石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (4): 763-776.doi: 10.11743/ogg20220403
朱红涛1(), 朱筱敏2, 刘强虎1, 徐长贵3, 杜晓峰3
收稿日期:
2022-03-07
修回日期:
2022-05-10
出版日期:
2022-08-01
发布日期:
2022-07-14
第一作者简介:
朱红涛(1976—),男,教授、博士生导师,层序地层学、沉积学、地震沉积学。E?mail: 基金项目:
Hongtao Zhu1(), Xiaomin Zhu2, Qianghu Liu1, Changgui Xu3, Xiaofeng Du3
Received:
2022-03-07
Revised:
2022-05-10
Online:
2022-08-01
Published:
2022-07-14
摘要:
层序地层学与源-汇系统理论方法体系不仅先进而且得到广泛应用,深入探讨二者内在关联与差异性对地学相关学科、领域协同发展意义重大。层序地层学核心在于建立沉积区高精度等时地层格架,揭示格架内沉积充填过程、时空分布序列及成因机制;而源-汇系统分析,进一步将研究范畴向搬运区、物源区拓展,从多维度示踪沉积物剥蚀、搬运和堆积的动态响应过程,进而综合厘定沉积物从源到汇全过程的动力驱动机制、原型格局。层序地层学与源-汇系统间内在关联性和继承性集中于盆地等时地层格架内剥蚀-沉积响应过程表征解析及沉积体定量化预测;差异性主要体现为刻画表征关键要素与层序内幕单元结构两方面。未来层序地层学和源-汇系统方法体系有望在应用标准化、古今结合及多学科和多参数定量化分析预测等方面得到快速发展。
中图分类号:
1 | Posamentier H W, Jervey M T, Vail P R. Eustatic controls on clastic deposition I — conceptual framework[M]//Wilgus C K, Hastings B S,Posamentier H, et al. Sea‑level changes: An integrated approach. Tulsa: SEPM Society for Sedimentary Geology, 1988. |
2 | 薛良清.层序地层学研究现状、方法与前景[J].石油勘探与开发,1995,22(5):8-13. |
Xue Liangqing. Current status, methodology, and future directions of sequence stratigraphy[J]. Petroleum Exploration and Development, 1995, 22(5): 8-13. | |
3 | 朱筱敏,康安,王贵文.陆相坳陷型和断陷型湖盆层序地层样式探讨[J].沉积学报,2003,21(2):283-287. |
Zhu Xiaomin, Kang An, Wang Guiwen. Sequence stratigraphic models of depression and faulted‑down lake basins[J]. Acta Sedimentologica Sinica, 2003, 21(2): 283-287. | |
4 | Catuneanu O, Abreu V, Bhattacharya J P, et al. Towards the standardization of sequence stratigraphy[J]. Earth‑Science Reviews, 2009, 92(1/2): 1-33. |
5 | 林畅松.沉积盆地的层序和沉积充填结构及过程响应[J].沉积学报,2009,27(5):849-862. |
Lin Changsong. Sequence and depositional architecture of sedimentary basin and process responses[J]. Acta Sedimentologica Sinica, 2009, 27(5): 849-862. | |
6 | 姜在兴.沉积体系及层序地层学研究现状及发展趋势[J].石油与天然气地质,2010,31(5):535-541. |
Jiang Zaixing. Studies of depositional systems and sequence stratigraphy: The present and the future[J]. Oil & Gas Geology, 2010, 31(5): 535-541. | |
7 | 姜在兴. 层序地层学研究进展:国际层序地层学研讨会综述[J].地学前缘,2012,19(1): 1-9. |
Jiang Zaixing. Advances in sequence stratigraphy: A summary from international workshop on sequence stratigraphy[J]. Earth Science Frontiers, 2012, 19(1):1-9. | |
8 | MARGINS Office. NSF MARGINS Program: Science Plans 2004[M]. New York: Columbia University, 2003:84-93. |
9 | Allen P A, Hoffman P F. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation[J].Nature, 2005, 433(7022): 123-127. |
10 | Allen P A. From landscapes into geological history[J]. Nature, 2008a, 451(7176): 274-276. |
11 | Allen P A. Time scales of tectonic landscapes and their sediment routing systems[M]. London: Geological Society, Special Publications, 2008. |
12 | 高抒. 美国《洋陆边缘科学计划2004》述评[J].海洋地质与第四纪地质, 2005, 25(1): 119-123. |
Gao Shu. Comments on the “NSF Margins Program Science Plans 2004”[J]. Marine Geology & Quaternary Geology, 2005,25(1): 119-123. | |
13 | 王成善,林畅松.中国沉积学近十年来的发展现状与趋势[J].矿物岩石地球化学通报,2021,40(6):1217-1229, 1448-1449. |
Wang Chengshan, Lin Changsong. Development status and trend of sedimentology in China in recent ten years[J]. Bulletin of Mi‑ neralogy, Petrology and Geochemistry, 2021, 40(6): 1217-1229, 1448-1449. | |
