石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (6): 1310-1320.doi: 10.11743/ogg20200619
邓模1(), 段新国2, 翟常博1, 龙胜祥3,4, 杨振恒1, 郑伦举1, 李章畅2, 曹涛涛5,*()
收稿日期:
2018-09-17
出版日期:
2020-12-28
发布日期:
2020-12-09
通讯作者:
曹涛涛
E-mail:dengmo.syky@sinopec.com;515165359@163.com
第一作者简介:
邓模(1983-),男,高级工程师,页岩气地质评价。E-mail:基金项目:
Mo Deng1(), Xinguo Duan2, Changbo Zhai1, Shengxiang Long3,4, Zhenheng Yang1, Lunju Zheng1, Zhangchang Li2, Taotao Cao5,*()
Received:
2018-09-17
Online:
2020-12-28
Published:
2020-12-09
Contact:
Taotao Cao
E-mail:dengmo.syky@sinopec.com;515165359@163.com
摘要:
页岩热模拟演化过程中,液态烃含量及赋存状态的变化是深入研究页岩孔隙演化和储层表征的重要内容。对川西北广元上寺剖面低成熟大隆组页岩进行半封闭体系热模拟实验,并对原岩及热模拟样品进行氩离子抛光扫描电镜观察、热模拟样品及其萃取液态烃后的样品开展低温氮气吸附实验。结果表明,低成熟大隆组页岩中有机孔不发育,随着热模拟温度的增加,有机孔开始发育、数量增多、孔径变大,比表面积和微孔体积显著增加且与热模拟温度具有较好的线性正相关性,但中、大孔体积随热模拟温度增加并未表现出明显的变化规律;TOC减少量与比表面积和孔隙体积之间具有较好的正相关性,说明有机质转化为油气过程中微孔数量显著增加。扫描电镜揭示液态烃主要赋存在页岩的晶间孔及已生成的有机孔内;随着热模拟温度增加,液态烃呈现先显著增加后急剧降低的现象,在热模拟温度为325℃和340℃时,液态烃具有最高含量,在热模拟温度450℃以后,液态烃的含量可忽略不计。萃取液态烃后,样品的氮气吸附能力普遍增强;热模拟样品的孔隙呈单峰型分布,孔峰分布在14.36~23.56 nm,而萃取样品的孔峰向更小的孔隙移动,分布在12.05~22 nm。萃取后样品的比表面积、微孔和中孔体积比热模拟样品显著增加,且比表面积和微孔体积与热模拟温度之间的相关性变好,反映了液态烃主要赋存在泥页岩的微孔及部分中孔内。
中图分类号:
表1
四川盆地大隆组原岩及热模拟样品地球化学特征"
样品编号 | 模拟温度/℃ | TOC/% | S1/(mg·g-1) | S2/(mg·g-1) | HI/(mg·g-1) | Tmax/ ℃ | 氯仿沥青“A”含量/% |
DL-O | 原岩 | 9.83 | 1.03 | 37.70 | 371 | 440 | 1.11 |
DL-325 | 325 | 7.17 | 2.21 | 22.60 | 324 | 439 | 3.73 |
DL-340 | 340 | 7.30 | 4.84 | 18.81 | 258 | 438 | 3.34 |
DL-360 | 360 | 5.76 | 4.95 | 9.72 | 164 | 444 | 1.97 |
DL-400 | 400 | 6.26 | 2.56 | 246.00 | 35 | 571 | 0.59 |
DL-420 | 420 | 6.26 | 1.64 | 1.37 | 20 | 587 | 0.24 |
DL-450 | 450 | 7.71 | 0.53 | 0.56 | 7 | 605 | 0.04 |
DL-480 | 480 | 4.15 | 0.47 | 0.19 | 4 | 607 | 0.04 |
DL-500 | 500 | 4.10 | 0.14 | 0.12 | 3 | 607 | 0.02 |
DL-550 | 550 | 5.38 | 0.07 | 0.00 | 0 | — | 0.00 |
图4
四川盆地广元上寺剖面大隆组页岩热模拟实验不同演化阶段有机孔发育特征 a.有机孔未发育,少量液态烃分布在矿物孔中,热模拟温度325 ℃;b.有机孔开始密集发育,孔径较小,液态烃开始大量生成,分布在矿物孔及有机孔中,热模拟温度340 ℃;c.有机孔进一步发育,连通性较好,液态烃持续生成,占据矿物孔隙和有机孔空间,热模拟温度360 ℃;d.溶蚀孔发育较好,有机质呈块状,有机孔基本不发育,热模拟温度400 ℃;e.有机质内部发育凹坑状孔隙,液态烃较少,热模拟温度420 ℃;f.有机质呈板状、块状分布,内部发育少量不规则形状有机孔,热模拟温度450 ℃;g.有机质分散分布在页岩基质中,与矿物接触空间发育较好的有机孔,有机质内部有机孔发育较差,热模拟温度480 ℃;h.块状有机质,内部孔隙发育较少,在有机质边缘发育有机孔,热模拟温度500 ℃;i.分散状有机质内部极为发育的有机孔,具有很好的连通性,热模拟温度550 ℃"
表2
四川盆地大隆组原岩与模拟样品孔隙结构参数"
样品编号 | 模拟条件 | 氮气吸附结果 | ||||||
地层压力/MPa | 静岩压力/MPa | 比表面积/(m2·g-1) | 孔体积/(cm3·g-1) | 微孔体积/(cm3·g-1) | 中孔体积/(cm3·g-1) | 大孔体积/(cm3·g-1) | ||
DL-O | 0.92 | 0.006 | 0.000 2 | 0.003 0 | 0.003 3 | |||
DL-325 | 23 | 48 | 1.06 | 0.011 | 0.000 4 | 0.004 9 | 0.005 5 | |
