石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (3): 626-636.doi: 10.11743/ogg20230308
王梓颐1,2(), 李洪博1,2, 郑金云1,2, 朱定伟1,2, 于飒1,2, 陈兆明1,2, 李振升1,2
收稿日期:
2023-01-17
修回日期:
2023-03-20
出版日期:
2023-06-01
发布日期:
2023-06-05
第一作者简介:
王梓颐(1995—),女,工程师,油气成藏综合研究。E?mail: Ziyi WANG1,2(), Hongbo LI1,2, Jinyun ZHENG1,2, Dingwei ZHU1,2, Sa YU1,2, Zhaoming CHEN1,2, Zhensheng LI1,2
Received:
2023-01-17
Revised:
2023-03-20
Online:
2023-06-01
Published:
2023-06-05
摘要:
番禺27洼位于珠江口盆地中央隆起带中部的番禺低隆起区,为发育在中生代陆缘岩浆弧基底之上“南断北超”的新生代凹陷,钻井取得的油样与砂岩储层抽提烃证实该洼陷存在文昌组中-深湖相烃源岩供烃,但已钻井均没有实际钻至文昌组,烃源岩发育的有利部位与有利时期仍存在不确定性。对控洼断裂系统及洼陷结构样式的研究表明,番禺27洼的发育和演化具有“先存构造约束、右旋伸展主控、岩浆底侵改造”三元耦合成因,控制了三幕裂陷阶段“左阶不对称地堑-左行雁列式半地堑-萎缩期宽缓半地堑”的结构样式。裂陷期三幕控洼断裂差异活化影响沉积中心变迁,洼陷结构差异演化影响洼陷沉积充填格局。随着裂陷期断裂活动的减弱,沉积中心逐渐由东向西、由两端向中部迁移。源-汇沉积体系在裂陷早期以NW轴向和中部转换带沉积体系为主,裂陷中期至裂陷晚期逐渐向北部缓坡大型沉积体系和西北部长轴优势沉积体系转换。西次洼长期作为沉积中心,是优质烃源岩发育的有利部位。裂陷中期发育大型半地堑式湖盆,并伴有较强的岩浆活动,是优质烃源岩发育的最有利时期。裂陷中期至裂陷晚期西北部大型源-汇沉积体系的长期发育为古近系大型储集体的形成提供了有利条件。
中图分类号:
1 | 陶文芳, 李洪博, 郑金云, 等. 南海北部陆缘超深水区珠四坳陷地质结构及其对烃源岩发育的控制[J]. 海洋地质前沿, 2023, 39(1): 40-48. |
TAO Wenfang, LI Hongbo, ZHENG Jinyun, et al. Geological structure of Zhusi Depression in ultra-deep water area on the continental margin of the northern South China Sea and its control on the development of source rocks[J]. Marine Geology Frontiers, 2023, 39(1): 40-48. | |
2 | 漆家福, 杨桥. 陆内裂陷盆地构造动力学分析[J]. 地学前缘, 2012, 19(5): 19-26. |
QI Jiafu, YANG Qiao. Dynamic analysis of continental rifting basin[J]. Earth Science Frontiers, 2012, 19(5): 19-26. | |
3 | 邓棚. 南海北部陆缘古近纪多幕裂陷作用属性及转换——以珠江口盆地珠一坳陷为例[D]. 武汉: 中国地质大学, 2018. |
DENG Peng. The nature and tectonic transition of the multiphase rifting in the northern margin of the South China sea: Based on the study of the Zhu I Depression in Pearl River Mouth Basin[D]. Wuhan: China University of Geosciences, 2018. | |
4 | 蒙启安, 朱德丰, 陈均亮, 等. 陆内裂陷盆地的复式断陷结构类型及其油气地质意义: 以海-塔盆地早白垩世盆地为例[J]. 地学前缘, 2012, 19(5): 76-85. |
MENG Qi’an, ZHU Defeng, CHEN Junliang, et al. Styles of complex faulted sags in rifting basin and its significance for petroleum geology: An example from Hailar-Tamsag Early Cretaceous Basin[J]. Earth Science Frontiers, 2012, 19(5): 76-85. | |
5 | 张威, 李磊, 邱欣卫, 等. A/S对断陷湖盆三角洲时空演化的控制及数值模拟: 以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141. |
ZHANG Wei, LI Lei, QIU Xinwei, et al. A/S control on spatiotemporal evolution of deltas in rifted lacustrine basin and its numerical simulation: A case study of Paleogene Wenchang Formation in Lufeng 22 subsag, Pearl River Mouth Basin[J]. Lithologic Reservoirs, 2022, 34(3): 131-141. | |
6 | 刘海伦, 梅廉夫, 施和生, 等. 珠江口盆地珠一坳陷裂陷结构: 基底属性与区域应力联合制约[J/OL]. 地球科学: 1-17[2023-03-30]. . |
LIU Hailun, MEI Lianfu, SHI Hesheng, et al. Rift style controlled by basement attribute and regional stress in Zhu I Depression, Pearl River Mouth Basin[J/OL]. Earth Science: 1-17[2023-03-30]. . | |
