石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (1): 150-163.doi: 10.11743/ogg20230112
刘博通1,2,3(), 程鹏1,2(), 盖海峰1,2, 周秦1,2, 李腾飞1,2, 田辉1,2
收稿日期:
2022-06-01
修回日期:
2022-11-18
出版日期:
2023-01-14
发布日期:
2023-01-13
通讯作者:
程鹏
E-mail:liubotong19@mails.ucas.ac.cn;chengp@gig.ac.cn
第一作者简介:
刘博通(1997—),男,硕士研究生,油气地球化学。E-mail:基金项目:
Botong LIU1,2,3(), Peng CHENG1,2(), Haifeng GAI1,2, Qin ZHOU1,2, Tengfei LI1,2, Hui TIAN1,2
Received:
2022-06-01
Revised:
2022-11-18
Online:
2023-01-14
Published:
2023-01-13
Contact:
Peng CHENG
E-mail:liubotong19@mails.ucas.ac.cn;chengp@gig.ac.cn
摘要:
原油的红外光谱能够反映原油中各种分子基团的信息,对于简单、快速识别原油的成因类型和热演化程度有很大的应用潜力。通过对两个不同有机相来源的原油样品开展热解实验,初步研究了原油热解过程中红外光谱的演化特征及其主控因素。结果表明,随着原油热解程度的增加,不同类型原油的红外光谱具有相似的演化模式,可近似划分为两个阶段。在早期阶段(实验温度< 370 ℃),热解油中甲基/亚甲基吸光度比值(
中图分类号:
表2
不同模拟温度下原油裂解率、族组分含量和红外光谱数据"
样品 编号 | 实验 温度/℃ | EqVRo/ % | 裂解率Rc/% | 族组分含量 | TNR-1 | 红外光谱数据 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
芳环结构 | 烷基结构 | |||||||||||||||||
饱和 烃/% | 芳烃/ % | 非烃/ % | 沥青 质/% | 芳烃/饱和烃 | AC-H | AC=C | AC-C | Aaro | Asat | Aaro/Asat | ||||||||
WC191N1 | 300 | 0.74 | 20.93 | 50.19 | 13.82 | 11.45 | 24.54 | 0.28 | 0.74 | 0.08 | 0.03 | 0.03 | 0.15 | 1.54 | 0.77 | 0.50 | 2.31 | 0.06 |
330 | 0.87 | 23.19 | 51.97 | 13.60 | 9.39 | 25.04 | 0.26 | 0.95 | 0.08 | 0.02 | 0.02 | 0.13 | 1.52 | 0.73 | 0.48 | 2.24 | 0.06 | |
360 | 1.06 | 31.62 | 53.53 | 13.48 | 7.68 | 25.31 | 0.25 | 0.97 | 0.01 | 0.02 | 0.01 | 0.04 | 1.40 | 0.58 | 0.41 | 1.98 | 0.02 | |
380 | 1.23 | 42.84 | 55.91 | 13.52 | 3.98 | 26.59 | 0.24 | 1.22 | 0.05 | 0.03 | 0.02 | 0.10 | 1.34 | 0.64 | 0.48 | 1.98 | 0.05 | |
400 | 1.42 | 60.11 | 40.21 | 15.26 | 3.23 | 41.30 | 0.38 | 1.47 | 0.15 | 0.07 | 0.07 | 0.28 | 1.44 | 0.97 | 0.67 | 2.41 | 0.12 | |
420 | 1.65 | 85.74 | 10.07 | 28.17 | 2.78 | 58.98 | 2.80 | 2.29 | 1.00 | 0.23 | 0.19 | 1.43 | 1.37 | 1.94 | 1.41 | 3.31 | 0.43 | |
QH1811 | 300 | 0.74 | 22.99 | 50.83 | 20.07 | 13.95 | 15.16 | 0.39 | 0.64 | 0.14 | 0.05 | 0.04 | 0.24 | 1.32 | 1.01 | 0.77 | 2.33 | 0.10 |
330 | 0.87 | 28.34 | 52.51 | 17.50 | 13.20 | 16.78 | 0.33 | 0.70 | 0.11 | 0.04 | 0.03 | 0.17 | 1.46 | 1.13 | 0.77 | 2.59 | 0.07 | |
360 | 1.06 | 34.47 | 54.63 | 17.22 | 10.60 | 17.55 | 0.32 | 0.76 | 0.07 | 0.01 | 0.02 | 0.10 | 1.57 | 1.19 | 0.76 | 2.76 | 0.04 | |
380 | 1.23 | 37.95 | 55.24 | 15.65 | 7.50 | 21.61 | 0.28 | 0.80 | 0.07 | 0.02 | 0.02 | 0.11 | 1.56 | 1.20 | 0.77 | 2.76 | 0.04 | |
400 | 1.42 | 49.12 | 51.17 | 19.63 | 2.57 | 26.64 | 0.38 | 1.48 | 0.20 | 0.06 | 0.06 | 0.32 | 1.41 | 1.26 | 0.90 | 2.67 | 0.12 | |
420 | 1.65 | 80.96 | 18.88 | 25.65 | 2.02 | 53.45 | 1.36 | 1.84 | 0.53 | 0.24 | 0.22 | 0.98 | 1.39 | 1.82 | 1.31 | 3.21 | 0.31 |
表3
不同实验温度下热解油中芳烃组分的红外光谱数据"
样品编号 | 裂解率 Rc/% | 红外光谱数据 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
芳环结构 | 烷基结构 | Aaro/Asat | ||||||||
AC-H | AC=C | AC-C | Aaro | Asat | ||||||
WC191N | 20.93 | 0.15 | 0.04 | 0.05 | 0.24 | 1.52 | 0.99 | 0.65 | 2.51 | 0.10 |
23.19 | 0.14 | 0.04 | 0.05 | 0.23 | 1.50 | 1.01 | 0.67 | 2.52 | 0.09 | |
31.62 | 0.10 | 0.03 | 0.04 | 0.17 | 1.49 | 0.96 | 0.64 | 2.45 | 0.07 | |
