石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (1): 201-211.doi: 10.11743/ogg20210117
梁新平1,2,3(), 金之钧1,2,3,*(), 刘全有2,3, ShpilmanAlexander4, 李鹏2,3, MorozovVladimir5, UspenskyBoris5
收稿日期:
2019-08-26
出版日期:
2021-02-28
发布日期:
2021-02-07
通讯作者:
金之钧
E-mail:xinping.liang@pku.edu.cn;jinzj1957@pku.edu.cn
第一作者简介:
梁新平(1987-), 女, 博士, 页岩油气地质。E-mail: 基金项目:
Xinping Liang1,2,3(), Zhijun Jin1,2,3,*(), Quanyou Liu2,3, Alexander Shpilman4, Peng Li2,3, Vladimir Morozov5, Boris Uspensky5
Received:
2019-08-26
Online:
2021-02-28
Published:
2021-02-07
Contact:
Zhijun Jin
E-mail:xinping.liang@pku.edu.cn;jinzj1957@pku.edu.cn
摘要:
西西伯利亚盆地上侏罗统-下白垩统巴热诺夫组硅质-钙质富有机质泥页岩总有机碳(TOC)含量高且有机质成熟度适中,是俄罗斯目前页岩油的勘探首选目的层系。近年研究表明,该套富有机质页岩层段发育数套厘米-毫米级的火山灰夹层,具黄色荧光,岩心薄片见大量沸石等火山灰蚀变矿物,使该区火山灰与富有机质形成的相互关系引起关注。以该盆地的巴热诺夫组为例,介绍了火山灰对该区富有机质页岩形成的影响。巴热诺夫组的地质-地球化学分析表明,在火山灰发育同期沉积的富有机质层段中不仅硅、磷等营养元素含量高,而且钡、锰、钼、铀等藻类繁殖催化元素含量也高,推测火山灰携带物质促进了巴热诺夫页岩沉积时期古生物的大量繁殖甚至爆发,为富有机质的形成奠定了物质基础;同时,在火山灰发育层段之上的富有机质泥页岩中大量发育草莓状黄铁矿,且呈层状分布,Co/Ni比值小于1,S/Fe比值偏高,指示火山灰喷发之后形成缺氧的强还原环境,有利于泥页岩中有机质的保存;火山灰发育井区TOC含量高(多>7%),有机质成熟度与邻近火山灰不发育区相比偏高(Ro=0.7%~1.1%),生烃潜力高且已达到生油高峰,推测可能火山灰携带的钼、镍等元素促进了热催化生油阶段干酪根的成烃演化;火山灰发育的富有机质页岩层段常见藻类纹层与碳酸盐岩纹层互层,多见层间孔缝,利于页岩油气的运移。因此,火山灰与巴热诺夫组富有机质页岩的形成具有一定的内在联系,火山灰不仅能够提高沉积时期的古生产力和保存条件,促进有机质的成烃演化,而且利于形成富有机质交互纹层,易于后期压裂开发。
中图分类号:
1 |
White J D L , Houghton B F . Primary volcaniclastic rocks[J]. Geology, 2006, 34, 677- 680.
doi: 10.1130/G22346.1 |
2 |
Lowe D J . Tephrochronology and its application[J]. A review Quat Geochronol, 2011, 6, 107- 153.
doi: 10.1016/j.quageo.2010.08.003 |
3 |
刘嘉麒, 孙春青, 游海涛. 全球火山灰年代学研究概述[J]. 中国科学: 地球科学, 2018, 48, 1- 29.
doi: 10.3969/j.issn.0253-2778.2018.01.001 |
Liu J Q , Sun C Q , You H T . An overview of global tephrochronology[J]. Scientia Sinica Terrae, 2018, 48, 1- 29.
doi: 10.3969/j.issn.0253-2778.2018.01.001 |
|
4 | 朱筱敏. 沉积岩石学[M]. 第四版 北京: 石油工业出版社, 2008. |
Zhu Xiaomin . Sedimentary petrology[M]. 4th edition Beijing: Petroleum Industry Press, 2008. | |
5 |
Batchelor R A . Geochemistry of biotite in metabentonites as an age discriminant, indicator of regional magma sources and potential correlating tool[J]. Mineralogical Magazine, 2003, 67 (4): 807- 817.
