石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (6): 1515-1528.doi: 10.11743/ogg20220620
孟江辉1,2(), 吕沛熙1,2, 吴伟3, 潘仁芳1,2, 朱逸青3
收稿日期:
2022-07-25
修回日期:
2022-09-20
出版日期:
2022-11-21
发布日期:
2022-11-21
第一作者简介:
孟江辉(1983—),男,博士、副教授,非常规油气储层地质评价。E-mail: 基金项目:
Jianghui Meng1,2(), Peixi Lyu1,2, Wei Wu3, Renfang Pan1,2, Yiqing Zhu3
Received:
2022-07-25
Revised:
2022-09-20
Online:
2022-11-21
Published:
2022-11-21
摘要:
五峰组(O3w)-龙马溪组(S1l)海相页岩是川南下古生界页岩气勘探的主力层系之一,热成熟度是烃源岩和页岩气评价的一项重要指标。由于缺乏镜质体,一直难以建立准确评价下古生界海相页岩热成熟度的方法。共采集33块川南五峰组-龙马溪组岩心样品,用于观察源内固体沥青及笔石表皮体的光学特征,并测试其随机反射率。同时,利用样品中干酪根的拉曼光谱参数分析热成熟度的演化趋势。研究结果表明,相较于源内固体沥青,笔石表皮体来源单一、颗粒较大、特征明显,且垂直层理切面上非粒状笔石表皮体随机反射率(GRor)数值分布更集中,更适合作为反射率测试对象。干酪根的拉曼光谱参数特征表明,热演化过程中GRor与等效镜质体反射率(EqRo)并非单一的线性关系。利用干酪根的拉曼光谱参数为中间变量,建立了通过GRor计算EqRo的方法。计算结果表明,五峰组-龙马溪组页岩在长宁、泸州-大足和威远地区的热成熟度依次降低,EqRo分布范围分别为2.99 %~3.91 %,2.87 %~3.54 %和2.46 %~3.03 %,平均值分别为3.44 %,3.22 %和2.77 %。长宁西部出现了异常高成熟度区域,需要评价其对页岩气勘探的影响。
中图分类号:
图2
川南五峰组-龙马溪组页岩笔石表皮体显微照片(非偏光)a. 非粒状笔石表皮体,呈条带状顺层分布,样品L207-32,埋深3 450.92 m,GRor = 3.33 %;b. 非粒状笔石表皮体,呈断续状顺层分布,样品L207-32,埋深3 450.92 m,GRor = 3.17 %;c. 非粒状笔石表皮体,笔石胞管被草莓状黄铁矿充填,样品W202-2,埋深2 568.20 m,GRor=3.03 %;d.非粒状笔石表皮体的生物纹层结构,样品L204-34,埋深3 842.21 m,GRor = 5.31 %;e.粒状笔石表皮体,样品L207-32,埋深3 450.92 m,GRor=1.79 %;f. 粒状和非粒状笔石表皮体,样品L207-32,埋深3 450.92 m;g. 非粒状笔石表皮体,样品L204-17,埋深3 824.30 m,GRor=3.87 %;h.将图g的笔石表皮体旋转90°,样品L204-17,埋深3 824.30 m,GRor=3.36 %;i. 非粒状笔石表皮体可能被沥青侵染,样品N222-4,埋深4 327.14 m,GRor = 3.60 %"
图3
川南五峰组-龙马溪组页岩源内固体沥青显微照片(非偏光)a. Ⅰ型源内固体沥青,充填于孔隙中,样品L204-34,埋深3 842.21 m,BRo=2.69 %;b. Ⅰ型源内固体沥青,充填于孔隙中,样品Y101H4-4-44,埋深4 140.22 m,BRo=3.09 %;c. Ⅰ型源内固体沥青,附着在矿物颗粒边缘,样品L205-26,埋深4 034.44 m,BRo=3.03 %;d. Ⅰ型源内固体沥青,附着在矿物颗粒边缘,样品Y101H4-4-30,埋深4 131.55 m,BRo=2.21 %;e. Ⅰ型源内固体沥青,颗粒边缘呈现马赛克镶嵌结构,样品L204-17,埋深3 824.30 m,BRo=3.29 %;f. 棱角状Ⅱ型源内固体沥青微粒,样品W213-1,埋深3 745.34 m,BRo=2.85 %;g. Ⅱ型源内固体沥青散布在基质孔隙中,样品N222-4,埋深4 327.14 m;h. Ⅱ型源内固体沥青散布在基质孔隙中,样品N222-4,埋深4 327.14 m,BRo=2.67 %;i. Ⅱ型源内固体沥青微粒集合体,样品L204-17,埋深3 825.79 m,BRo=1.46 %"
表1
川南五峰组-龙马溪组页岩笔石表皮体和源内固体沥青的随机反射率与等效镜质体反射率"
样品编号 | 样品深度/m | 层位 | 垂直层理切面 | 平行层理切面 | EqRo-1/% | RmcRo/% | EqRo/% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GRor/% | 标准偏差SD/% | 测点数 n/个 | BRo/%(Ⅰ型源内固体沥青) | 标准偏差SD/% | 测点数 n/个 | GRor/% | ||||||
Y101H4-4-30 | 4 131.55 | S1l1(1) | 3.52 | 0.41 | 18 | 3.03 | 0.38 | 29 | — | 3.56 | 3.53 | 3.50 |
Y101H4-4-44 | 4 140.22 | S1l1(1) | 3.58 | 0.29 | 21 | 2.91 | 0.28 | 15 | 5.49 | 3.63 | 3.56 | 3.52 |
Y101H4-4-52 | 4 144.14 | S1l1(1) | 3.64 | 0.36 | 22 | 2.88 | 0.29 | 12 | — | 3.69 | 3.53 | 3.54 |
Y101H4-4-68 | 4 150.60 | O3w | 3.53 | 0.23 | 34 | 2.98 | 0.52 | 11 | — | 3.58 | 3.53 | 3.50 |
Y101H2-7-29 | 4 139.05 | S1l1(1) | 3.45 | 0.33 | 33 | 3.00 | 0.13 | 12 | — | 3.49 | 3.24 | 3.22 |
Y101H2-7-36 | 4 146.67 | S1l1(1) | 3.53 | 0.31 | 29 | 3.15 | 0.37 | 15 | 5.58 | 3.58 | 3.53 | 3.50 |
Z206-7 | 4 244.57 | S1l1(1) | 3.24 | 0.15 | 18 | 2.43 | 0.30 | 20 | — | 3.29 | 3.02 | 3.07 |