7 | SUN Weidong, DING Xing, HU Yanhua, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 533-542. |
8 | COPLEY A, AVOUAC J P, ROYER J Y. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B3): B03410. |
9 | 赵淑娟, 吴时国, 施和生, 等. 南海北部东沙运动的构造特征及动力学机制探讨[J]. 地球物理学进展, 2012, 27(3): 1008-1019. |
ZHAO Shujuan, WU Shiguo, SHI Hesheng, et al. Structures and dynamic mechanism related to the Dongsha movement at the northern margin of South China Sea[J]. Progress in Geophysics, 2012, 27(3): 1008-1019. | |
10 | 和子琛, 刘豪, 林鹤鸣, 等. 断陷湖盆坡折带-古沟谷对沉积的控制作用——以珠江口盆地海丰33洼陷古近系文昌组为例[J]. 石油与天然气地质, 2023, 44(2): 441-451. |
HE Zichen, LIU Hao, LIN Heming, et al. Controlling effect of slope-break zone and paleovalley on sedimentation in rifted lake basins: A case study of the Paleogene Wenchang Formation in Haifeng 33 Subsag, Pearl River Mouth Basin[J]. Oil & Gas Geology, 2023, 44(2): 441-451. | |
11 | 涂乙, 闫正和, 戴建文, 等. 中国南海珠江口盆地西江油田运聚再生油藏模式创新认识与挖潜效果[J]. 石油与天然气地质, 2021, 42(2): 522-532. |
TU Yi, YAN Zhenghe, DAI Jianwen, et al. New understanding and tapping effect of remaining oil reservoirs in Xijiang oilfield, PRBM, South China Sea[J]. Oil & Gas Geology, 2021, 42(2): 522-532. | |
12 | 朱红涛, 朱筱敏, 刘强虎, 等. 层序地层学与源-汇系统理论内在关联性与差异性[J]. 石油与天然气地质, 2022, 43(4): 763-776. |
ZHU Hongtao, ZHU Xiaomin, LIU Qianghu, et al. Sequence stratigraphy and source-to-sink system: Connections and distinctions[J].Oil & Gas Geology,2022,43(4):763-776. | |
13 | 施和生, 高阳东, 刘军, 等. 珠江口盆地惠州26洼“源-汇-聚”特征与惠州26-6大油气田发现启示[J]. 石油与天然气地质, 2022, 43(4): 777-791. |
SHI Hesheng, GAO Yangdong, LIU Jun, et al. Characteristics of hydrocarbon source-migration-accumulation in Huizhou 26 Sag and implications of the major Huizhou 26-6 discovery in Pearl River Mouth Basin[J]. Oil & Gas Geology, 2022, 43(4): 777-791. | |
14 | 李康, 单玄龙, 郝国丽, 等. 珠江口盆地西江凹陷裂陷期构造转换及其对沉积的意义[J/OL]. 吉林大学学报(地球科学版): 1-17[2023-03-30]. . |
LI Kang, SHAN Xuanlong, HAO Guoli, et al. Tectonic transformation of Xijiang sag during rifting and its significance to sedimentation in Pearl River Mouth Basin[J/OL]. Journal of Jilin University(Earth Science Edition): 1-17[2023-03-30]. . | |
15 | 沈梦蓉, 单玄龙, 郝国丽, 等. 珠江口盆地阳江东凹早新生代洼陷结构差异及其控制机制分析[J/OL]. 地球科学: 1-23[2023-03-30]. . |
SHEN Mengrong, SHAN Xuanlong, HAO Guoli, et al. Structural difference and control mechanism of early Cenozoic depression in Yangjiang east sag, Pearl River Mouth Basin[J/OL]. Earth Science: 1-23[2023-03-30]. . | |
16 | 周蒂, 孙珍, 陈汉宗, 等. 南海及其围区中生代岩相古地理和构造演化[J]. 地学前缘, 2005, 12(3): 204-218. |
ZHOU Di, SUN Zhen, CHEN Hanzong, et al. Mesozoic lithofacies, paleo-geography, and tectonic evolution of the South China Sea and surrounding areas[J]. Earth Science Frontiers, 2005, 12(3): 204-218. | |
17 | 张素芳, 张向涛, 张青林, 等. 南海北部白垩系发育特征及构造意义[J]. 海洋地质与第四纪地质, 2015, 35(6): 81-86. |