14 | Vail P R, Mitchum Jr R M, Ⅲ Thompson S. Seismic stratigraphy and global changes of sea level, part 3: Relative changes of sea level from coastal onlap[M]//Payton C W(ed). Seismic stratigraphy: Applications to hydrocarbon exploration. USA:American Association of Petroleum Geologists, 1977. |
15 | Posamentier H W, Kolla V. Seismic geomorphology and stratigraphy of depositional elements in deep‑water settings[J]. Journal of Sedimentary Research, 2003, 73(3): 367-388. |
16 | Catuneanu O. Principles of sequence stratigraphy[M]. London: Elsevier, 2006. |
17 | Catuneanu O. Sequence stratigraphy in the context of the ‘mode‑ ling revolution’[J]. Marine and Petroleum Geology, 2020, 116: 104309. |
18 | Posamentier H W, Walker R G. Deep‑water turbidites and submarine fans[M]. Society for Sedimentary Geology, 2011:399-520. |
19 | Slatt R M, Zavala C. Sediment transfer from shelf to deep water[M]. USA:The American Association of Petroleum Geologists and SEPM, 2012. |
20 | Pickering K T, Hiscott R N. Deep marine systems: Processes, deposits, environments, tectonics and sedimentation[M]. London:Wiley, 2015. |
21 | Pickering K, Hiscott R. Deep marine systems: processes, depo‑ sits, environments, tectonics and sedimentation[M]. Oxford: American Geophysical Union and Wiley, 2016: 1-402. |
22 | Embry A F. Practical sequence stratigraphy[J]. Canadian Society of Petroleum Geologists, 2009, 81:79. |
23 | Helland‑Hansen W, Martinsen O J. Shoreline trajectories and sequences; description of variable depositional‑dip scenarios[J]. Journal of Sedimentary Research, 1996, 66(4): 670-688. |
24 | Helland‑Hansen W, Hampson G J. Trajectory analysis: Concepts and applications[J]. Basin Research, 2009, 21: 454-483 |
25 | Henriksen S, Helland‑Hansen W, Bullimore S. Relationships between shelf‑edge trajectories and sediment dispersal along depositional dip and strike: A different approach to sequence stratigraphy[J]. Basin Research, 2011, 23(1): 3-21. |
26 | Zecchin M, Catuneanu O. High‑resolution sequence stratigraphy of clastic shelves Ⅶ: 3D variability of stacking patterns[J]. Marine and Petroleum Geology, 2020, 121: 104582. |
27 | Wu H, Zhang S, Hinnov L A, et al. Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian‑Lower Danian in Songliao Basin, northeastern China[J]. Earth and Planetary Science Letters, 2014, 407: 82-95. |
28 | Lin C, Jiang J, Shi H, et al. Sequence architecture and depositional evolution of the northern continental slope of the South China Sea: Responses to tectonic processes and changes in sea level[J]. Basin Research, 2018, 30: 568-595. |
29 | Xie X, Ren J, Pang X, et al. Stratigraphic architectures and associated unconformities of Pearl River Mouth basin during rifting and lithospheric breakup of the South China Sea[J]. Marine Geophysical Research, 2019, 40(2): 129-144. |
30 | 林畅松,潘元林,肖建新,等.“构造坡折带”——断陷盆地层序分析和油气预测的重要概念[J].地球科学:中国地质大学学报,2000,25(3):260-266. |
Lin Changsong, Pan Yuanlin, Xiao Jianxin, et al. Structural slope‑break zone: Key concept for stratigraphic sequence analysis and petroleum forecasting in fault subsidence basins[J]. Earth Science (Journal of China University of Geosciences), 2000, 25(3): 260-266. | |
31 | 林畅松.盆地沉积动力学:研究现状与未来发展趋势[J].石油与天然气地质,2019,40(4):685-700. |
Lin Changsong. Sedimentary dynamics of basin: Status and trend[J]. Oil & Gas Geology, 2019, 40(4): 685-700. | |