Z206-26 | 4 266.76 | S1l1(1) | 2.97 | 0.32 | 34 | 2.47 | 0.38 | 38 | 4.56 | 3.02 | 3.20 | 2.87 |
Z206-38 | 4 274.36 | O3w | — | — | — | — | — | — | — | — | 3.22 | — |
L204-17 | 3 824.30 | S1l1(1) | 3.23 | 0.30 | 35 | 2.71 | 0.52 | 31 | — | 3.28 | 3.31 | 3.06 |
L204-34 | 3 842.21 | S1l1(1) | 3.50 | 0.25 | 16 | 2.70 | 0.26 | 15 | 5.49 | 3.55 | 3.55 | 3.27 |
L205-20 | 4 024.08 | S1l1(1) | 3.25 | 0.14 | 15 | 2.57 | 0.42 | 15 | — | 3.29 | 3.25 | 3.08 |
L205-26 | 4 034.44 | O3w | 3.37 | 0.10 | 17 | 2.81 | 0.28 | 14 | 4.57 | 3.42 | 3.22 | 3.17 |
L207-30 | 3 448.05 | S1l1(1) | 3.11 | 0.06 | 3 | 2.31 | 0.47 | 32 | — | 3.15 | 2.91 | 2.97 |
L207-32 | 3 450.92 | S1l1(1) | 3.05 | 0.13 | 33 | 2.49 | 0.34 | 29 | 3.46 | 3.10 | 2.93 | 2.93 |
L207-36 | 3 457.41 | O3w | 3.07 | 0.15 | 11 | 2.78 | 0.17 | 5 | — | 3.11 | 2.97 | 2.94 |
N213-14 | 2 575.28 | S1l1(1) | 3.14 | 0.23 | 35 | 2.48 | 0.55 | 3 | 5.50 | 3.18 | 3.26 | 2.99 |
N213-17 | 2 579.22 | O3w | 3.32 | 0.27 | 29 | 2.83 | 0.49 | 18 | — | 3.36 | 3.31 | 3.13 |
N216-7 | 2 311.78 | S1l1(1) | 3.77 | 0.17 | 31 | 2.97 | 0.33 | 21 | — | 3.81 | 3.57 | 3.59 |
N216-10 | 2 320.68 | S1l1(1) | 3.80 | 0.13 | 24 | 2.65 | 0.43 | 11 | 4.97 | 3.84 | 3.56 | 3.60 |
W204H10-2-15 | 3 350.60 | S1l1(1) | 2.84 | 0.25 | 33 | 2.45 | 0.30 | 18 | — | 2.89 | 2.97 | 2.77 |
W204H10-2-23 | 3 355.30 | S1l1(1) | 2.86 | 0.15 | 30 | 2.53 | 0.29 | 31 | — | 2.91 | 2.84 | 2.78 |
H203-4 | 3 758.10 | O3w | 3.17 | 0.22 | 9 | — | — | — | — | 3.22 | 3.21 | 3.02 |
W201-2 | 1 541.00 | S1l1(1) | 2.58 | 0.25 | 27 | 2.11 | 0.27 | 11 | 2.88 | 2.63 | 2.18 | 2.57 |
W201-3 | 1 548.80 | O3w | 2.43 | 0.25 | 4 | — | — | — | — | 2.48 | 2.41 | 2.46 |
W202-1 | 2 561.50 | S1l1(1) | 3.18 | 0.22 | 35 | 2.40 | 0.35 | 11 | — | 3.23 | 3.15 | 3.03 |
W202-2 | 2 568.20 | S1l1(1) | 2.90 | 0.18 | 33 | 2.53 | 0.41 | 14 | — | 2.95 | 2.70 | 2.82 |
W213-1 | 3 745.34 | S1l1(1) | 3.02 | 0.22 | 35 | 2.32 | 0.44 | 26 | — | 3.07 | 2.86 | 2.90 |
W211-2 | 3 559.50 | S1l1(1) | 2.93 | 0.26 | 26 | 2.39 | 0.45 | 12 | — | 2.98 | 3.09 | 2.83 |
N222-1 | 4 301.60 | S1l1(1) | 4.65 | 0.59 | 24 | 3.56 | 0.49 | 8 | — | 4.69 | 3.88 | 3.91 |
N222-4 | 4 327.14 | S1l1(1) | 4.28 | 0.29 | 16 | 3.20 | 0.40 | 18 | 3.96 | 4.32 | 3.82 | 3.77 |
N215-1 | 2 502.95 | S1l1(1) | 3.27 | 0.36 | 31 | 2.75 | 0.36 | 19 | — | 3.32 | 3.38 | 3.09 |
R203-1 | 4 336.14 | S1l1(1) | 3.55 | 0.44 | 23 | 2.42 | 0.33 | 22 | — | 3.60 | 3.48 | 3.51 |
表2
川南五峰组-龙马溪组页岩干酪根拉曼光谱参数"
样品编号 | GRor/% | WG/cm-1 | WD/cm-1 | RBS/cm-1 | ID/IG | FWHMD/cm-1 | FWHMG/cm-1 |
---|---|---|---|---|---|---|---|
Y101H4-4-30 | 3.52 | 1 599.54 | 1 328.13 | 271.41 | 0.66 | 147.70 | 51.55 |
Y101H4-4-44 | 3.58 | 1 598.57 | 1 328.13 | 270.44 | 0.68 | 156.71 | 58.05 |
Y101H4-4-52 | 3.64 | 1 599.21 | 1 328.13 | 271.08 | 0.66 | 147.39 | 50.57 |