42.84 | 0.30 | 0.07 | 0.08 | 0.44 | 1.49 | 1.14 | 0.77 | 2.63 | 0.17 | |
60.11 | 0.75 | 0.18 | 0.23 | 1.17 | 1.46 | 1.83 | 1.25 | 3.29 | 0.35 | |
85.74 | 1.20 | 0.27 | 0.35 | 1.82 | 1.43 | 2.28 | 1.59 | 3.72 | 0.49 | |
QH18 | 22.99 | 0.23 | 0.06 | 0.07 | 0.36 | 1.46 | 1.25 | 0.85 | 2.71 | 0.13 |
28.34 | 0.22 | 0.05 | 0.06 | 0.34 | 1.43 | 1.11 | 0.78 | 2.54 | 0.13 | |
34.47 | 0.12 | 0.04 | 0.05 | 0.21 | 1.46 | 1.33 | 0.91 | 2.79 | 0.07 | |
37.95 | 0.33 | 0.08 | 0.10 | 0.50 | 1.46 | 1.45 | 0.99 | 2.90 | 0.17 | |
49.12 | 0.56 | 0.13 | 0.18 | 0.87 | 1.44 | 1.75 | 1.21 | 3.19 | 0.27 | |
80.96 | 1.04 | 0.21 | 0.28 | 1.54 | 1.42 | 2.17 | 1.53 | 3.59 | 0.43 |
1 | DEMBICKI H, Jr. Practical petroleum geochemistry for exploration and production[M]. Amsterdam: Elsevier, 2017. |
2 | PETERS K E, WALTERS C C, Moldowan J M. The biomarker guide[M]. 2nd ed. Cambridge: Cambridge University Press, 2004. |
3 | RODGERS R P, MCKENNA A M. Petroleum analysis[J]. Analytical Chemistry, 2011, 83(12): 4665-4687. |
4 | ASKE N, KALLEVIK H, SJÖBLOM J. Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy[J]. Energy & Fuels, 2001, 15(5): 1304-1312. |
5 | ABBAS O, REBUFA C, DUPUY N, et al. PLS regression on spectroscopic data for the prediction of crude oil quality: API gravity and aliphatic/aromatic ratio[J]. Fuel, 2012, 98: 5-14. |
6 | PERMANYER A, REBUFA C, KISTER J. Reservoir compartmentalization assessment by using FTIR spectroscopy[J]. Journal of Petroleum Science and Engineering, 2007, 58(3/4): 464-471. |
7 | GARMARUDI A B, KHANMOHAMMADI M, GHAFOORI Fard H, et al. Origin based classification of crude oils by infrared spectrometry and chemometrics[J]. Fuel, 2019, 236: 1093-1099. |
8 | CORREA Pabón R E, DE Souza Filho C R. Crude oil spectral signatures and empirical models to derive API gravity[J]. Fuel, 2019, 237: 1119-1131. |
9 | CHENG Peng, LIU Botong, TIAN Hui, et al. Fluorescence lifetime evolution of crude oils during thermal cracking: Implications from pyrolysis experiments in a closed system[J]. Organic Geochemistry, 2021, 159: 104273. |
10 | CHU Xiaoli, XU Yupeng, TIAN Songbai, et al. Rapid identification and assay of crude oils based on moving-window correlation coefficient and near infrared spectral library[J]. Chemometrics and Intelligent Laboratory Systems, 2011, 107(1): 44-49. |
11 | WILT B K, WELCH W T, RANKIN J G. Determination of asphaltenes in petroleum crude oils by Fourier transform infrared spectroscopy[J]. Energy & Fuels, 1998, 12(5): 1008-1012. |
12 | MELÉNDEZ L V, LACHE A, ORREGO-RUIZ J A, et al. Prediction of the SARA analysis of Colombian crude oils using ATR-FTIR spectroscopy and chemometric methods[J]. Journal of Petroleum Science and Engineering, 2012, 90-91: 56-60. |
13 | DAI Jinxing, NI Yunyan, QIN Shengfei, et al. Geochemical characteristics of ultra-deep natural gas in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(4): 619-628. |
14 | CHEN Zhuxin, LI Wei, WANG Lining, et al. Structural geology and favorable exploration prospect belts in northwestern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(2): 413-425. |