32 | 蔡希源,李思田.陆相盆地高精度层序地层学:隐蔽油气藏勘基础、方法与实践、基础理论篇[M].北京:地质出版社,2003. |
Cai Xiyuan, Li Sitian. High precision sequence stratigraphy of continental basins: Basis, method and practice of subtle reservoir exploration, basic theory[M]. Beijing:Geological Publishing House, 2003. | |
33 | 邓宏文.高分辨率层序地层学应用中的问题探析[J].古地理学报,2009,11(5):471-480. |
Deng Hongwen. Discussion on problem of applying high resolution sequence stratigraphy[J]. Journal of Paleogeography, 2009, 11 (5): 471-480. | |
34 | 朱红涛,刘可禹,朱筱敏,等.陆相盆地层序构型多元化体系[J].地球科学,2018,43(3): 770-785. |
Zhu Hongtao, Liu Keyu, Zhu Xiaomin, et al. Varieties of sequence stratigraphic configurations in continental basins[J]. Ear⁃th Science, 2018, 43(3): 770-785. | |
35 | 李绍虎.对国外层序地层学研究进展的几点思考及L—H—T层序地层学[J].沉积学报,2010,28(4):735-744. |
Li Shaohu. Thinking of international sequence stratigraphy deve‑ lopment and L-H-T sequence stratigraphy[J]. Acta Sedimentologica Sinica, 2010, 28 (4): 735-744. | |
36 | 梅冥相.从旋回的有序叠加形式到层序的识别和划分:层序地层学进展之三[J].古地理学报,2011,13(1):37-54. |
Mei Mingxiang. From vertical stacking pattern of cycles to discer‑ ning and division of sequences: The third advance in sequence stratigraphy[J]. Journal of Paleogeography, 2011, 13(1): 37-54. | |
37 | 梅冥相.从沉积层序到海平面变化层序——层序地层学一个重要的新进展[J].地层学杂志,2015,39(1):58-73. |
Mei Mingxiang. Conceptual change from depositional sequences to eustatic sequences: An important development in sequence stratigraphy[J]. Journal of Stratigraphy, 2015, 39(1): 58-73. | |
38 | 王成善.东亚地区松辽盆地和美洲大陆北美西部海道的晚白垩纪气候变化记录[J].科技创新导报,2016,13(20):175-176. |
Wang Chengshan. Late Cretaceous climate changes recorded in Eastern Asian Lacustrine Deposits and North American Epieric Sea Strata[J]. Science and Technology Innovation Herald, 2016, 13(20): 175-176. | |
39 | Liu Q H, Zhu X M, Zhu H T, et al. Three‑dimensional forward stratigraphic modelling of the gravel‑to mud‑rich fan‑delta in the slope system of Zhanhua Sag, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2017, 79: 18-30. |
40 | 吴因业,吕佳蕾,方向,等. 湖相碳酸盐岩—混积岩储层有利相带分析——以柴达木盆地古近系为例,2019,30(8): 1150-1157. |
Wu Yinye, Lv Jialei, Fang Xiang, et al. Analysis of favorable fades belts in reservoir of lacustrine carbonate rocks‑hybrid sediments: Case study of Paleogene in Qaidam Basin[J]. Natural Gas Geoscience, 2019,30(8):1150-1157. | |
41 | Shang W L, Xu S H, Mao Z Q, et al. High-resolution sequence stratigraphy in continental lacustrine basin: A case of Eocene Shahejie formation in the Dongying Depression, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2021, 136: 105438. |
42 | Yoshida S, Steel R J, Dalrymple R W. Changes in depositional processes—an ingredient in a new generation of sequence⁃stratigraphic models[J]. Journal of Sedimentary Research, 2007, 77(6): 447-460. |
43 | 龚承林,齐昆,徐杰,等.深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J].沉积学报,2021,39(1):231-252. |
Gong Chenglin, Qi Kun, Xu Jie, et al. Process‑product linkages and feedback mechanisms of deep water source‑to‑sink responses to multi‑scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252. | |
44 | 林畅松,夏庆龙,施和生,等.地貌演化、源-汇过程与盆地分析[J].地学前缘,2015, 22(1):9-20. |
Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin ana lysis[J]. Geoscience frontier, 2015, 22(1): 9-20. | |
45 | Walsh J P, Wiberg P L, Aalto R, et al. Source‑to‑sink research: Economy of the Earth's surface and its strata[J]. Earth Science Frontiers, 2016, 153: 1-6. |