ZHANG Sufang, ZHANG Xiangtao, ZHANG Qinglin, et al. Characteristics of the cretaceous in the northern South China Sea and tectonic implications[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 81-86. | |
18 | 吴婷婷, 张丽丽, 吴哲, 等. 珠江口盆地前新生代先存断裂特征及动力背景——以惠州凹陷和番禺4洼为例[J]. 海洋地质前沿, 2022, 38(6): 54-62. |
WU Tingting, ZHANG Lili, WU Zhe, et al. Characteristics and dynamic background of pre-existing fractures in pre-Cenozoic of Pearl River Mouth Basin: Cases of Huizhou Sag and Panyu 4 Depression[J]. Marine Geology Frontiers, 2022, 38(6): 54-62. | |
19 | 程燕君, 吴智平, 张杰, 等. 西江凹陷早新生代断裂演化及其对南海北缘应力场顺时针旋转的响应[J]. 地球科学, 2020, 45(6): 2199-2209. |
CHENG Yanjun, WU Zhiping, ZHANG Jie, et al. Early Cenozoic evolution of fault system in Xijiang Sag and its implication to clockwise rotation of extension stress in northern margin of South China Sea[J]. Earth Science, 2020, 45(6): 2199-2209. | |
20 | 赵勇, 戴俊生. 应用落差分析研究生长断层[J]. 石油勘探与开发, 2003, 30(3): 13-15. |
ZHAO Yong, DAI Junsheng. Identification of growth fault by fault fall analysis[J]. Petroleum Exploration and Development, 2003, 30(3): 13-15. | |
21 | 陈刚, 戴俊生, 叶兴树, 等. 生长指数与断层落差的对比研究[J]. 西南石油大学学报, 2007, 29(3): 20-23. |
CHEN Gang, DAI Junsheng, YE Xingshu, et al. A comparison of the fault growth index with fault throw[J]. Journal of Southwest Petroleum University, 2007, 29(3): 20-23. | |
22 | 胡阳. 珠江口盆地珠一坳陷新生代盆地结构与成因演化[J]. 高校地质学报, 2019, 25(1): 81-92. |
HU Yang. Basin structure and genetic evolution of the Zhu 1 Depression, during the Cenozoic, Pearl River Mouth Basin, South China[J]. Geological Journal of China Universities, 2019, 25(1): 81-92. | |
23 | 陈汉宗, 吴湘杰, 周蒂, 等. 珠江口盆地中新生代主要断裂特征和动力背景分析[J]. 热带海洋学报, 2005, 24(2): 52-61. |
CHEN Hanzong, WU Xiangjie, ZHOU Di, et al. Meso-Cenozoic faults in Zhujiang River Mouth Basin and their geodynamic background[J]. Journal of Tropical Oceanography, 2005, 24(2): 52-61. | |
24 | ZHOU Di, YAO Bochu. Tectonics and sedimentary basins of the South China Sea: Challenges and progresses[J]. Journal of Earth Science, 2009, 20(1): 1-12. |
25 | 孙晓猛, 张旭庆, 张功成, 等. 南海北部新生代盆地基底结构及构造属性[J]. 中国科学(地球科学), 2014, 44(6): 1312-1323. |
SUN Xiaomeng, ZHANG Xuqing, ZHANG Gongcheng, et al. Texture and tectonic attribute of Cenozoic basin basement in the northern South China Sea[J]. Scientia Sinica(Terrae), 2014, 44(6): 1312-1323. | |
26 | 叶青. 南海北部陆缘晚中生代构造体系: 动力学以及对珠江口盆地新生代构造的制约[D]. 武汉: 中国地质大学, 2019. |
YE Qing. The Late Mesozoic structure systems in the northern South China Sea margin: Geodynamics and their influence on the Cenozoic structures in the Pearl River Mouth Basin[D]. Wuhan: China University of Geosciences, 2019. | |
27 | 鲁宝亮, 王璞珺, 张功成, 等. 南海区域断裂特征及其基底构造格局[J]. 地球物理学进展, 2015, 30(4): 1544-1553. |
LU Baoliang, WANG Pujun, ZHANG Gongcheng, et al. Characteristic of regional fractures in South China Sea and its basement tectonic framework[J]. Progress in Geophysics, 2015, 30(4): 1544-1553. | |
