. |
6 | Schieber J, Zimmerle W, Sthi P. Shales and mudstones: Vol.1: Basin studies, sedimentology and paleonotology[J]. Stuttgart: Sch⁃weizerbart Science Publishers, 1998. |
7 | Schieber J, Baird G. On the origin and significance of pyrite spheres in Devonian black shales of North America[J]. Journal of Sedimentary Research, 2001, 71: 155-166. |
8 | Sorby H C. On the application of quantitative methods to the study of the structure and history of rocks[J]. Quarterly Journal of the Geological Society, 1908, 64: 171-233. |
9 | Potter P E, Maynard J B, Pryor W A. Sedimentology of shale: Study guide and reference source[M]. New York: Springer⁃Verlag, 1980. |
10 | O’Brien N R, Slatt R M. Argillaceous rock atlas[M]. New York:Springer⁃Verlag, 1990. |
11 | Potter P E, Maynard J B, Depetris P J. Mud and Mudstone⁃Introduction and Overview[M]. Berlin Heideberg: Spring⁃Verlag, 2005. |
12 | Lazari O R, Bohacs K M, Schieber J, et al. Mudstone primer: Li⁃thofacies variations, diagnostic criteria, and sedimentologic⁃stratigraphic implications at lamina to bedset scales[M].USA: SEPM Concepts in Sedimentology and Paleontology, 2015. |
13 | Larsen D, Egenhoff S O, Fishman N S. Paying Attention to Mudrocks[M]. USA:The Geological Society of America, 2015. |
14 | Lemons D R, Chan M A. Facies architecture and sequence stratigraphy of fine⁃grained lacustrine deltas along the eastern margin of late Pleistocene Lake Bonneville, northern Utah and southern Idaho[J]. AAPG Bulletin, 1999, 83(4): 635-665. |
15 | 赵文智,朱如凯,胡素云,等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发,2020,47(6): 1079-1089. |
Zhao Wenzhi, Zhu Rukai, Hu Suyun, et al. Accumulation contribution differences between lacustrine organic⁃rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089. | |
16 | 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1): 14-26. |
Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. | |
17 | Zou Caineng, Zhu Rukai, Chen Zhongqiang, et al. Organic⁃matter⁃rich shales of China[J]. Earth⁃Science Reviews, 2019, 189: 51-78. |
18 | 贾承造,郑民,张永峰. 非常规油气地质学重要理论问题[J]. 石油学报,2014,35(1): 1-10. |
Jia Chengzao, Zheng Min, Zhang Yongfeng. Four important theoretical issue of unconventional petroleum geology[J]. ACTA Petrolei Sinica, 2014, 35(1): 1-10. | |
19 | Sun Longde, Fang Chaoliang, Li Feng, et al. Innovations and challenges of sedimentology in oil and gas exploration and development[J]. Petroleum Exploration and Development, 2015, 42(2): 143-151. |
20 | 朱如凯,邹才能,袁选俊,等. 中国能源沉积学研究进展与发展战略思考[J]. 沉积学报,2017,35(5): 1004-1015. |
Zhu Rukai, Zou Caineng, Yuan Xuanjun, et al. Research progress and development strategic thinking on energy sedimentology[J]. ACTA Sedimentologic Sinica, 2017, 35(5): 1004-1015. | |
21 | 朱筱敏,董艳蕾,刘成林,等. 中国含油气盆地沉积研究主要科学问题与发展分析[J]. 地学前缘,2021,28(1): 1-11. |
Zhu Xiaomin, Dong Yanlei, Liu Chenglin, et al. Major challenges and development in Chinese sedimentological research on petroliferous basins[J]. Earth Science Frontiers, 2021, 28(1): 1-11. | |
22 | Milliken K. A compositional classification for grain assemblages in fine⁃grained sediments and sedimentary rocks⁃reply[J]. Journal of sedimentary research, 2014, 86: 6-10. |
23 | Folk R L. The distinction between grain size and mineral composition in sedimentary⁃rock nomenclature[J]. The Journal of Geology, 1954, 62(4): 344-359. |
24 | Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing key attributes of fine⁃grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85: 230-246. |