46 | 徐长贵,杜晓峰,徐伟,等.沉积盆地“源-汇”系统研究新进展[J].石油与天然气地质, 2017,38(1):1-11. |
Xu Changgui, Du Xiaofeng, Xu Wei, et al. New advances of the “Source‑to‑Sink” system research in sedimentary basin[J]. Oil & Gas Geology, 2017, 38(1): 1-11. | |
47 | 朱红涛,徐长贵,朱筱敏,等.陆相盆地源-汇系统要素耦合研究进展[J].地球科学, 2017,42(11):1851-1870. |
Zhu Hongtao, Xu Changgui, Zhu Xiaomin, et al. Advances of the source-to sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 1851-1870. | |
48 | 操应长,徐琦松,王健.沉积盆地“源-汇”系统研究进展[J].地学前缘,2018,25(4):116-131. |
Cao Yingchang, Xu Qisong, Wang Jian. Progress in “Source‑ to‑Sink” system research[J]. Earth Science Frontiers, 2018, 25 (4): 116-131. | |
49 | 刘强虎,朱筱敏,李顺利,等.沙垒田凸起前古近系基岩分布及源-汇过程[J].地球科学,2016,41(11):1935-1949. |
Liu Qianghu, Zhu Xiaomin, Li Shunli, et al. Pre‑palaeogene bedrock distribution and Source‑to‑Sink system analysis in the Shaleitian Uplift[J]. Earth Science, 2016, 41 (11): 1935-1949. | |
50 | 刘强虎,朱筱敏,李顺利,等.沙垒田凸起西部断裂陡坡型源-汇系统[J].地球科学,2017,42(11):1883-1896. |
Liu Qianghu, Zhu Xiaomin, Li Shunli, et al. Source‑to‑Sink system of the steep slope fault in the western Shaleitian uplift[J]. Earth Science, 2017, 42(11): 1883-1896. | |
51 | Romans B W, Castelltort S, Covault J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29. |
52 | Bernhardt A, Schwanghart W, Hebbeln D, et al. Immediate propagation of deglacial environmental change to deep‑marine turbidite systems along the Chile convergent margin[J]. Earth and Planetary Science Letters, 2017, 473: 190-204. |
53 | Straub K M, Duller R A, Foreman B Z, et al. Buffered, incomplete, and shredded: The challenges of reading an imperfect stratigraphic record[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(3): e2019JF005079. |
54 | Sømme T O, Helland‐Hansen W, Martinsen O J, et al. Relationships between morphological and sedimentological parameters in Source‑to‑Sink systems: A basis for predicting semi‑quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387. |
55 | Sømme T O, Helland‑Hansen W, Granjeon D. Impact of eustatic amplitude variations on shelf morphology, sediment dispersal, and sequence stratigraphic interpretation: Icehouse versus greenhouse systems[J]. Geology, 2009, 37(7): 587-590. |
56 | Martinsen O J, Sømme T O, Thurmond J B, et al. Source‑to‑Sink systems on passive margins: theory and practice with an example from the Norwegian continental margin[C]//Geological Society. Petroleum Geology Conference series. London:Geological Society of London, 2010. |
57 | Kuehl S A, Alexander C R, Blair N E, et al. A Source‑to‑Sink perspective of the Waipaoa River margin[J]. Earth‑Science Reviews, 2016, 153: 301-334. |
58 | Carter L, Orpin A R, Kuehl S A. From mountain source to ocean sink‑the passage of sediment across an active margin, Waipaoa Sedimentary System, New Zealand[J]. Marine Geology, 2010, 270(1-4): 1-10. |
59 | Marsaglia K M, DeVaughn A M, James D E, et al. Provenance of fluvial terrace sediments within the Waipaoa sedimentary system and their importance to New Zealand Source‑to‑Sink studies[J]. Marine Geology, 2010, 270(1-4): 84-93. |
60 | Amorosi A, Maselli V, Trincardi F. Onshore to offshore anatomy of a late Quaternary source‑to‑sink system (Po Plain‑Adriatic Sea, Italy)[J]. Earth‑Science Reviews, 2016, 153: 212-237. |