Y101H4-4-68 | 3.53 | 1 599.54 | 1 328.47 | 271.07 | 0.66 | 149.05 | 51.55 |
Y101H2-7-29 | 3.45 | 1 599.21 | 1 330.15 | 269.06 | 0.68 | 150.35 | 53.50 |
Y101H2-7-36 | 3.53 | 1 600.19 | 1 330.49 | 269.70 | 0.66 | 149.77 | 50.90 |
Z206-7 | 3.24 | 1 598.24 | 1 333.18 | 265.06 | 0.64 | 185.68 | 58.70 |
Z206-26 | 2.97 | 1 599.21 | 1 330.82 | 268.39 | 0.63 | 167.60 | 53.18 |
Z206-38 | — | 1 601.48 | 1 332.84 | 268.64 | 0.62 | 155.81 | 49.59 |
L204-17 | 3.23 | 1 598.89 | 1 328.47 | 270.42 | 0.69 | 149.35 | 53.82 |
L204-34 | 3.50 | 1 599.54 | 1 330.15 | 269.39 | 0.67 | 148.37 | 52.53 |
L205-20 | 3.25 | 1 602.45 | 1 333.18 | 269.28 | 0.60 | 160.88 | 48.61 |
L205-26 | 3.37 | 1 597.92 | 1 329.14 | 268.78 | 0.65 | 170.95 | 55.13 |
L207-30 | 3.11 | 1 598.57 | 1 335.53 | 263.03 | 0.60 | 193.35 | 59.35 |
L207-32 | 3.05 | 1 597.59 | 1 334.19 | 263.41 | 0.61 | 197.42 | 59.04 |
L207-36 | 3.07 | 1 597.92 | 1 333.85 | 264.07 | 0.61 | 193.00 | 59.68 |
N213-14 | 3.14 | 1 599.86 | 1 330.49 | 269.38 | 0.65 | 141.31 | 49.27 |
N213-17 | 3.32 | 1 598.89 | 1 328.47 | 270.42 | 0.71 | 146.37 | 52.53 |
N216-7 | 3.77 | 1 599.54 | 1 327.46 | 272.08 | 0.70 | 139.27 | 51.55 |
N216-10 | 3.80 | 1 601.81 | 1 331.50 | 270.31 | 0.69 | 150.74 | 50.89 |
W204H10-2-15 | 2.84 | 1 597.92 | 1 333.85 | 264.07 | 0.62 | 199.43 | 60.98 |
W204H10-2-23 | 2.86 | 1 597.59 | 1 335.87 | 261.73 | 0.63 | 200.11 | 64.89 |
H203-4 | 3.17 | 1 597.92 | 1 329.48 | 268.44 | 0.64 | 176.66 | 57.41 |
W201-2 | 2.58 | 1 595.97 | 1 346.62 | 249.36 | 0.61 | — | 75.31 |
W201-3 | 2.43 | 1 596.30 | 1 342.59 | 253.71 | 0.61 | — | 70.74 |
W202-1 | 3.18 | 1 600.51 | 1 333.18 | 267.33 | 0.63 | 206.09 | 60.82 |
W202-2 | 2.90 | 1 598.89 | 1 339.90 | 258.99 | 0.59 | 203.46 | 62.93 |
W213-1 | 3.02 | 1 598.24 | 1 336.21 | 262.04 | 0.63 | 196.70 | 60.98 |
W211-2 | 2.93 | 1 599.86 | 1 333.52 | 266.35 | 0.60 | 184.37 | 55.45 |
N222-1 | 4.65 | 1 598.89 | 1 337.89 | 261.01 | 0.96 | 100.83 | 55.77 |
N222-4 | 4.28 | 1 598.57 | 1 335.87 | 262.70 | 0.91 | 114.98 | 57.08 |
N215-1 | 3.27 | 1 601.48 | 1 329.81 | 271.67 | 0.65 | 143.34 | 48.62 |
R203-1 | 3.55 | 1 601.81 | 1 331.16 | 270.65 | 0.62 | 159.81 | 50.57 |
1 | 梁狄刚,郭彤楼,陈建平,等. 中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布[J].海相油气地质, 2008, 13(2): 1-16. |
Liang Digang, Guo Tonglou, Chen Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16. | |
2 | 钟宁宁,赵喆,李艳霞,等. 论南方海相层系有效供烃能力的主要控制因素[J]. 地质学报, 2010, 84(2): 149-158. |
Zhong Ningning, Zhao Zhe, Li Yanxia, et al. An approach to the main controls on the potential of efficient hydrocarbon supply of marine sequences in South China[J]. Acta Geological Sinica, 2010, 84(2): 149-158. | |
3 | 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. |
Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. | |
4 | 董大忠,程克明,王玉满,等. 中国上扬子区下古生界页岩气形成条件及特征[J]. 石油与天然气地质, 2010, 31(3): 288-299. |