25 | Wilson R D, Chitale J, Huffman K, et al. Evaluating the depositional environment, lithofacies variation, and diagenetic processes of the Wolfcamp B and lower Spraberry intervals in the Midland Basin: Implications for reservoir quality and distribution[J]. AAPG Bulletin, 2020, 104(6): 1287-1321. |
26 | 刘忠宝,刘光祥,胡宗全,等. 陆相页岩层系岩相类型、组合特征及其油气勘探意义-以四川盆地中下侏罗统为例[J]. 天然气工业,2019,39(12): 10-21. |
Liu Zhongbao, Liu Guangxiang, Hu Zongquan, et al. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: A case study of the Middle and Lower Jurassic strata in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 10-21. | |
27 | Abouelresh M O, Slatt R M. Lithofacies and sequence stratigraphy of the Barnett Shale in east⁃central Fort Worth Basin, Texas[J]. The American Association of Petroleum Geologists, 2012, 1-22. |
28 | Hemmesch N T, Harris N B, Mnich C A, et al. A sequence⁃stratigraphic framework for the Upper Devonian Woodford Shale, Permian Basin, west Texas[J]. The American Association of Petroleum Geologists, 2014, 23-47. |
29 | 王玉满,董大忠,李新景,等. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J]. 天然气工业,2015,35(3): 12-21. |
Wang Yuman, Dong Dazhong, Li Xinjing, et al. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2015, 35(3): 12-21. | |
30 | 王冠平,朱彤,王红亮,等. 海相页岩综合层序地层划分及垂向分布特征-以川东南地区五峰组-龙马溪组为例[J]. 沉积学报,2019,37(2): 330-344. |
Wang Guanping, Zhu Tong, Wang Hongliang, et al. Integrated sequence stratigraphic division and vertical distribution characteristics of marine shale: A case study of the Wufeng formation⁃Longmaxi formation in southeastern Sichuan basin[J]. ACTA Sedimentologic Sinica, 2019, 37(2): 330-344. | |
31 | 蒲秀刚,韩文中,周立宏,等. 黄骅坳陷沧东凹陷孔二段高位体系域细粒相区岩性特征及地质意义[J]. 中国石油勘探,2015,20(5): 30-40. |
Pu Xiugang, Han Wenzhong, Zhou Lihong, et al. Lithologic characteristics and geological implication of fine⁃grained sedimentation in Ek2 High Stand System Tract of Cangdong Sag, Huanghua Depression[J]. China Petroleum Exploration, 2015,20(5): 30-40. | |
32 | Hofmann P, Ricken W, Schwark L, et al. Geochemical signature and related climatic⁃oceanographic processes for early Albian bla⁃ck shales: Site 417D, North Atlantic Ocean[J]. Cretaceous Research, 2001, 22: 243-257. |
33 | Zhang Rui, Jin Zhijun, Liu Quanyou, et al. Astronomical constraints on deposition of the Middle Triassic Chang 7 lacustrine shales in the Ordos Basin, Central China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 528: 87–98. |
34 | 朱祥坤,王跃,闫斌,等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报,2013,32(6): 651-688. |
Zhu Xiangkun, Wang Yue, Yan Bin, et al. Developments of non⁃traditional stable isotope geochemistry[J]. Bulletin of mineralogy, Petrology and Geochemistry, 2013, 32(6): 651-688. | |
35 | Macquaker J H S, Adams A E. Maximizing information from fine⁃grained sedimentary rocks: An inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735- |
744 | |
36 | Smith L B, Schieber J, Wilson R D. Shallow⁃water onlap model for the deposition of Devonian black shales in New York, USA[J]. Geology, 2019, 47: 279-283. |
37 | 金值民,谭秀成,唐浩,等. 浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征-以塔里木盆地西北部寒武系玉尔吐斯组为例[J]. 石油勘探与开发,2020,47(3): 476-489. |
Jin Zhimin, Tan Xiucheng, Tang Hao, et al. Sedimentary environment and petrological features of organic⁃rich fine sediments in shallow water overlapping deposits: A case study of Cambrian Yuertus Formation in northwestern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 476-489. | |
38 | Schieber J, Southard J B, Schimmelmann A. Lenticular shale fabrics resulting from intermittent erosion of water⁃rich muds⁃interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80: 119-128. |
39 | Macquaker J H S, Keller M A, Davies S J. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine⁃grained sediments[J]. Journal of Sedimentary Research, 2010, 80: 934-942. |