61 | Liu Q, Zhu H, Shu Y, et al. Provenance identification and sedimentary analysis of the beach and bar systems in the Palaeogene of the Enping Sag, Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2016, 70: 251-272. |
62 | Syvitski J P M, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115(1): 1-19. |
63 | 邵磊,朱伟林,吴国瑄,等.珠江口及北部湾盆地泥岩地球化学特点[J].同济大学学报(自然科学版), 2000, (5):523-527. |
Shao Lei, Zhu Weilin, Wu Guoxiang, et al. Geochemical characteristic of mudstone and provenance analyses of the Pearl Basin and Beibu‑Gulf Basin[J]. Journal of Tongji University, 2000, (5): 523-527. | |
64 | Clift P D, Blusztajn J, Nguyen A D. Large‑scale drainage capture and surface uplift in eastern Tibet‑SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam[J]. Geophysical Research Letters, 2006, 33(19). |
65 | 王英民,徐强,李冬,等.南海西北部晚中新世的红河海底扇[J].科学通报,2011, 56(10):781-787. |
Wang Yingmin, Xu Qiang, Li Dong, et al. Late Miocene Red River submarine fan, northwestern South China Sea[J]. Chinese Science Bulletin, 2011, 56(10): 781-787. | |
66 | 赵梦,邵磊,梁建设,等.古红河沉积物稀土元素特征及其物源指示意义[J].地球科学(中国地质大学学报),2013,38(S1):61-69. |
Zhao Meng, Shao Lei, Liang Jianshe, et al. REE character of sediment from the Paleo‑Red River and its implication of pro venance[J]. Earth Science (Journal of China University of Geos‑ ciences), 2013, 38(S1): 61-69. | |
67 | 刘强虎,朱红涛,舒誉,等.珠江口盆地恩平凹陷古近系恩平组物源体系及其对滩坝的控制[J].石油学报,2015,36(3):286-299. |
Liu Qianghu, Zhu Hongtao, Shu Yu, et al. Provenance systems and their control on the beach‑bar of Paleogene Enping Formation, Enping sag, Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2015, 36(3): 286-299. | |
68 | 徐长贵.陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式[J].中国海上油气,2013,25(4):1-11,21. |
Xu Changgui. Controlling sand principle of source sink coupling in time and space in continental rift basins: Basic idea, conceptual systems and controlling sand models[J]. China Offshore Oil and Gas, 2013, 25(4): 1-11,21. | |
69 | 朱红涛,杨香华,周心怀,等.基于地震资料的陆相湖盆物源通道特征分析:以渤中凹陷西斜坡东营组为例[J].地球科学(中国地质大学学报),2013,38(1):121-129. |
Zhu Hongtao, Yang Xianghua, Zhou Xinhuai, et al. Sediment transport pathway characteristics of continental lacustrine basins based on 3‑d seismic data: An example from Dongying Formation of western Slope of Bozhong Sag[J]. Earth Science (Journal of China University of Geosciences), 2013, 38(1): 121-129. | |
70 | Zhu H, Yang X, Zhou X, et al. Three‑dimensional facies architecture analysis using sequence stratigraphy and seismic sedimentology: Example from the Paleogene Dongying Formation in the BZ3‑1 block of the Bozhong Sag, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2014, 51: 20-33. |
71 | Liu Q, Zhu X, Zeng H, et al. Source‑to‑sink analysis in an Eocene rifted lacustrine basin margin of western Shaleitian Uplift area, offshore Bohai Bay Basin, eastern China[J]. Marine and Petroleum Geology, 2019, 107: 41-58. |
72 | Liu Q, Zhu H, Zhu X, et al. Proportional relationship between the flux of catchment‑fluvial segment and their sedimentary response to diverse bedrock types in subtropical lacustrine rift basins[J]. Marine and Petroleum Geology, 2019, 107: 351-364. |
73 | 杜晓峰,庞小军,王清斌,等.石臼坨凸起东段围区沙一二段古物源恢复及其对储层的控制[J].地球科学,2017,42(11):1897-1909. |