DL-340 | 34 | 70 | 1.08 | 0.013 | 0.000 5 | 0.005 7 | 0.007 0 | |
DL-360 | 49 | 102 | 3.68 | 0.022 | 0.000 6 | 0.008 0 | 0.013 0 | |
DL-400 | 53 | 110 | 3.02 | 0.024 | 0.001 0 | 0.010 9 | 0.011 7 | |
DL-420 | 55 | 115 | 1.83 | 0.020 | 0.000 9 | 0.007 7 | 0.011 5 | |
DL-450 | 58 | 120 | 2.18 | 0.019 | 0.001 0 | 0.008 2 | 0.010 3 | |
DL-480 | 62 | 130 | 3.52 | 0.022 | 0.001 7 | 0.008 6 | 0.012 0 | |
DL-500 | 67 | 140 | 6.84 | 0.027 | 0.003 3 | 0.010 1 | 0.014 0 | |
DL-550 | 72 | 150 | 8.02 | 0.014 | 0.003 8 | 0.006 8 | 0.003 0 |
表3
四川盆地大隆组页岩热模拟样品萃取后孔隙结构参数"
样品编号 | 比表面积/(m2·g-1) | 孔体积/(mL·g-1) | 微孔体积/(mL·g-1) | 中孔体积/(mL·g-1) | 大孔体积/(mL·g-1) |
DL-325-E | 3.11 | 0.033 | 0.001 3 | 0.01 3 | 0.019 |
DL-340-E | 3.72 | 0.032 | 0.001 4 | 0.01 4 | 0.017 |
DL-360-E | 4.17 | 0.027 | 0.001 5 | 0.00 9 | 0.016 |
DL-400-E | 7.76 | 0.040 | 0.003 3 | 0.01 5 | 0.022 |
DL-420-E | 9.92 | 0.039 | 0.004 0 | 0.01 8 | 0.017 |
DL-450-E | 8.26 | 0.018 | 0.003 5 | 0.01 0 | 0.004 |
DL-480-E | 9.01 | 0.019 | 0.003 8 | 0.008 7 | 0.006 8 |
DL-500-E | 9.58 | 0.039 | 0.004 1 | 0.014 | 0.021 |
DL-550-E | 15.37 | 0.034 | 0.006 7 | 0.012 | 0.015 |
1 | Curtis M E , Cardott B J , Sondergeld C H , et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103 (23): 26- 31. |
2 | 李楚雄, 肖七林, 陈奇, 等. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素[J]. 石油实验地质, 2019, 41 (6): 901- 909. |
LI Chuxiong , Xiao Qilin , Chen Qi , et al. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. Petroleum Geology & Experiment, 2019, 41 (6): 901- 909. | |
3 | Mathia E J , Bowen L , Thomas K M , et al. Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian Posidonia Shale[J]. Marine and Petroleum Geology, 2016, 75 (8): 117- 139. |
4 | 张毅, 胡守志, 廖泽文, 等. 基于压机热模拟实验的页岩孔隙演化特征[J]. 地球科学, 2019, 44 (3): 983- 992. |
Zhang Yi , Hu Shouzhi , Liao Zewen , et al. Shale pore evolution characteristics based on semi-closed pyrolysis experiment[J]. Earth Science, 2019, 44 (3): 983- 992. | |
5 | 刘国恒, 黄志龙, 姜振学, 等. 湖相页岩液态烃对页岩吸附气实验的影响——以鄂尔多斯盆地延长组页岩为例[J]. 石油实验地质, 2015, 37 (5): 648- 653. |
Liu Guoheng , Huang Zhilong , Jiang Zhenxue , et al. Effect of liquid hydrocarbons on gas adsorption in a v lacustrine shale:a case study of the Yanchang formation, Ordos Basin[J]. Petroleum Geology and Experiment, 2015, 37 (5): 648- 653. | |
6 | 罗进雄, 何幼斌. 中上扬子地区二叠系烃源岩特征[J]. 天然气地球科学, 2014, 25 (9): 1416- 1425. |
Luo Jinxiong , He Youbin . Characterisitics of the Permian source rocks in the Middle and Upper Yangtze region[J]. Natural Gas Geoscience, 2014, 25 (9): 1416- 1425. | |