doi: 10.1180/0026461036740137 |
6 | Li Denghua , Li Jianzhong , Huang Jinliang , et al. An important role of volcanic ash in the formation of shale plays and its inspiration[J]. Natural Gas Industry, 2014, 34 (5): 56- 65. |
7 | 吴蓝宇, 陆永潮, 蒋恕, 等. 上扬子区奥陶系五峰组-志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响[J]. 石油勘探与开发, 2018, 45 (5): 806- 816. |
Wu Lanyu , Lu Yongchao , Jiang Shu , et al. Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2018, 45 (5): 806- 816. | |
8 | Zou Caineng , Zhu Rukai , Chen Zhongqiang , et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2018, 189, 51- 78. |
9 |
Gao Ping , He Zhiliang , Li Shuangjian , et al. Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Camb-rian Niutitang Formation black shales in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505, 381- 397.
doi: 10.1016/j.palaeo.2018.06.019 |
10 | 刘佳宜, 刘全有, 朱东亚, 等. 深部流体在富有机质烃源岩形成中的作用[J]. 天然气地球科学, 2018, 29 (2): 168- 177. |
Liu Jiayi , Liu Quanyou , Zhu Dongya , et al. The role of deep fluid in the formation of organic-rich source rocks[J]. Natural Gas Geos-cience, 2018, 29 (2): 168- 177. | |
11 | 刘全有, 朱东亚, 孟庆强, 等. 深部流体及有机-无机相互作用下油气形成的基本内涵[J]. 中国科学: 地球科学, 2019, 49 (3): 499- 520. |
Liu Quanyou , Zhu Dongya , Meng Qingqiang , et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China(Earth Sciences), 2019, 49 (3): 507- 528. | |
12 |
Hong Hanlie , Algeo Thomas J , Fang Qian , et al. Facies dependence of the mineralogy and geochemistry of altered volcanic ash beds: An example from Permian-Triassic transition strata in southwestern China[J]. Earth-Science Reviews, 2019, 190, 58- 88.
doi: 10.1016/j.earscirev.2018.12.007 |
13 |
Liu Quanyou , Zhu Dongya , Jin Zhijun , et al. Influence of volcanic activities on redox chemistry changes linked to the enhancement of the ancient Sinian source rocks in the Yangtze craton[J]. Precambrian Research, 2019, 327, 1- 13.
doi: 10.1016/j.precamres.2019.02.017 |
14 |
Liao Zhiwei , Hu Wenxuan , Cao Jian , et al. Heterogeneous volcanism across the Permian-Triassic Boundary in South China and implications for the Latest Permian Mass Extinction: New evidence from volcanic ash layers in the Lower Yangtze Region[J]. Journal of Asian Earth Sciences, 2016, 127, 197- 210.
doi: 10.1016/j.jseaes.2016.06.003 |
15 |
Little C T S , Herrington R J , Mas.V V , et al. Silurian hydrothermal vent community from the Southern Urals, Russia[J]. Nature, 1997, 385, 146- 148.
doi: 10.1038/385146a0 |
16 |
Verati C , Donatode P , Prieur D , et al. Evidence of bacterial activity from micrometer-scale layer analyses of black smoker sulfide structures[J]. Chemical Geology, 1999, 158, 257- 269.
doi: 10.1016/S0009-2541(99)00054-6 |
17 |
Rasmussen B . Filamentous microfossils in a 3235 Ma old volcanoge-nic massive sulphide deposit[J]. Nature, 2000, 405, 676- 679.
doi: 10.1038/35015063 |
18 | Dick G J , Anantharaman K , Baker B J , et al. The microbiology of deep-sea hydrothermal vent plumes: Ecological and biogeographic linkages to seafloor and water column habitats[J]. Front Microbiol, 2013, 4, 124. |
19 |
Zhang Laiming , Wang Chengshan , Wignall P B , et al. Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China[J]. Geology, 2018, 46 (3): 271- 274.
doi: 10.1130/G39992.1 |
20 |
Lee Cin-Ty A , Jiang Hehe , Ronay Elli , et al. Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous[J]. Scientific Reports, 2018, 8 (1): 1- 9.
doi: 10.1038/s41598-017-17765-5 |
21 |
Schimmelmann A , Mastalerz M , Gao L , et al. Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating[J]. Geochimica Et Cosmochimica Acta, 2009, 73 (20): 6264- 6281.
doi: 10.1016/j.gca.2009.07.027 |
22 |
李登华, 李建忠, 黄金亮, 等. 火山灰对页岩油气成藏的重要作用及其启示[J]. 天然气工业, 2014, 34 (5): 56- 65.