40 | Dean W E, Leinen M, Stow D A V. Classification of deep⁃sea, fine⁃grained sediments[J]. Journal of Sedimentary Research, 1985, 55: 250-256. |
41 | Arthur M A, Sageman B B. Marine black shales: depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Science, 1994, 22: 499-551. |
42 | Negri A, Ferretti A, Wagner T, et al. Phanerozoic organic⁃carbon⁃rich marine sediments: overview and future research challeges[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273: 218-227. |
43 | Demaison G J, Moore G T. Anoxic environments and oil source bed genesis[J]. AAPG Bulletin, 1980, 64(8): 1179-1209. |
44 | Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory[J]. Geochimica et Cosmoshimica Acta, 1983, 47(5): 855-862. |
45 | Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic⁃rich strata, Middle-Upper Devonian, Appalachian basin[J]. Chemical Geology, 2002, 195(2003): 229- |
273 | |
46 | Parrish J T. Upwelling and petroleum source beds, with reference to the Paleozoic[J]. AAPG Bulletin, 1982, 66(6): 750-774. |
47 | Pedersen T F, Calvert S E. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks[J]. AAPG Bulletin, 1990, 74(4): 454-466. |
48 | Pichevin L, Bertrand P, Boussafir M, et al. Organic matter accumulation and preservation controls in a deep sea modern environment: an example from Namibian slope sediments[J]. Organic Geochemistry, 2004, 35: 543-559. |
49 | Tyson R V. The “productivity versus preservation” controversy: cause, flaws, and resolution[J]. Society for Sedimentary Geology Special Publication, 2012, 82: 17-33. |
50 | Mort H, Jacquat O, Adatte T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation[J]. Cretaceous Research, 2007, 28: 597-612. |
51 | Canfield D E. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments[J]. Deep⁃Sea Research, 1989, 36: 121-138. |
52 | Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: an overview[J]. Geology Society, 1991, 58: 1-24. |
53 | Ingall E D, Bustin R M, Capellen P V. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales[J]. Geochimica Cosmochimica Acta, 1993, 57: 303-316. |
54 | Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississipian black shales, Central Appalachian Basin(USA)[J]. Chemical Geology, 2004, 206: 373-391. |
55 | Dimberline A J, Bell A, Woodcock N H. A laminated hemipelagic facies from the Wenlock and Ludlow of the Welsh Basin[J]. Journal of the Geological Society, 1990, 147: 693-701. |
56 | Caplan M L, Bustin R M. Paleoceanographic controls on geochemical characteristics of organic-rich Exshaw mudrocks: role of enhanced primary productivity[J]. Organic Geochemistry, 1998, 30: 161-188. |
57 | Gallego-Torres D, Martínez-Ruiz F, Paytan A, et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: role of anoxia vs. productivity at time of sapropel deposition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246: 424-439. |
58 | Kuypers M M, Pancost R D, Nijenhuis I A, et al. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomannian oceanic anoxic event[J]. Paleoceanography, 2002, 17(4): 1051. |
59 | Ibach L E J. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments[J]. AAPG Bulletin, 1982, 66(2): 170-188. |
60 | Creaney S, Passey Q R. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework[J]. AAPG Bulletin, 1993, 77(3): 386-401. |
61 | Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2002, 48: 269-299. |
62 | Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20: 861–882. |
63 | Tyson R V. Sedimentation rate, dilution, preservation, and total organic carbon: some results of a modeling study[J]. Organic Geochemistry, 2001, 32: 333-339. |