15 | ZHU Guangyou, ZHANG Zhiyao, ZHOU Xiaoxiao, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198: 102930. |
16 | LI Yuanzhao. Mechanics and fracturing techniques of deep shale from the Sichuan Basin, SW China[J]. Energy Geoscience, 2021, 2(1): 1-9. |
17 | 张心罡, 庞宏, 庞雄奇, 等. 四川盆地上二叠统龙潭组烃源岩生、排烃特征及资源潜力[J]. 石油与天然气地质, 2022, 43(3): 621-632. |
ZHANG Xingang, PANG Hong, PANG Xiongqi, et al. Hydrocarbon generation and expulsion characteristics and resource potential of source rocks in the Longtan Formation of Upper Permian, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 621-632. | |
18 | 王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364. | |
19 | 卢志远, 何治亮, 余川, 等. 复杂构造区页岩气富集特征——以四川盆地东南部丁山地区下古生界五峰组-龙马溪组为例[J]. 石油与天然气地质, 2021, 42(1): 86-97. |
LU Zhiyuan, HE Zhiliang, YU Chuan, et al. Characteristics of shale gas enrichment in tectonically complex regions—A case study of the Wufeng-Longmaxi Formations of Lower Paleozoic in southeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 86-97. | |
20 | PRINZHOFER A A, HUC A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases[J]. Chemical Geology, 1995, 126(3/4): 281-290. |
21 | HAO Fang, GUO Tonglou, ZHU Yangming, et al. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang Gas Field, Sichuan Basin, China[J]. AAPG Bulletin, 2008, 92(5): 611-637. |
22 | BOURDET J, BURRUSS R C, CHOU Iming, et al. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results[J]. Geochimica et Cosmochimica Acta, 2014, 142: 362-385. |
23 | BLAMEY N J F, RYDER A G. Hydrocarbon fluid inclusion fluorescence: A review[J]. Reviews in Fluorescence, 2007, 2007: 299-334. |
24 | TEINTURIER S, ELIE M, PIRONON J. Oil-cracking processes evidence from synthetic petroleum inclusions[J]. Journal of Geochemical Exploration, 2003, 78-79: 421-425. |
25 | 张水昌, 苏劲, 张斌, 等. 塔里木盆地深层海相轻质油/凝析油的成因机制与控制因素[J]. 石油学报, 2021, 42(12): 1566-1580. |
ZHANG Shuichang, SU Jin, ZHANG Bin, et al. Genetic mechanism and controlling factors of deep marine light oil and condensate oil in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(12): 1566-1580. | |
26 | 彭平安, 贾承造. 深层烃源演化与原生轻质油/凝析油气资源潜力[J]. 石油学报, 2021, 42(12): 1543-1555. |
PENG Ping’an, JIA Chengzao. Evolution of deep source rock and resource potential of primary light oil and condensate[J]. Acta Petrolei Sinica, 2021, 42(12): 1543-1555. | |
27 | BURNHAM A K, SANBORN R H, GREGG H R. Thermal dealkylation of dodecylbenzene and dodecylcyclohexane[J]. Organic Geochemistry, 1998, 28(11): 755-758. |
28 | BEHAR F, LORANT F, BUDZINSKI H, et al. Thermal stability of alkylaromatics in natural systems: Kinetics of thermal decomposition of dodecylbenzene[J]. Energy & Fuels, 2002, 16(4): 831-841. |
29 | BEHAR F, LORANT F, MAZEAS L. Elaboration of a new compositional kinetic schema for oil cracking[J]. Organic Geochemistry, 2008, 39(6): 764-782. |
30 | HILL R J, TANG Yongchun, KAPLAN I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34(12): 1651-1672. |