7 | Ross D J K , Bustin R M . The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26 (6): 916- 927. |
8 | 雷裕红, 王晖, 罗晓容, 等. 鄂尔多斯盆地张家滩页岩液态烃特征及对页岩气量估算的影响[J]. 石油学报, 2016, 37 (8): 952- 961. |
Lei Yuhong , Wang Hui , Luo Xiaorong , et al. The characteristics of liquid hydrocarbon in Zhangjiatan shale, Ordos Basin and its effects on the estimation of shale gas content[J]. Acta Petrolei Sinica, 2016, 37 (8): 952- 961. | |
9 | 潘磊, 陈桂华, 徐强, 等. 下扬子地区二叠系富有机质泥页岩孔隙结构特征[J]. 煤炭学报, 2013, 38 (5): 787- 793. |
Pan Lei , Chen Guihua , Xu Qiang , et al. Pore structure characteristics of Permian organic-rich shale in Lower Yangtze area[J]. Journal of China Coal Society, 2013, 38 (5): 787- 793. | |
10 |
Jarvie D M , Hill R J , Ruble T E , et al. Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91 (4): 475- 499.
doi: 10.1306/12190606068 |
11 | 张琴, 梁峰, 庞正炼, 等. 可溶有机质对海陆过渡相页岩孔隙结构的定量影响[J]. 石油实验地质, 2018, 40 (5): 730- 738. |
Zhang Qin , Liang Feng , Pan Zhenglian , et al. Quantitative influence of soluble organic matter on pore structure in transitional shale[J]. Petroleum Geology and Experiment, 2018, 40 (5): 730- 738. | |
12 | Cao T T , Song Z G , Wang S B , et al. Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2015, 61 (3): 140- 150. |
13 | 崔景伟, 朱如凯, 崔京钢. 页岩孔隙演化及其与残留烃量的耦合关系:来自地质过程约束模拟实验的证据[J]. 地质学报, 2013, 87 (5): 730- 736. |
Cui Jingwei , Zhu Rukai , Cui Jinggang . Relationship of porous evolution and residual hydrocarbon:evidence from modeling experiment with geological constrains[J]. Acta Geological Sinica, 2013, 87 (5): 730- 736. | |
14 | Lin W , Mastalerz M , Schimmelmann A , et al. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales[J]. International Journal of Coal Geology, 2014, 132 (10): 38- 50. |
15 | Hu H Y , Zhang T W , Wiggins-Camacho J D , et al. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis[J]. Marine and Petroleum Geology, 2015, 59 (1): 114- 128. |
16 | 李成成, 周世新, 李靖, 等. 鄂尔多斯盆地南部延长组泥页岩孔隙特征及其控制因素[J]. 沉积学报, 2017, 35 (2): 315- 329. |
Li Chengcheng , Zhou Shixin , Li Jing , et al. Pore characteristics and controlling factors of the Yanchang formation and shale in the South of Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35 (2): 315- 329. | |
17 | Wang M , Xue H T , Tian S S , et al. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China[J]. Marine and Petroleum Geology, 2015, 67 (11): 144- 153. |
18 |
Mastalerz M , Schimmelmann A , Drobniak A , et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97 (10): 1621- 1643.