28 | 李平鲁, 王维平, 贺亚纯, 等. 珠江口盆地断裂构造及盆地演化[R]. 广州: 中国海洋石油总公司南海东部公司, 1986: 7-24. |
LI Pinglu, WANG Weiping, HE Yachun, et al. Fault structure and basin evolution of the Pearl River Mouth Basin[R]. Guangzhou: China National Offshore Oil Corporation Nanhai East Company, 1986: 7-24. | |
29 | 张向涛, 张振波, 张青林, 等. 南海北部中生界残留盆地特征及油气潜力[R]. 深圳: 中海石油(中国)有限公司深圳分公司, 2015: 238-241. |
ZHANG Xiangtao, ZHANG Zhenbo, ZHANG Qinglin, et al. Characteristics and oil and gas potential of Mesozoic residual basins in the northern South China Sea[R]. Shenzhen: Shenzhen Branch of China National Offshore Oil (China) Co., Ltd, 2015: 238-241. | |
30 | 庞雄, 袁立忠, 郑金云, 等. 南海东北部超深水区洋陆转换带盆地形成与演化[R]. 深圳: 中海石油(中国)有限公司深圳分公司, 2015: 25-26. |
PANG Xiong, YUAN Lizhong, ZHENG Jinyun, et al. Formation and evolution of ocean land transition zone basins in the ultra deep water area of the northeastern South China Sea[R]. Shenzhen: Shenzhen Branch of China National Offshore Oil (China) Co., Ltd, 2015: 25-26. | |
31 | MORLEY C K, HARANYA C, PHOOSONGSEE W, et al. Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand[J]. Journal of Structural Geology, 2004, 26(10): 1803-1829. |
32 | 童亨茂, 蔡东升, 吴永平, 等. 非均匀变形域中先存构造活动性的判定[J]. 中国科学(地球科学), 2011, 41(2): 158-168. |
TONG Hengmao, CAI Dongsheng, WU Yongping, et al. Activity criterion of pre-existing fabrics in non-homogeneous deformation domain[J]. Scientia Sinica(Terrae), 2011, 41(2): 158-168. | |
33 | 庞雄, 郑金云, 梅廉夫, 等. 先存俯冲陆缘背景下南海北部陆缘断陷特征及成因[J]. 石油勘探与开发, 2021, 48(5): 1069-1080. |
PANG Xiong, ZHENG Jinyun, MEI Lianfu, et al. Characteristics and origin of continental marginal fault depressions under the background of preexisting subduction continental margin, northern South China Sea, China[J]. Petroleum Exploration and Development, 2021, 48(5): 1069-1080. | |
34 | TONG Hengmao, KOYI H, HUANG S, et al. The effect of multiple pre-existing weaknesses on formation and evolution of faults in extended sandbox models[J]. Tectonophysics, 2014, 626: 197-212. |
35 | HOLDSWORTH R E, STEWART M, IMBER J, et al. The structure and rheological evolution of reactivated continental fault zones: A review and case study[M]//MILLER J A, HOLDSWORTH R E, BUICK I S, et al. Continental Reactivation and Reworking. London: Geological Society of London, 2001: 115-137. |
36 | CORTI G. Evolution and characteristics of continental rifting: Analog modeling-inspired view and comparison with examples from the East African Rift System[J]. Tectonophysics, 2012, 522/523: 1-33. |
37 | FENG Xiaojun, AMPONSAH P O, MARTIN R, et al. 3-D numerical modelling of the influence of pre-existing faults and boundary conditions on the distribution of deformation: Example of North-Western Ghana[J]. Precambrian Research, 2016, 274: 161-179. |
