石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (3): 707-719.doi: 10.11743/ogg20230314
张新涛1(), 曲希玉2(), 许鹏3, 王清斌3, 刘晓健3, 叶涛3
收稿日期:
2022-12-05
修回日期:
2023-02-17
出版日期:
2023-06-01
发布日期:
2023-06-05
通讯作者:
曲希玉
E-mail:zhangxt4@cnooc.com.cn;quxiyu@upc.edu.cn
第一作者简介:
张新涛(1978—),男,博士、高级工程师,海上油气勘探。E-mail: 基金项目:
Xintao ZHANG1(), Xiyu QU2(), Peng XU3, Qingbin WANG3, Xiaojian LIU3, Tao YE3
Received:
2022-12-05
Revised:
2023-02-17
Online:
2023-06-01
Published:
2023-06-05
Contact:
Xiyu QU
E-mail:zhangxt4@cnooc.com.cn;quxiyu@upc.edu.cn
摘要:
优质储层的识别和预测是深层-超深层碎屑岩储层油气勘探研究的重点。以渤海湾盆地渤中19-6构造古近系孔店组砂砾岩为研究对象,借助物理模拟实验等手段,研究了孔店组优质储集空间的成因及演化,建立了渤海湾盆地深层砂砾岩储层的孔-缝演化模式。取得的主要认识如下:①长石等颗粒的溶蚀孔为优质储集空间,钾长石的溶蚀随温度升高渐强甚至超过斜长石,钾长石在深层有更大的增孔潜力。②砾石级的颗粒、长英质的成分及低杂基含量更有利于压裂缝的产生,长石中压裂缝的发育程度要高于石英;垂向上,第一期压裂缝在2 500 m左右的深度开始形成,第二期压裂缝在3 000 m以深形成,而且其数量在4 000 m左右的深度达到峰值,第三期压裂缝在4 500 m以深开始形成,而且其数量随深度增大而逐渐增加。③孔隙度的垂向变化受到早期压实、晚期胶结以及中期溶蚀作用的控制。早期压实减孔17.38 %;晚期铁白云石胶结减孔7.76 %;有机酸溶蚀增孔5.45 %。④油气充注与第二期溶蚀增孔及第一期和第二期压裂缝的发育相对应,油气在3 000 m左右的深度处富集;4 000 m以深压裂缝大量发育,叠加钾长石等溶蚀,预测深层砂砾岩中发育优质储层。
中图分类号:
表 1
渤海湾盆地渤中19-6构造孔店组储集空间类型及特征"
孔隙类型 | 相对含量/% | 成因及主要特征 | |
---|---|---|---|
孔隙型 | 原生孔 | 4.10 | 花岗质原岩经过长期的风化淋滤,物理风化后破碎为花岗质碎块原地堆积,形成颗粒支撑格架而出现粒间原生孔 |
粒内溶孔 | 48.83 | 碱性长石及部分火成岩岩屑,在大气淡水淋滤及酸性流体的作用下通过溶解作用被溶蚀形成溶孔 | |
粒间溶孔 | 33.94 | 风化破裂后无明显颗粒骨架及钙质等胶结物被溶蚀形成粒间溶孔 | |
裂缝型 | 构造缝 | 4.61 | 构造运动过程中,应力集中而产生的裂缝,具有开启宽度大、延伸远、方向性强的特点,裂缝间相互切割或平行 |
成岩压实破裂缝 | 8.53 | 砾石压裂形成与砾石边缘高角度相交的成岩压实缝,具有开启程度差、数量多、多被泥质充填的特点;沿长石等脆性矿物解理发育,后期多被溶蚀扩大,含油性好 |
图 8
渤海湾盆地渤中19-6构造压实物理模拟及工区裂缝类型与微观特征照片a.片麻岩,模拟埋深5 000.0 m,压裂缝沿垂直大颗粒接触部位的切线方向发育,单偏光;b.花岗岩,模拟埋深3 500.0 m,岩屑中石英组分压裂缝平行应力方向发育,单偏光;c.模拟花岗岩,埋深5 000.0 m,压裂缝沿共轭剪切方向发育,单偏光;d.渤中19-6-B井,埋深 4 047.2 m,长石破裂缝溶蚀扩大,单偏光;e.渤中19-6-A井,埋深 3 890.0 m,铁白云石-白云石等填隙物粒间充填,裂缝不发育,单偏光;f.渤中19-6-5井,埋深 4 299.0 m,填隙物含量少,压裂缝大量发育,红色铸体,单偏光"
表2
渤海湾盆地渤中19-6构造孔店组储层各成岩作用造成的孔隙度变化"
孔隙度演化阶段 | 白云石-铁白云石胶结成岩相① | 高岭石-铁白云石胶结成岩相② | 酸性溶蚀成岩相③ | |||||
---|---|---|---|---|---|---|---|---|
孔隙度变化量/% | 孔隙度/% | 孔隙度变化量/% | 孔隙度/% | 孔隙度变化量/% | 孔隙度/% | |||
初始孔隙度 | — | 34.43 | — | 40.49 | — | 33.22 | ||
早期压实减孔 | -18.77 | 15.66 | -16.88 | 23.61 | -16.48 | 16.74 | ||
第一期溶蚀增孔 | 1.80 | 17.46 | — | — | 2.35 | 19.09 | ||
白云石胶结减孔 | -4.16 | 13.31 | — | — | -4.82 | 14.27 | ||
高岭石胶结减孔 | — | — | -12.01 | 11.60 | — | — | ||
硅质胶结减孔 | — | — | — | — | -1.88 | 12.39 | ||
第二期溶蚀增孔 | 4.79 | 18.10 | 3.60 | 15.20 | 5.97 | 18.36 | ||
铁白云石胶结减孔 | -8.31 | 9.78 | -8.23 | 6.97 | -4.71 | 13.62 | ||
伊利石胶结减孔 | -1.39 | 8.40 | — | — | — | — | ||
晚期压实减孔 | -4.20 | 4.20 | -3.77 | 3.20 | -3.73 | 9.92 | ||
现今孔隙度 | — | 4.20 | — | 3.20 | — | 9.92 |