doi: 10.1306/04011312194 |
19 | Furmann A , Mastalerz M , Brassell S C , et al. Extractability of biomarkers from high-and low-vitrinite coals and its effect on the porosity of coal[J]. International Journal of Coal Geology, 2013, 107 (5): 141- 151. |
20 | 肖佃师, 赵仁文, 杨潇, 等. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 2019, 40 (6): 1215- 1225. |
Xiao Dianshi , Zhao Renwen , Yang Xiao , et al. Characterization, classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology, 2019, 40 (6): 1215- 1225. | |
21 | 孙健, 包汉勇. 页岩气储层综合表征技术研究进展:以涪陵页岩气田为例[J]. 石油实验地质, 2018, 40 (1): 1- 12. |
Sun Jian , Bao Hanyong . Comprehensive characterization of shale gas reservoirs:A case study from Fuling shale gas field[J]. Petroleum Geology & Experiment, 2018, 40 (1): 1- 12. | |
22 | 何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018, 39 (3): 472- 484. |
He Chencheng , He Sheng , Guo Xusheng , et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation's first Member, Jiaoshiba Block, Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (3): 472- 484. | |
23 | 卢双舫, 黄文彪, 陈方文, 等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39 (2): 249- 256. |
Lu Shuangfang , Huang Wenbiao , Chen Fangwen , et al. Classification and evaluation criteria of shale oil and gas resources:discussion and application[J]. Petroleum Exploration and Development, 2012, 39 (2): 249- 256. | |
24 | 王民, 石蕾, 王文广, 等. 中美页岩油、致密油发育的地球化学特征对比[J]. 岩性油气藏, 2014, 26 (3): 67- 73. |
Wang Min , Shi Lei , Wang Wenguang , et al. Comparative study on geochemical characteristics of shale oil between China and U.S.A[J]. Lithological Reservoirs, 2012, 39 (2): 249- 256. | |
25 | Inan S , Badairy H A , Inan T , et al. Formation and occurrence of organic matter-hosted porosity in shales[J]. International Journal of Coal Geology, 2018, 199 (11): 39- 51. |
26 | Bernard S , Wirth R , Schreiber A , et al. Formation of nanoporous pyro-bitumen residues during maturation of the Barnett shale (Forth Worth Basin)[J]. International Journal of Coal Geology, 2012, 103 (12): 3- 11. |
27 | 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38 (1): 23- 30. |
Ma Zhongliang , Zheng Lunjun , Xu Xuhui , et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38 (1): 23- 30. | |
28 |
Chen Z H , Shuai Y H , Wang N . A reassessment of gas resources in selected Upper Cretaceous biogenic gas accumulations in southeastern Alberta and southwestern Saskatchewan, Canada[J]. Bulletin of Canadian Petroleum Geology, 2015, 63 (1): 5- 19.
doi: 10.2113/gscpgbull.63.1.5 |
29 | 贺儒良, 贾望鲁, 彭平安. 排-留烃过程对富有机质页岩纳米孔隙发育影响的热模拟实验研究[J]. 地球化学, 2018, 47 (5): 575- 585. |
He Ruliang , Jia Wanglu , Peng Pingan . Infulence of hydrocarbon expulsion and retention of the evolution of nanometer-scale pores in organic matter rich shale:An example from pyrolysis experiment[J]. Geochimica, 2018, 47 (5): 575- 585. | |
30 | Yang C Y , Ni Z Y , Li M J , et al. Pyrobitumen in South China:Organic petrology, chemical composition and geological significance[J]. International Journal of Coal Geology, 2018, 188 (3): 51- 63. |
31 | Fishman N S , Hackley P C , Lowers H A , et al. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. International Journal of Coal Geology, 2012, 103 (23): 32- 50. |
32 | 曹涛涛, 邓模, 罗厚勇, 等. 下扬子地区中上二叠统页岩有机孔发育特征[J]. 石油实验地质, 2018, 40 (3): 315- 322. |
Cao Taotao , Deng Mo , Luo Houyong , et al. Characteristics of organic pores in Middle and Upper Permian shale in the Lower Yangtze region[J]. Petroleum Geology & Experiment, 2018, 40 (3): 315- 322. | |
33 | 曹涛涛, 刘光祥, 曹清古, 等. 有机显微组成对泥页岩有机孔发育的影响——以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39 (1): 40- 53. |
Cao Taotao , Liu Guangxiang , Cao Qinggu , et al. Influence of maceral composition on organic pore development in shale:A case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (1): 40- 53. | |
34 | 曹涛涛, 邓模, 刘虎, 等. 可溶有机质对泥页岩储集物性的影响[J]. 岩性油气藏, 2018, 30 (3): 1- 9. |
Cao Taotao , Deng Mo , Liu Hu , et al. Influence of soluble organic matter on reservoir properties of shale[J]. Lithologic Reservoirs, 2018, 30 (3): 1- 9. | |
35 |
Ko L T , Loucks R G , Zhang T W , et al. Pore and pore network evolution of Upper Cretaceous Boquillas(Eagle Ford-equivalent) mudrocks:Results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100 (11): 1693- 1722.
doi: 10.1306/04151615092 |
36 | 李恒超, 刘大永, 彭平安, 等. 人工熟化过程中可溶有机质对页岩孔隙特征的影响[J]. 地球化学, 2017, 46 (5): 466- 475. |
Li Hengchao , Liu Dayong , Peng Pingan , et al. Effect of extractable organic matter on pore characteristics of shales treated by artificial heating[J]. Geochimica, 2017, 46 (5): 466- 475. | |
37 | Zargari S , Canter K L , Prasad M . Porosity evolution in oil-prone source rocks[J]. Fuel, 2015, 153 (8): 110- 117. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[7] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[8] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[9] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[10] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[11] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[12] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[13] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[14] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[15] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||