64 | Algeo T J, Henderson C M, Tong J N, et al. Plankton and productivity during the Permian⁃Triassic boundary crisis: An analysis of organic carbon fluxes[J]. Global and Planetary Change, 2013, 105: 52-67. |
65 | Stein R. Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sediments[J]. Geo-Marine Letters, 1990, 10: 37-44. |
66 | Arthur M A, Dean W E. Organic⁃matter production and preservation and evolution of anoxia in the Holocene Black Sea[J]. Paleoceanography, 1998, 13(4): 395-411. |
67 | Nijenhuis A, Bosch H J, Sinninghe S D, et al. Organic matter and trace element rich sapropels and black shales: a geochemical comparison[J]. Earth and Planetary Science Letters, 1999, 169: 277-290. |
68 | Katz B J. Controlling factors on source rock development-a review of productivity, preservation and sedimentation rate[J]. SEPM Special Publication, 2005, 82: 7-16. |
69 | Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin[J]. Chemical Geology, 2003, 195: 229-273. |
70 | Ghadeer S G, Macquaker J H S. Sediment transport processes in an ancient mud⁃dominated succession: a comparison of processes operating in marine offshore settings and anoxic basinal environments[J]. Journal of the Geological Society of London, 2011, 168: 835-846. |
71 | Stow D A V, Huc A Y, Bertrand P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 2001, 18: 491-498. |
72 | Schieber J. Faces and origin of shales from the Mid⁃Proterozoic Newland Formation, Belt basin, Montana, U.S.A.[J]. Sedimentology, 1989, 36: 203-219. |
73 | Schieber J. Reverse engineering mother nature⁃Shale sedimento⁃logy from an experimental perspective[J]. Sedimentology Geology, 2011, 238: 1-22. |
74 | Plint A G, Macquaker J H S, Varban B L. Bedload transport of mud across a wide, storm influenced ramp: Cenomanian-Turonian Kaskapau Formation, Western Canda Foreland Basin[J]. Journal of Sedimentary Research, 2010, 82: 801-822. |
75 | Andrew D H, Bradley D R, Moldowan J M. Organic geochemistry of oil and source rock strata of the Ordos Basin, north⁃central China[J]. AAPG Bulletin, 2007, 91: 1273-1293. |
76 | 张文正,杨华,彭平安,等. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J]. 地球化学,2009,38(6): 573-582. |
Zhang Wengzheng, Yang Hua, Peng Pingan, et al. The influence of late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin[J]. Geochimica, 2009, 38(6): 573-582. | |
77 | 李士祥,牛小兵,柳广弟,等.鄂尔多斯盆地延长组长7段页岩油形成富集机理[J].石油与天然气地质,2020,41(4):719-729. |
Li Shixiang, Niu Xiaobing, Liu Guangdi,et al.Formation and accumulation mechanism of shale oil in the 7th member of Yanchang Formation,Ordos Basin[J].Oil & Gas Geology,2020,41(4):719-729. | |
78 | 范柏江,晋月,师良,等.鄂尔多斯盆地中部三叠系延长组7段湖相页岩油勘探潜力[J].石油与天然气地质,2021,42(5):1078-1088. |
Fan Bojiang, Jin Yue, Shi Liang,et al.Shale oil exploration potential in central Ordos Basin:A case study of Chang 7 lacustrine shale[J].Oil & Gas Geology,2021,42(5):1078-1088. | |
79 | 李长志,郭佩,柯先启,等.火山活动影响下的碱湖优质烃源岩成因及其对页岩油气勘探和开发的启示[J].石油与天然气地质,2021,42(6):1423-1434. |
Li Changzhi, Guo Pei, Ke Xianqi,et al.Genesis of high-quality source rocks in volcano-related alkaline lakes and implications for the exploration and development of shale oil and gas[J]. Oil & Gas Geology,2021,42(6):1423-1434. | |
80 | 邓长生,张毅,谢小飞,等 .鄂尔多斯盆地延长油气区延长组长7段陆相页岩含气性分析[J].石油地质与工程,2020,34(1):20-25. |
Deng Changsheng, Zhang Yi, Xie Xiaofei, et al. Gas bearing analysis of continental shale of Chang 7 member of Yanchang formation in Yanchang oil & gas region of Ordos basin[J]. Petroleum Geology & Engineering, 2020, 34(1): 20-25. | |
81 | 于炳松,梅冥相. 沉积岩岩石学[M]. 北京:地质出版社,2016. |