Du Xiaofeng, Pang Xiaojun, Wang Qingbin, et al. Restoration of the Paleo‑provenance of the Es12 in the eastern of Shijiutuo uplift and its control on reservoir[J]. Earth Science,2020, 2017,42(11):1897-1909. | |
74 | 庞小军,牛成民,杜晓峰,等.渤海海域石臼坨凸起东北缘沙河街组一段+二段砂砾岩储层差异定量表征[J].石油学报,2020,41(9):1073-1088. |
Pang Xiaojun, Niu Chengmin, Du Xiaofeng, et al. Quantitative characterization of differences in glutenite reservoir in the Member 1 and 2 of Shahejie Formation in the northeastern margin of Shijiutuo uplift, Bohai Sea[J]. Acta Petrolei Sinica, 2020, 41(9):1073-1088. | |
75 | Liu H, Meng J, Banerjee S. Estimation of palaeo‑slope and sediment volume of a lacustrine rift basin: A semi‑quantitative study on the southern steep slope of the Shijiutuo uplift, Bohai Offshore Basin, China[J]. Journal of Asian Earth Sciences, 2017, 147:148-163. |
76 | Liu H, van Loon A J, Xu J, et al. Relationships between tectonic activity and sedimentary Source‑to‑Sink system parameters in a lacustrine rift basin: A quantitative case study of the Huanghekou Depression (Bohai Bay Basin, E China)[J]. Basin Research, 2020,32(4):587-612. |
77 | 陈彬滔,于兴河,王天奇,等.岱海湖盆沿坡流与顺坡流相互作用的沉积响应[J].地球科学(中国地质大学学报),2014,39(4):399-410. |
Chen bintao, Yu Xinghe, Wang Tianqi, et al. Sedimentary response to interaction between alongslope and downslope currents in Daihai Lake,north China[J]. Earth Science (Journal of China University of Geosciences), 2014,39 (4): 399-410. | |
78 | 朱秀,朱红涛,曾洪流,等.云南洱海现代湖盆源—汇系统划分、特征及差异[J].地球科学,2017,42(11):2010-2024. |
Zhu Xiu, Zhu Hongtao, Zeng Hongliu, et al. Subdivision, characteristics,and varieties of the Source‑to‑Sink systems of the modern lake Erhai basin, Yunnan province[J]. Earth Science, 2017, 42 (11): 2010-2024. | |
79 | 陆威延,朱红涛,徐长贵,等.源-汇系统级次划分方法及应用[J].地球科学,2020, 45(4):1327-1336. |
Lu Weiyan, Zhu Hongtao, Xu Changgui, et al. Methods and applications of level subdivision of Source‑to‑Sink system[J]. Earth Science, 2020, 45(4): 1327-1336. | |
80 | 邵龙义,王学天,李雅楠,等.深时源-汇系统古地理重建方法评述[J].古地理学报,2019, 21(1):67-81. |
Shao Longyi, Wang Xuetian, Li Yanan, et al. Review on paleogeographic reconstruction of deep‑time source‑to‑sink systems[J]. Journal of Paleogeography, 2019, 21(1): 67-81. | |
81 | 郑荣才,戴朝成,朱如凯,等.四川类前陆盆地须家河组层序—岩相古地理特征[J].地质论评,2009,55(4): 484-495. |
Zheng Rongcai, Dai Chaocheng, Zhu Rukai, et al. Sequence⁃based lithofacies and paleogeographic characteristics of Upper Triassic Xujiahe Formation in Sichuan Basin[J]. Geological Review, 2009, 55(4): 484-495. | |
82 | 庞雄,彭大钧,陈长民,等.三级“源-渠-汇”耦合研究珠江深水扇系统[J].地质学报, 2007, 81(6): 857-864. |
Pang Xiong, Peng Dajun, Chen Changmin, et al. Three Hierarchies “source‑conduit‑sink” coupling analysis of the Pearl River deep‑water fan system[J]. Acta Geologica Sinica, 2007, 81(6): 857-864. | |
83 | 祝彦贺,朱伟林,徐强,等.珠江口盆地13.8Ma陆架边缘三角洲与陆坡深水扇的“源-汇”关系[J].中南大学学报(自然科学版),2011,42(12):3827-3834. |
Zhu Yanhe, Zhu Weilin, Xu Qiang, et al. Sedimentary response to shelf‑edge delta and slope deep‑water fan in 13.8 Ma of Miocene epoch in Pearl River Mouth Basin[J]. Journal of Central South University (Science and Technology), 2011, 42(12): 3827-3834. | |
84 | Zhu X M, Li S L, Liu Q H, et al. Source to sink studies between the Shaleitian uplift and surrounding sags: Perspectives on the importance of hinterland relief and catchment area for sediment budget, Western Bohai Bay Basin, China[J]. Interpretation, 2017, 5(4): ST65-ST84. |