38 | BONINI L, BASILI R, TOSCANI G, et al. The effects of pre-existing discontinuities on the surface expression of normal faults: Insights from wet-clay analog modeling[J]. Tectonophysics, 2016, 684: 157-175. |
39 | 周建勋, 周建生. 渤海湾盆地新生代构造变形机制: 物理模拟和讨论[J]. 中国科学. D辑: 地球科学, 2006, 36(6): 507-519. |
ZHOU Jianxun, ZHOU Jiansheng. The mechanism of Cenozoic tectonic deformation in the Bohai Bay Basin: Physical simulation and discussion[J]. Scientia Sinica(Terrae), 2006, 36(6): 507-519. | |
40 | FAZLIKHANI H, FOSSEN H, GAWTHORPE R L, et al. Basement structure and its influence on the structural configuration of the northern North Sea rift[J]. Tectonics, 2017, 36(6): 1151-1177. |
41 | TAYLOR B, HAYES D E. Origin and history of the South China Sea Basin[M]//HAYES D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington, D.C.: The American Geophysical Union, 1983: 23-56. |
42 | 于福生, 汪旭东, 邱欣卫, 等. 珠江口盆地陆丰凹陷断裂构造特征及 “人” 字型构造成因[J]. 石油学报, 2019, 40(S1): 166-177. |
YU Fusheng, WANG Xudong, QIU Xinwei, et al. Characteristics of fault structure and the genesis of herringbone structure in Lufeng Sag, Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(S1): 166-177. |
[1] | 何治亮, 杨鑫, 高键, 云露, 曹自成, 李慧莉, 杨佳奇. 特提斯洋与古亚洲洋协同演化控制下的塔里木台盆区油气富集效应[J]. 石油与天然气地质, 2024, 45(3): 637-657. |
[2] | 黎瑞, 杨娇, 柴愈坤, 王华, 戴建文, 邓永辉, 孙爽, 马肖琳, 田腾飞. 大角度波浪控制下的浪成砂坝新模式[J]. 石油与天然气地质, 2024, 45(2): 530-541. |
[3] | 远光辉, 彭光荣, 张丽丽, 孙辉, 陈淑慧, 刘浩, 赵晓阳. 珠江口盆地白云凹陷古近系深层高变温背景下储层成岩作用与低渗致密化机制[J]. 石油与天然气地质, 2024, 45(1): 44-64. |
[4] | 赵淑娟, 李三忠, 牛成民, 张江涛, 张震, 戴黎明, 杨宇, 李金月. 渤海湾盆地旅大隆起区多期叠加构造及其对潜山的控制作用[J]. 石油与天然气地质, 2023, 44(5): 1188-1202. |
[5] | 史玉玲, 龙祖烈, 张向涛, 温华华, 马晓楠. 珠江口盆地恩平凹陷恩平17洼油气动态成藏过程[J]. 石油与天然气地质, 2023, 44(5): 1279-1289. |
[6] | 徐长贵, 龚承林. 从层序地层走向源-汇系统的储层预测之路[J]. 石油与天然气地质, 2023, 44(3): 521-538. |
[7] | 朱红涛, 徐长贵, 杜晓峰, 刘强虎, 孙中恒, 曾智伟. 陆相盆地古源-汇系统定量重建、级次划分及耦合模式[J]. 石油与天然气地质, 2023, 44(3): 539-552. |
[8] | 刘豪, 徐长贵, 高阳东, 林鹤鸣, 邱欣卫, 剧永涛, 汪旭东, 李磊, 孟俊, 阙晓明. 断陷湖盆低勘探区源-汇系统与烃源岩预测[J]. 石油与天然气地质, 2023, 44(3): 565-583. |
[9] | 高阳东, 彭光荣, 张向涛, 汪旭东, 孙辉, 刘太勋, 孙丰春. 珠江口盆地白云凹陷古近系文昌组源-汇系统特征及演化[J]. 石油与天然气地质, 2023, 44(3): 584-599. |
[10] | 刘军, 彭光荣, 郑金云, 蔡嵩, 朱定伟, 王梓颐. 珠江口盆地白云凹陷西区始新世张裂-拆离作用下沉积转换及源-汇响应[J]. 石油与天然气地质, 2023, 44(3): 600-612. |
[11] | 彭光荣, 王绪诚, 陈维涛, 靳瑶瑶, 王菲, 王文勇, 全涵. 珠江口盆地惠州26洼东南缘古近系恩平组上段断-拗转换期源-汇系统及勘探意义[J]. 石油与天然气地质, 2023, 44(3): 613-625. |
[12] | 侯明才, 何小胡, 金秋月, 曹海洋, 贺礼文, 阙有缘, 陈安清. 琼东南盆地中生代潜山成储主控因素及分布规律[J]. 石油与天然气地质, 2023, 44(3): 637-650. |
[13] | 杜晓峰, 庞小军, 黄晓波, 王冰洁. 辽西凹陷北部古近系沙河街组二段源-汇系统及其对滩坝砂体的控制[J]. 石油与天然气地质, 2023, 44(3): 662-674. |
[14] | 陈贺贺, 朱筱敏, 施瑞生, 张自力, 李琪, 朱珍君, 阎泽昊. 断陷盆地缓坡带物源转换与沉积响应[J]. 石油与天然气地质, 2023, 44(3): 689-706. |
[15] | 朱珍君, 李琦, 陈贺贺, 李剑, 张卫平, 杨丰繁, 张迎朝, 覃军, 李风勋, 单帅强. 东海陆架盆地丽水凹陷古新统源-汇系统耦合及时-空演化[J]. 石油与天然气地质, 2023, 44(3): 735-752. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||