Yu Bingsong, Mei Mingxiang. Sedimentary Petrology[M]. Beijing: Geological Publishing House, 2016. | |
82 | 吴河勇,林铁峰,白云风,等. 松辽盆地北部泥(页)岩油勘探潜力分析[J]. 大庆石油地质与开发,2019,38(5): 78-86. |
Wu Heyong, Lin Tiefeng, Bai Yunfeng, et al. Analyses of the mudstone (shale) oil exploration potential in North Songliao Basin[J]. Petroleum Geology&Oilfield Development in Daqing, 2019, 38(5): 78-86. | |
83 | 曾维主,宋之光,周国议.松辽盆地青山口组页岩的压汞孔隙结构及其地质意义[J]. 中国石油大学学报(自然科学版),2021,45(6): 35-41. |
Zeng Weizhu, Song Zhiguang, Zou Guoyi.Pore structure of Qingshankou Formation shales in Songliao Basin and its geological significance[J].Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 35-41. | |
84 | Stow D A V. Sedimentary rock in the field: A colour guide[M]. Australia: Taylar and Franics Group, 2005. |
85 | 蒋恕,唐相路, Steve O,等. 页岩油气富集的主控因素及误辩:以美国、阿根廷和中国典型页岩为例[J]. 地球科学,2017,42(7): 1083-1091. |
Jiang Shu, Tang Xianglu, Steve O, et al. Enrichment factors and current misunderstanding of shale oil and gas: Case study of shales in U.S., Argentina and China[J]. Earth Science, 2017, 42(7): 1083-1091. | |
86 | 曹元婷,潘晓慧,李菁,等. 关于吉木萨尔凹陷页岩油的思考[J]. 新疆石油地质,2020,41(5):622-630. |
Cao Yuanting, Pan Xiaohui, Li Jing,et al. Discussion on shale oil in Jimsar sag,Junggar basin [J]. Xinjiang Petroleum Geology,2020,41(5):622-630. | |
87 | 章敬.非常规油藏地质工程一体化效益开发实践——以准噶尔盆地吉木萨尔凹陷芦草沟组页岩油为例[J].断块油气田,2021,28(2):151-155. |
Zhang Jing.Effective development practices of geology‑engineering integration on unconventional oil reservoirs: taking Lucaogou Formation shale oil in Jimsar Sag, Junggar Basin for example[J].Fault‑Block Oil and Gas Field,2021,28(2):151-155. | |
88 | 李晶晶,孙国翔,刘琦,等.吉木萨尔凹陷芦一段页岩储集层孔隙结构及敏感性[J].新疆石油地质,2021,42(5):541-547. |
Li Jingjing, Sun Guoxiang, Liu Qi,et al. Pore structure and sensitivity of shale reservoir in Lu 1 Member of Jimsar Sag[J]. Xinjiang Petroleum Geology,2021,42(5):541-547. | |
89 | 刘招君,柳蓉,孙平昌,等.中国典型盆地油页岩特征及赋存规律[J].吉林大学学报(地球科学版),2020,50(2):313-325. |
Liu Zhaojun, Liu Rong, Sun Pingchang,et al. Oil shale characteristics and distribution in typical basins of China[J]. Journal of Jilin University (Earth Science Edition),2020,50(2):313-325. | |
90 | 李成博,宁传奇,钟长林,等.中国油页岩矿勘查控制程度探讨[J]. 吉林大学学报(地球科学版), 2021, 51(1):13-21. |
Li Chengbo, Ning Chuanqi, Zhong Changlin,et al. Discussion on extent of exploration control of oil shale deposits in China[J].Journal of Jilin University (Earth Science Edition), 2021, 51(1):13-21. | |
91 | 李倩文,马晓潇,高波,等.美国重点页岩油区勘探开发进展及启示[J].新疆石油地质,2021,42(5):630-640. |
Li Qianwen, Ma Xiaoxiao, Gao Bo,et al. Progress and enlightenment of exploration and development of major shale oil zones in the USA[J]. Xinjiang Petroleum Geology,2021,42(5):630-640. | |
92 | Duggen S, Croot P, Schacht U, et al. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data[J]. Geophysical Research Letters, 2007, 34: L01612. |
93 | Duggen S, Olgun N, Croot P, et al. The role of airborne volcanic ash for the surface ocean biogeochemical iron⁃cycle: a review[J]. Biogeosciences, 2010, 7: 827-844. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[7] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[8] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[9] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[10] | 翟常博, 林良彪, 尤东华, 刘冯斌, 刘思雨. 川西南地区中二叠统茅口组一段沉积微相特征及有机质富集模式[J]. 石油与天然气地质, 2024, 45(2): 440-456. |
[11] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[12] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[13] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[14] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[15] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||