85 | Bentley S J, Blum M D, Maloney J, et al. The Mississippi River source‑to‑sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene[J].Earth⁃Science Reviews, 2016, 153: 139-174. |
86 | Liu Z F, Zhao Y L, Colin C, et al. Source‑to‑Sink transport processes of fluvial sediments in the South China Sea[J].Earth⁃Science Reviews, 2016, 153: 238-273. |
87 | Reading H G, Richards M. Turbidite systems in deep‑water basin margins classified by grain size and feeder system[J]. AAPG Bulletin, 1994, 78(5): 792-822. |
88 | 秦雁群,计智锋,万仑坤,等.海相深水碎屑岩层序地层学理论进展及关键问题[J].石油与天然气地质,2017,38(1):12-21. |
Qin Yanqun, Ji Zhifeng, Wan lunkun, et al. Theory progress and key issues of deep water marine clastic sequence stratigraphy[J]. Oil & Gas Geology, 2017, 38 (1): 12-21. | |
89 | 陈维涛,徐少华,孙珍,等.层序地层学标准化理论在陆架坡折-陆坡区的应用——以珠江口盆地中中新世沉积层序为例[J].石油与天然气地质,2021,42(6):1414-1422. |
Chen Weitao, Xu Shaohua, Sun Zhen, et al. Application of standardized sequence stratigraphy theory in the shelf break‑to‑slope area: A case study of the Middle Miocene sedimentary sequence in the PRMB[J]. Oil & Gas Geology, 2021, 42 (6): 1414-1422. | |
90 | 庞雄,陈长民,彭大钧,等.南海珠江深水扇系统的层序地层学研究[J].地学前缘,2007, 14 (1):220-229. |
Pang Xiong, Chen Changmin, Peng Dajun, et al. Sequence stratigraphy of the Pearl River deep water fan system in the South China Sea[J]. Earth Science Frontiers, 2007, 14 (1): 220-229. | |
91 | 庞雄.深水重力流沉积的层序地层结构与控制因素——南海北部白云深水区重力流沉积层序地层学研究思路[J].中国海上油气,2012,24(2):1-8. |
Pang Xiong. Sequence stratigraphy configuration of deepwater gravity‑flow sediments and its controls: A line of thinking in sequence stratigraphy of gravity‑flow sediments in Baiyun deepwater area, the northern South China Sea[J]. China Offshore Oil and Gas, 2012, 24 (2): 1-8. | |
92 | Gong C, Li D, Steel R J, et al. Delta‑to‑fan source‑to‑sink coupling as a fundamental control on the delivery of coarse clastics to deepwater: Insights from stratigraphic forward modelling[J]. Basin Research, 2021, 33(6): 2960-2983. |
93 | 秦雁群,张光亚,巴丹,等.转换型被动陆缘盆地地质特征与深水油气聚集规律:以赤道大西洋西非边缘盆地群为例[J].地学前缘,2016, 23(1): 229-239. |
Qin Yanqun, Zhang Guangya, Ba Dan, et al. Geological characteristics and deep water hydrocarbon accumulation patterns of transformed passive continental marginal basins: A case history from basins of West Africa margin in Equatorial Atlantic[J]. Earth Science Frontiers, 2016, 23(1): 229-239. | |
94 | Covault J A, Normark W R, Romans B W, et al. Highstand fans in the California borderland: The overlooked deep‑water depositional systems[J]. Geology, 2007, 35(9): 783-786. |
95 | Shanmugam G. New perspectives on deep‑water sandstones: Origin, recognition, initiation, and reservoir quality[M].Amsterdam: Elsevier, 2012. |
96 | Zhang J, Sylvester Z, Covault J. How do basin margins record long‑term tectonic and climatic changes?[J]. Geology, 2020, 48(9): 893-897. |
97 | Molnar P. Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates?[J]. Annual Review of Earth and Planetary Sciences, 2004, 32: 67-89. |
98 | Willett S D. Late Neogene erosion of the Alps: A climate driver?[J]. Annual Review of Earth and Planetary Sciences, 2010, 38: 411-437. |
99 | 解习农,林畅松,李忠,等.中国盆地动力学研究现状及展望[J].沉积学报,2017, 35(5): 877-887. |