31 | DARTIGUELONGUE C, BEHAR F, BUDZINSKI H, et al. Thermal stability of dibenzothiophene in closed system pyrolysis: Experimental study and kinetic modelling[J]. Organic Geochemistry, 2006, 37(1): 98-116. |
32 | UGUNA C N, CARR A D, SNAPE C E, et al. Retardation of oil cracking to gas and pressure induced combination reactions to account for viscous oil in deep petroleum basins: Evidence from oil and n-hexadecane pyrolysis at water pressures up to 900 bar[J]. Organic Geochemistry, 2016, 97: 61-73. |
33 | PING Hongwei, CHEN Honghan, THIÉRY R, et al. Effects of oil cracking on fluorescence color, homogenization temperature and trapping pressure reconstruction of oil inclusions from deeply buried reservoirs in the northern Dongying Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2017, 80: 538-562. |
34 | TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin: Springer, 1984. |
35 | KHORASANI G K. Novel development in fluorescence microscopy of complex organic mixtures: Application in petroleum geochemistry[J]. Organic Geochemistry, 1987, 11(3): 157-168. |
36 | WATANABE M, ADSCHIRI T, ARAI K. Overall rate constant of pyrolysis of n-alkanes at a low conversion level[J]. Industrial & Engineering Chemistry Research, 2001, 40(9): 2027-2036. |
37 | HUANG W L, OTTEN G A. Cracking kinetics of crude oil and alkanes determined by diamond anvil cell-fluorescence spectroscopy pyrolysis: Technique development and preliminary results[J]. Organic Geochemistry, 2001, 32(6): 817-830. |
38 | Darouich T AL, BEHAR F, LARGEAU C. Thermal cracking of the light aromatic fraction of Safaniya crude oil-experimental study and compositional modelling of molecular classes[J]. Organic Geochemistry, 2006, 37(9): 1130-1154. |
39 | CHENG P, XIAO X M, TIAN H, et al. Source controls on geochemical characteristics of crude oils from the Qionghai Uplift in the western Pearl River Mouth Basin, offshore South China Sea[J]. Marine and Petroleum Geology, 2013, 40: 85-98. |
40 | HUANG Baojia, XIAO Xianming, ZHANG Mingqiang. Geochemistry, grouping and origins of crude oils in the Western Pearl River Mouth Basin, offshore South China Sea[J]. Organic Geochemistry, 2003, 34(7): 993-1008. |
41 | TIAN Hui, XIAO Xianming, WILKINS R W T, et al. New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: Implications for the in-situ accumulation of gas cracked from oils[J]. AAPG Bulletin, 2008, 92(2): 181-200. |
42 | GUO Xiaobo, SHI Baohong, LI Yu, et al. Closed-system pyrolysis-based hydrocarbon generation simulation and gas potential evaluation of the Shanxi Formation shales from the Ordos Basin, China[J]. Energy Geoscience, 2022, 3(1): 8-16. |
43 | SWEENEY J J, BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin, 1990, 74(10): 1559-1570. |
44 | TANG Y, JENDEN P D, NIGRINI A, et al. Modeling early methane generation in coal[J]. Energy & Fuels, 1996, 10(3): 659-671. |
45 | CHENG Peng, TIAN Hui, XIAO Xianming, et al. Fluorescence lifetimes of crude oils and oil inclusions: A preliminary study in the Western Pearl River Mouth Basin, South China Sea[J]. Organic Geochemistry, 2019, 134: 16-31. |