doi: 10.3787/j.issn.1000-0976.2014.05.006 |
Li Denghua , Li Jianzhong , Huang Jinliang , et al. An important role of volcanic ash in the formation of shale plays and its inspiration[J]. Natural Gas Industry, 2014, 34 (5): 56- 65.
doi: 10.3787/j.issn.1000-0976.2014.05.006 |
|
23 | 金之钧, 王志欣. 西西伯利亚盆地油气地质特征[M]. 北京: 中国石化出版社, 2007: 84- 91. |
Jin Zhijun , Wang Zhixin . Oil & gas geological characteristics of West Siberia Basin[M]. Beijing: Sinopec Press, 2007: 84- 91. | |
24 | 朱伟林, 王志欣, 宫少波, 等. 国外含油气盆地丛书: 俄罗斯含油气盆地[M]. 北京: 科学出版社, 2012. |
Zhu Weilin , Wang Zhixin , Gong Shaobo , et al. Foreign oil and gas basin series: oil and gas basin of Russia[M]. Beijing: Science Press, 2012. | |
25 |
Fomin A N . Thermal maturity of uppermost Middle Jurassic sediments in the West Siberian basin[J]. Russian Geology and Geophysics, 2017, 58, 443- 450.
doi: 10.1016/j.rgg.2016.09.020 |
26 |
Kontorovich A E , Ponomareva E V , Burshtein L M . Distribution of organic matter in rocks of the Bazhenov horizon (West Siberia)[J]. Russian Geology and Geophysics, 2018, 59, 285- 298.
doi: 10.1016/j.rgg.2018.03.007 |
27 |
Shaldybin M V , Lopushnyak Y M , Goncharov I V , et al. The mineralogy of the clayey-silty siliceous rocks in the Bazhenov Shale Formation (Upper Jurassic) in thewest Siberian Basin, Russia: The role of diagenesis and possible implications for their exploitation as an unconventional hydrocarbon reservoir[J]. Applied Clay Science, 2017, 136, 75- 89.
doi: 10.1016/j.clay.2016.11.009 |
28 | 肖异凡. 二叠纪放射虫生物地层划分及古生态的统计学研究[D]. 武汉: 中国地质大学, 2018. |
Xiao Yifan. Statistical study on biostratigraphic division and paleoecology of Permian radioladians[D]. Wuhan: China University of Geosciences, 2018. | |
29 | 张宁. 广西板城晚泥盆世-早石炭世硅质岩系放射虫演化及其对全球事件的响应[D]. 武汉: 中国地质大学, 2004. |
Zhang Ning. Evolution of radiolarian from late Devonian to early Carboniferous siliceous rocks in Bancheng, Guangxi and its response to globalevents[D]. Wuhan: China University of Geosciences, 2004. | |
30 | Предтеченская Е.А. , Малюшко Л.Д. . Геохимические особенности и факторные модели баженовской свиты в центральных и юго-восточных районах Западно-сибирской плиты[J]. Известия вузов.Геология и разведка, 2016, 4, 23- 36. |
31 | Булатов Т.Д., Оксенойд Е.Е., Семечкова Л.В.и др. Туфогенные прослои в отложениях бажеиовской свиты в центральной части Западной Сибири[R]. Сборник 《Пути реализации нефтегазового потенциала ХМАО》. Двадцать первая научно-практическая конференция.Т.2, стр.189-198.Ханты-Мансийск, ООО "ИздатНаукаСервис". 2018г. |
32 | Волков В.А. , Олейник Е.В. , Оксенойд Е.Е.и др . Строение и генерационный потенциал баженовской свиты на территории центральной части Западной Сибири[J]. Геология и минеральные ресурсы Сибири, 2016, 3 (27): 79- 98. |
33 | Панченко И В, Камзолкин В А, Латышев А В.и др.Туфы и туффиты в баженовской горизонте (Западная Сибирь)[R]. Эволюция осадочных процессов в истории Земли: материалы 8-го Всероссийского литологического совещания, Москва, 27-30октября 2015г. |
34 | Frogner P , Gı'slason S R , O' skarsson N . Fertilizing potential of volcanic ash in ocean surface water[J]. Geological Society of America.Geology, 2001, 29, 487- 490. |
35 | Zhang R, Jiang T, Tian Y, et al. Volcanic ash stimulates growth of marine autotrophic and heterotrophic microorganisms. Geology[J], 2017, 45, 479-682. |
36 |
Zeng Z , Pike M , Tice M M , et al. Iron fertilization of primary productivity by volcanic ash in the Late Cretaceous(Cenomanian) Western Interior Seaway[J]. Geology, 2018, 46, 859- 862.