Dong Dazhong, Cheng Keming, Wang Yuman, et al. Forming conditions and characteristics of shale gas in the Lower Paleozoic of the Upper Yangtze region, China[J]. Oil & Gas Geology, 2010, 31(3): 288-299. | |
5 | 金之钧,胡宗全,高波,等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. |
Jin Zhijun, Hu Zongquan, Gao Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10. | |
6 | Chen X, Rong J, Mitchell C E, et al. Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China, with a global correlation[J]. Geological Magazine, 2000, 137(6): 623-650. |
7 | Lüning S, Craig J, Loydell D K, et al. Lower Silurian ‘hot shales’ in North Africa and Arabia: regional distribution and depositional model[J]. Earth-Science Reviews, 2000, 49(1): 121-200. |
8 | Hao F, Zou H, Lu Y. Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346. |
9 | 徐姝慧,何生,朱钢添,等. 鄂西渝东下古生界海相页岩饱和烃组成特征及其指示意义[J]. 石油与天然气地质, 2018, 39(2): 217-228. |
Xu Shuhui, He Sheng, Zhu Gangtian, et al. Characteristics of saturated hydrocarbons from Lower Paleozoic marine shales in western Hubei-eastern Chongqing area and their indications[J]. Oil & Gas Geology, 2018, 39(2): 217-228. | |
10 | 杨熙雅,刘成林,刘文平,等. 四川盆地富顺-永川地区龙马溪组页岩有机孔特征及其影响因素[J]. 石油与天然气地质, 2021, 42(6): 1321-1333. |
Yang Xiya, Liu Chenglin, Liu Wenpin, et al. Characteristics of and factors influencing organic pores in the Lower Silurian Longmaxi Formation, Fushun-Yongchuan area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1321-1333. | |
11 | 徐亮,杨威,姜振学,等. 四川盆地川西坳陷三叠系须家河组页岩有机孔演化及成因[J]. 石油与天然气地质, 2022, 43(2): 325-340. |
Xu Liang, Yang Wei, Jiang Zhenxue, et al. Evolution and genesis of organic pores in Triassic Xujiahe Formation shale, Western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 325-340. | |
12 | 陈康,张金川,唐玄,等. 湘鄂西地区下志留统龙马溪组页岩吸附能力主控因素[J]. 石油与天然气地质, 2016, 37(1): 23-29. |
Chen Kang, Zhang Jinchuan, Tang Xuan, et al. Main controlling factors on shale adsorption capacity of the Lower Silurian Longmaxi Formation in western Hunan-Hubei area[J]. Oil & Gas Geology, 2016, 37(1): 23-29. | |
13 | Hackley P C, Araujo C V, Borrego A G, et al. Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement[J]. Marine and Petroleum Geology, 2015, 59: 22-34. |
14 | 王晔,邱楠生,马中良,等. 固体沥青反射率与镜质体反射率的等效关系评价[J]. 中国矿业大学学报, 2020, 49(3): 563-575. |
Wang Ye, Qiu Nansheng, Ma Zhongliang, et al. Evaluation of equivalent relationship between vitrinite reflectance and solid bitumen reflectance[J]. Journal of China University of Mining & Technology, 2020, 49(3): 563-575. | |
15 | Mastalerz M, Drobniak A, Stankiewicz A B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review[J]. International Journal of Coal Geology, 2018, 195: 14-36. |
16 | Carvajal-Ortiz H, Gentzis T. Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited[J]. International Journal of Coal Geology, 2015, 152: 113-122. |