46 | AHMED M, GEORGE S C. Changes in the molecular composition of crude oils during their preparation for GC and GC-MS analyses[J]. Organic Geochemistry, 2004, 35(2): 137-155. |
47 | CASSANI P, GALLANGO O, TALUKDAR S, et al. Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin[J]. Organic Geochemistry, 1988, 13(1/3): 73-80. |
48 | ALEXANDER R, KAGI R I, ROWLAND S J, et al. The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some Ancient sediments and petroleums[J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 385-395. |
49 | 李美俊, 王铁冠. 原油中烷基萘的形成机理及其成熟度参数应用[J]. 石油实验地质, 2005, 27(6): 606-611, 623. |
LI Meijun, WANG Tieguan. The generating mechanism of methylated naphthalene series in crude oils and the application of their maturity parameters[J]. Petroleum Geology & Experiment, 2005, 27(6): 606-611, 623. | |
50 | RADKE M, WILLSCH H, LEYTHAEUSER D, et al. Aromatic components of coal: Relation of distribution pattern to rank[J]. Geochimica et Cosmochimica Acta, 1982, 46(10): 1831-1848. |
51 | RADKE M, RULLKÖTTER J, VRIEND S P. Distribution of naphthalenes in crude oils from the Java Sea: Source and maturation effects[J]. Geochimica et Cosmochimica Acta, 1994, 58(17): 3675-3689. |
52 | VANDENBROUCKE M, BEHAR F, RUDKIEWICZ J L. Kinetic modelling of petroleum formation and cracking: implications from the high pressure/high temperature Elgin Field (UK, North Sea)[J]. Organic Geochemistry, 1999, 30(9): 1105-1125. |
[1] | 侯佳凯, 张志遥, 师生宝, 朱光有. 全二维气相色谱技术在石油地球化学中的应用进展[J]. 石油与天然气地质, 2024, 45(2): 565-580. |
[2] | 史玉玲, 龙祖烈, 张向涛, 温华华, 马晓楠. 珠江口盆地恩平凹陷恩平17洼油气动态成藏过程[J]. 石油与天然气地质, 2023, 44(5): 1279-1289. |
[3] | 黄越义, 廖玉宏, 陈承声, 史树勇, 王云鹏, 彭平安. 塔里木盆地顺南1井和顺南4井油气相态演化的数值模拟与预测[J]. 石油与天然气地质, 2023, 44(1): 138-149. |
[4] | 许汇源, 刘全有, 朱东亚, 孟庆强, 金之钧. 深部铅锌热液流体作用下的原油地球化学特征[J]. 石油与天然气地质, 2023, 44(1): 178-185. |
[5] | 李天军, 黄志龙, 郭小波, 赵静, 蒋一鸣, 谭思哲. 东海盆地西湖凹陷平北斜坡带平湖组煤系原油地球化学特征与油-源精细对比[J]. 石油与天然气地质, 2022, 43(2): 432-444. |
[6] | 李玉宏, 高岗, 王行运, 屈童, 韩伟, 宫振奇, 张文, 党文龙. 渭河盆地新发现原油的特征及其油气地质意义[J]. 石油与天然气地质, 2019, 40(2): 346-353. |
[7] | 苏洲, 张慧芳, 韩剑发, 刘永福, 孙琦, 白银, 段云江, 屈洋. 塔里木盆地库车坳陷中、新生界高蜡凝析油和轻质油形成及其控制因素[J]. 石油与天然气地质, 2018, 39(6): 1255-1269. |
[8] | 周健, 单玄龙, 郝国丽, 赵荣生, 陈鹏. 松江盆地白垩系烃源岩地球化学特征及油源对比[J]. 石油与天然气地质, 2018, 39(3): 578-586. |
[9] | 常象春, 赵万春, 徐佑德, 王涛, 崔晶. 注水开发过程中原油的生物降解与水洗作用[J]. 石油与天然气地质, 2017, 38(3): 617-625. |
[10] | 刘文汇, 罗厚勇, 腾格尔, 王万春, 王杰, 卢龙飞, 陶成, 王萍, 赵恒. 碳酸盐岩储层中原油裂解及碳同位素演化模拟实验[J]. 石油与天然气地质, 2016, 37(5): 627-633. |
[11] | 朱扬明, 孙林婷, 郝芳, 邹华耀, 郭彤楼. 川东北飞仙关组-长兴组天然气几个地球化学问题探讨[J]. 石油与天然气地质, 2016, 37(3): 354-362. |
[12] | 杨中建, 贾锁刚, 张立会, 窦红梅, 曾立军, 朱秀雨, 何佳, 杨璐. 高温高盐油藏二次开发深部调驱技术与矿场试验[J]. 石油与天然气地质, 2015, 36(4): 681-687. |
[13] | 常象春, 王铁冠, 陶小晚, 程斌. 哈拉哈塘凹陷奥陶系原油芳烃生物标志物特征及油源[J]. 石油与天然气地质, 2015, 36(2): 175-182. |
[14] | 时保宏, 张艳, 张雷, 黄静, 唐朝. 运用流体包裹体资料探讨鄂尔多斯盆地姬塬地区长9油藏史[J]. 石油与天然气地质, 2015, 36(1): 17-22. |
[15] | 何坤, 张水昌, 王晓梅, 米敬奎, 毛榕. 松辽盆地白垩系湖相Ⅰ型有机质生烃动力学[J]. 石油与天然气地质, 2014, 35(1): 42-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||