Xie Xi Nong, Lin Chang Song, Li Zhong, et al. Research reviews and prospects of sedimentary basin geodynamics in China[J]. Acta Sedimentologica Sinica, 2017, 35(5): 877-887. | |
100 | Gong C, Peakall J, Wang Y, et al. Flow processes and sedimentation in contourite channels on the northwestern South China Sea margin: A joint 3D seismic and oceanographic perspective[J]. Marine Geology, 2017, 393: 176-193. |
101 | Zhang M, Lin C, He M, et al. Stratigraphic architecture, shelf-edge delta and constraints on the development of the Late Oligocene to Early Miocene continental margin prism, the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2019, 416: 105982. |
102 | Tian H, Lin C, Zhang Z, et al. Depositional architecture, evolution and controlling factors of the Miocene submarine canyon system in the Pearl River Mouth Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 128: 104990. |
103 | Jing L Z, Li W, Oskin M, et al. Focused modern denudation of the Longmen Shan margin, eastern Tibetan Plateau[J]. Geoche‑ mistry, Geophysics, Geosystems, 2011, 12(11): Q11007. |
104 | Wang E, Kirby E, Furlong K P, et al. Two‑phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Ggeos‑ cience, 2012, 5(9): 640-645. |
105 | Yang R, Willett S D, Goren L. In situ low‑relief landscape formation as a result of river network disruption[J]. Nature, 2015, 520(7548): 526-529. |
106 | Coleman M, Hodges K. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east‑west extension[J]. Nature, 1995, 374(6517): 49-52. |
107 | 张克信,王国灿,曹凯,等.青藏高原新生代主要隆升事件:沉积响应与热年代学记录[J].中国科学,2008,38(12):1575-1588. |
Zhang Kexin, Wang guocan, Cao Kai, et al. Main Cenozoic uplift events of the Qinghai Xizang Plateau: Sedimentary response and thermochronological records[J]. Science China, 2008, 38(12): 1575-1588. |
[1] | 徐长贵, 龚承林. 从层序地层走向源-汇系统的储层预测之路[J]. 石油与天然气地质, 2023, 44(3): 521-538. |
[2] | 朱红涛, 徐长贵, 杜晓峰, 刘强虎, 孙中恒, 曾智伟. 陆相盆地古源-汇系统定量重建、级次划分及耦合模式[J]. 石油与天然气地质, 2023, 44(3): 539-552. |
[3] | 刘豪, 徐长贵, 高阳东, 林鹤鸣, 邱欣卫, 剧永涛, 汪旭东, 李磊, 孟俊, 阙晓明. 断陷湖盆低勘探区源-汇系统与烃源岩预测[J]. 石油与天然气地质, 2023, 44(3): 565-583. |
[4] | 高阳东, 彭光荣, 张向涛, 汪旭东, 孙辉, 刘太勋, 孙丰春. 珠江口盆地白云凹陷古近系文昌组源-汇系统特征及演化[J]. 石油与天然气地质, 2023, 44(3): 584-599. |
[5] | 刘军, 彭光荣, 郑金云, 蔡嵩, 朱定伟, 王梓颐. 珠江口盆地白云凹陷西区始新世张裂-拆离作用下沉积转换及源-汇响应[J]. 石油与天然气地质, 2023, 44(3): 600-612. |
[6] | 彭光荣, 王绪诚, 陈维涛, 靳瑶瑶, 王菲, 王文勇, 全涵. 珠江口盆地惠州26洼东南缘古近系恩平组上段断-拗转换期源-汇系统及勘探意义[J]. 石油与天然气地质, 2023, 44(3): 613-625. |
[7] | 王梓颐, 李洪博, 郑金云, 朱定伟, 于飒, 陈兆明, 李振升. 珠江口盆地番禺27洼裂陷期构造演化及其对源-汇系统的控制[J]. 石油与天然气地质, 2023, 44(3): 626-636. |
[8] | 杜晓峰, 庞小军, 黄晓波, 王冰洁. 辽西凹陷北部古近系沙河街组二段源-汇系统及其对滩坝砂体的控制[J]. 石油与天然气地质, 2023, 44(3): 662-674. |
[9] | 陈贺贺, 朱筱敏, 施瑞生, 张自力, 李琪, 朱珍君, 阎泽昊. 断陷盆地缓坡带物源转换与沉积响应[J]. 石油与天然气地质, 2023, 44(3): 689-706. |
[10] | 朱珍君, 李琦, 陈贺贺, 李剑, 张卫平, 杨丰繁, 张迎朝, 覃军, 李风勋, 单帅强. 东海陆架盆地丽水凹陷古新统源-汇系统耦合及时-空演化[J]. 石油与天然气地质, 2023, 44(3): 735-752. |
[11] | 李增学, 刘莹, 李晓静, 张功成, 孙瑞, 王东东, 尹露生, 刘佳敏. 琼东南盆地古近纪泥炭沼泽破坏与重建作用对煤型源岩物质形成的控制[J]. 石油与天然气地质, 2022, 43(6): 1309-1320. |
[12] | 朱筱敏, 陈贺贺, 葛家旺, 谈明轩, 刘强虎, 张自力, 张亚雄. 陆相断陷湖盆层序构型与砂体发育分布特征[J]. 石油与天然气地质, 2022, 43(4): 746-762. |
[13] | 吴高奎, 张忠民, 林畅松, 田纳新, 左小军, 李浩, 孔凡军, 李军. 塔里木盆地塔北隆起区中生界沉积演化特征[J]. 石油与天然气地质, 2022, 43(4): 845-858. |
[14] | 林畅松. 盆地沉积动力学:研究现状与未来发展趋势[J]. 石油与天然气地质, 2019, 40(4): 685-700. |
[15] | 杨棵, 董艳蕾, 朱筱敏, 潘荣, 张梦瑜, 伍炜, 王珩. 渤海湾盆地渤中凹陷埕岛东坡古近系东营组二段下部源-汇系统[J]. 石油与天然气地质, 2018, 39(6): 1280-1292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||