17 | Wilkins R W T, Wilmshurst J R, Hladky G, et al. Should fluorescence alteration replace vitrinite reflectance as a major tool for thermal maturity determination in oil exploration?[J]. Organic Geochemistry, 1995, 22(1): 191-209. |
18 | 卢双舫,张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008: 171-191. |
Lu Shuangfang, Zhang Min. Petroleum geochemistry[M]. Beijing: Petroleum Industry Press, 2008: 171-191. | |
19 | 陈旭,樊隽轩,张元动,等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39(4): 351-358. |
Chen Xu, Fan Junxuan, Zhang Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358. | |
20 | 陈旭,樊隽轩,王文卉,等. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式[J]. 中国科学:地球科学, 2017, 47(6): 720-732. |
Chen Xu, Fan Junxuan, Wang Wenhui, et al. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, central China[J]. Science China Earth Sciences, 2017, 60(6): 720-732. | |
21 | 孙莎莎,芮昀,董大忠,等. 中、上扬子地区晚奥陶世—早志留世古地理演化及页岩沉积模式[J]. 石油与天然气地质, 2018, 39(6): 1087-1106. |
Sun Shasha, Rui Yun, Dong Dazhong, et al. Paleogeographic evolution of the Late Ordovician-Early Silurian in Upper and Middle Yangtze regions and depositional model of shale[J]. Oil & Gas Geology, 2018, 39(6): 1087-1106. | |
22 | Petersen H I, Schovsbo N H, Nielsen A T. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance[J]. International Journal of Coal Geology, 2013, 114: 1-18. |
23 | 仰云峰. 川东南志留系龙马溪组页岩沥青反射率和笔石反射率的应用[J]. 石油实验地质, 2016, 38(4): 466-472. |
Yang Yunfeng. Application of bitumen and graptolite reflectance in the Silurian Longmaxi shale, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 466-472. | |
24 | Luo Q, Hao J, Skovsted C B, et al. Optical characteristics of graptolite-bearing sediments and its implication for thermal maturity assessment[J]. International Journal of Coal Geology, 2018, 195: 386-401. |
25 | Goodarzi F. Dispersion of optical properties of graptolite epiderms with increased maturity in early Paleozoic organic sediments[J]. Fuel, 1985, 64(12): 1735-1740. |
26 | Goodarzi F, Gentzis T, Harrison C, et al. The significance of graptolite reflectance in regional thermal maturity studies, Queen Elizabeth Islands, Arctic Canada[J]. Organic Geochemistry, 1992, 18(3): 347-357. |
27 | Luo Q, Zhong N, Dai N, et al. Graptolite-derived organic matter in the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation[J]. International Journal of Coal Geology, 2016, 153: 87-98. |
28 | Luo Q, Goodarzi F, Zhong N, et al. Graptolites as fossil geo-thermometers and source material of hydrocarbons: An overview of four decades of progress[J]. Earth-Science Reviews, 2020, 200: 103000. |
29 | Wang Y, Qiu N, Borjigin T, et al. Integrated assessment of thermal maturity of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 100: 447-465. |
30 | Malinconico M A L. Reflectance cross-plot analysis of graptolites from the anchi-metamorphic region of northern Maine, U.S.A.[J]. Organic Geochemistry, 1993, 20(2): 197-207. |