doi: 10.1130/G45304.1 |
37 |
Zanin Yuri N , Eder Vika G , Zamirailova Al'bina G , et al. Models of the REE distribution in the black shale Bazhenov Formation of the West Siberian marine basin, Russia[J]. Chemie der Erde., 2010, 70, 363- 376.
doi: 10.1016/j.chemer.2010.04.001 |
38 | Philippe , Van , Cappellen , et al. Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus[J]. Paleoceanography, 2010, 9 (5) |
39 | Брадучан Ю В, Гольберт А В, Гурари Ф Г и др.Баженовский горизонт Западной Сибири[J]. Тр.ИГиГ СоАН СССР.В.649.Новосибирск: Наука, Сиб.отд., 1986.216с. |
40 | Гурари Ф Г, Вайц Э Я, Меленевский В Н и др.Условия формирования и методика поисков залежей нефти в аргиллитах баженовской свиты.М.: Недра, 1988.197с. |
41 | Гурари Ф Г, Кроль Л А, Перозио Г Н и др.Баженовская свита: седиментационная модель, палеоэкологическая обстановка.Среда и жизнь в геологическом прошлом: Матер.Всеросс.Симпозиума[J]. Новосибирск: НИЦ ОИГГМ СО РАН, 2000.С.32-33. |
42 | Амон Э О.Радиолярии в баженовской свите (волжский ярус) Широтного Приобья, Западная Сибирь[J]. ЕЖЕГОДНИК-2010, Тр.ИГГ УрО РАН, вып.158, 2011, с.3-8. |
43 | 梁新平, 金之钧, AlexanderShpilman, 等. 俄罗斯页岩油地质特征及勘探开发进展[J]. 石油与天然气地质, 2019, 40 (3): 478- 490, 503. |
Liang Xinping , Jin Zhijun , Shpilman Alexander , et al. Geological characteristics and latest progress in exploration and development of Russian shale oil[J]. Oil & Gas Geology, 2019, 40 (3): 478- 490, 503. | |
44 |
Shaldybin M V , Wilson M J , Wilson L , et al. The nature, origin and significance of luminescent layers in the Bazhenov Shale Formation of West Siberia, Russia[J]. Marine and Petroleum Geology, 2019, 100, 358- 375.
doi: 10.1016/j.marpetgeo.2018.11.022 |
45 |
翟庆龙. 火山热液活动对烃源岩生排烃的作用-以东营凹陷西部沙三段为例[J]. 油气地质与采收率, 2003, 10 (3): 19- 21+3.
doi: 10.3969/j.issn.1009-9603.2003.03.004 |
Zhai Qinglong . Effect of volcanic hydrothermal fluid activities on hydrocarbon generation and expulsion from source rocks-taking Es3 of the western Dongying sag as example[J]. Petoleum Geology and Recovery Efficiency, 2003, 10 (3): 11- 13.
doi: 10.3969/j.issn.1009-9603.2003.03.004 |
|
46 |
卢红选, 孟自芳, 李斌, 等. 微量元素对褐煤有机质热解成烃的影响[J]. 油气地质与采收率, 2008, 15 (2): 64- 66+115.
doi: 10.3969/j.issn.1009-9603.2008.02.019 |
Lu Hongxuan , Meng Zifang , Li Bin , et al. Effects of trace elements on pyrogenic hydrocarbon generation of lignite[J]. Petroleum Geology and Recovery Efficiency, 2008, 15 (2): 64- 66+115.
doi: 10.3969/j.issn.1009-9603.2008.02.019 |
|
47 | Немова В.Д., Панченко И.В.Факторы продуктивности Баженовского горизонта во Фроловской мегавпадине[J]. Нефтегазовая геология. Теория и практика, 2017, 12(4): 6. |
48 | 石巨业, 金之钧, 刘全有, 等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质, 2019, 40 (6): 1205- 1214. |
Shi Juye , JinZhijun , Liu Quanyou , et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 2019, 40 (6): 1205- 1214. | |
49 | 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40 (3): 451- 458. |
Jin Zhijun , Bai Zhenrui , Gao bo , et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40 (3): 451- 458. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[7] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[8] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[9] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[10] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[11] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[12] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[13] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[14] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
[15] | 米立军, 徐建永, 李威. 渤海海域页岩油资源潜力[J]. 石油与天然气地质, 2023, 44(6): 1366-1377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||