31 | Goodarzi F, Norford B S. Optical properties of graptolite epiderm A review[J]. Bulletin of the Geological Society of Denmark, 1987, 35: 141-147. |
32 | 刘德汉,肖贤明,田辉,等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241. |
Liu Dehan, Xiao Xianming, Tian Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241. | |
33 | 王民, Li Zhongsheng. 激光拉曼技术评价沉积有机质热成熟度[J]. 石油学报, 2016, 37(9): 1129-1136. |
Wang Min, Li Zhongsheng. Thermal maturity evaluation of sedimentary organic matter using laser Raman spectroscopy[J]. Acta Petrolei Sinica, 2016, 37(9): 1129-1136. | |
34 | Hao J, Zhong N, Luo Q, et al. Raman spectroscopy of graptolite periderm and its potential as an organic maturity indicator for the Lower Paleozoic in southwestern China[J]. International Journal of Coal Geology, 2019, 213: 103278. |
35 | Schmidt Mumm A, İnan S. Microscale organic maturity determination of graptolites using Raman spectroscopy[J]. International Journal of Coal Geology, 2016, 162: 96-107. |
36 | 李纯泉,陈红汉,肖雪薇,等. 四川盆地中部高石梯-磨溪地区震旦系灯影组储层沥青拉曼光谱分析[J]. 石油与天然气地质,2022, 43(2): 456-466. |
Li Chunquan, Chen Honghan, Xiao Xuewei, et al. Raman spectroscopy of bitumen from the Sinian Dengying Formation reservoirs, Gaoshiti-Moxi area, central Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 456-466. | |
37 | Quirico E, Rouzaud J, Bonal L, et al. Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2368-2377. |
38 | Henry D G, Jarvis I, Gillmore G, et al. Assessing low-maturity organic matter in shales using Raman spectroscopy: Effects of sample preparation and operating procedure[J]. International Journal of Coal Geology, 2018, 191: 135-151. |
39 | Zhou Q, Xiao X, Pan L, et al. The relationship between micro-Raman spectral parameters and reflectance of solid bitumen[J]. International Journal of Coal Geology, 2014, 121: 19-25. |
40 | Wilkins R W T, Wang M, Gan H, et al. A RaMM study of thermal maturity of dispersed organic matter in marine source rocks[J]. International Journal of Coal Geology, 2015, 150-151: 252-264. |
41 | Wang Y, Qiu N, Xie X, et al. Maturity and thermal evolution differences between two sets of Lower Palaeozoic shales and its significance for shale gas formation in south-western Sichuan Basin, China[J]. Geological Journal, 2021, 56(7): 3698-3791. |
42 | 马新华,谢军,雍锐,等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发,2020,47(5):841-855. |
Ma Xinhua, Xie Jun, Yong Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841-855. | |
43 | 刘树根,邓宾,钟勇,等. 四川盆地及周缘下古生界页岩气深埋藏—强改造独特地质作用[J]. 地学前缘, 2016, 23(1): 11-28. |
Liu Shugen, Deng Bin, Zhong Yong, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28. | |
44 | Goodarzi F, Norford B S. Graptolites as indicators of the temperature histories of rocks[J]. Journal of the Geological Society, 1985, 142(6): 1089-1099. |
45 | Luo Q, Zhang L, Zhong N, et al. Thermal evolution behavior of the organic matter and a ray of light on the origin of vitrinite-like maceral in the Mesoproterozoic and Lower Cambrian black shales: Insights from artificial maturation[J]. International Journal of Coal Geology, 2021, 244: 103813. |
46 | Sanei H, Haeri-Ardakani O, Wood J M, et al. Effects of nanoporosity and surface imperfections on solid bitumen reflectance (BRo) measurements in unconventional reservoirs[J]. International Journal of Coal Geology, 2015, 138: 95-102. |
47 | 罗情勇,郝婧玥,李可文,等. 下古生界有机质成熟度评价新参数:笔石表皮体光学特征再研究[J]. 地质学报, 2019, 93(9): 2362-2371. |
Luo Qingyong, Hao Jingyue, Li Kewen, et al. A new parameter for the thermal maturity assessment of organic matter from the Lower Palaeozoic sediments: A re-study on the optical characteristics of graptolite periderms[J]. Acta Geologica Sinica, 2019, 93(9): 2362-2371. | |
48 | Sauerer B, Craddock P R, Aljohani M D, et al. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation[J]. International Journal of Coal Geology, 2017, 173: 150-157. |
49 | Hartkopf-Fröder C, Königshof P, Littke R, et al. Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: A review[J]. International Journal of Coal Geology, 2015, 150-151: 74-119. |
50 | 王保忠,王传尚,汪啸风,等 .海相高过成熟页岩芳烃特征及页岩气意义[J].地球科学,2019,44(11):3705-3716. |
Wang Baozhong, Wang Chuanshang, Wang Xiaofeng, et al. Characteristics of aromatic compounds in high-over matured marine shale and its significance to shale gas[J]. Earth Science, 2019, 44(11): 3705-3716. | |
51 | Haeri-Ardakani O, Sanei H. Dolomite fluorescence Red/Green quotient: A potential new thermal maturity indicator[J]. International Journal of Coal Geology, 2015, 137: 165-171. |
[1] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[2] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[3] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[4] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[5] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[6] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[7] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[8] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[9] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[10] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[11] | 施振生, 赵圣贤, 周天琪, 孙莎莎, 袁渊, 张成林, 李博, 祁灵. 海相含气页岩水平层理类型、成因及其页岩气意义[J]. 石油与天然气地质, 2023, 44(6): 1499-1514. |
[12] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[13] | 李双建, 李智, 张磊, 李英强, 孟宪武, 王海军. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
[14] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[15] | 罗情勇, 钟宁宁, 李美俊, 吴进, Khan Imran, 张烨, 陈清, 叶祥忠, 李文浩, 纪文明, 刘安吉, 郝婧玥, 姚立朋, 吴嘉. 前寒武纪—早古生代沉积岩显微组分分类、成因及演化[J]. 石油与天然气地质, 2023, 44(5): 1084-1101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||