1 | 贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1457-1469. |
JIA Chengzao, PANG Xiongqi. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469. | |
2 | 施和生, 王清斌, 王军, 等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探, 2019, 24(1): 36-45. |
SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong Sag[J]. China Petroleum Exploration, 2019, 24(1): 36-45. | |
3 | 侯明才, 曹海洋, 李慧勇, 等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J]. 天然气工业, 2019, 39(1): 33-44. |
HOU Mingcai, CAO Haiyang, LI Huiyong, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area[J]. Natural Gas Industry, 2019, 39(1): 33-44. | |
4 | 牛涛, 范洪军, 范廷恩, 等. 渤中19-6气田太古界变质岩潜山 “隔夹层” 成因及发育模式[J]. 大庆石油地质与开发, 2021, 40(4): 1-8. |
NIU Tao, FAN Hongjun, FAN Tingen, et al. Genesis and development pattern of the interlayer in Archaeozoic metamorphic-rock buried hill of Bozhong 19-6 Gas Field[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(4): 1-8. | |
5 | 徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发, 2019, 46(1): 25-38. |
XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1): 25-38. | |
6 | 孙靖, 尤新才, 张全, 等. 准噶尔盆地玛湖地区深层致密砾岩储层发育特征及成因[J/OL]. 天然气地球科学: 1-14[2022-11-05]. . |
SUN Jing, YOU Xincai, ZHANG Quan, et al. Development characteristics and genesis of deep tight conglomerate reservoirs of Mahu area in Junggar Basin[J/OL]. Natural Gas Geoscience: 1-14[2022-11-05]. . | |
7 | 李建忠, 王小军, 杨帆, 等. 准噶尔盆地中央坳陷西部下组合油气成藏模式及勘探前景[J]. 石油与天然气地质, 2022, 43(5): 1059-1072. |
LI Jianzhong, WANG Xiaojun, YANG Fan, et al. Hydrocarbon accumulation pattern and exploration prospect of the structural traps in lower play of the western Central Depression in the Junggar Basin[J]. Oil & Gas Geology, 2022, 43(5): 1059-1072. | |
8 | 田军, 杨海军, 吴超, 等. 博孜9井的发现与塔里木盆地超深层天然气勘探潜力[J]. 天然气工业, 2020, 40(1): 11-19. |
TIAN Jun, YANG Haijun, WU Chao, et al. Discovery of Well Bozi 9 and ultra-deep natural gas exploration potential in the Kelasu tectonic zone of the Tarim Basin[J]. Natural Gas Industry, 2020, 40(1): 11-19. | |
9 | 操应长, 远光辉, 杨海军, 等. 含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展[J]. 石油学报, 2022, 43(1): 112-140. |
CAO Yingchang, YUAN Guanghui, YANG Haijun, et al. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins[J]. Acta Petrolei Sinica, 2022, 43(1): 112-140. | |
10 | 张东东, 刘文汇, 王晓锋, 等. 深层油气藏成因类型及其特征[J]. 石油与天然气地质, 2021, 42(5): 1169-1180. |
ZHANG Dongdong, LIU Wenhui, WANG Xiaofeng, et al. Genetic types and characteristics of deep oil and gas plays[J]. Oil & Gas Geology, 2021, 42(5): 1169-1180. | |
11 | 庞小军, 杜晓峰, 王冠民, 等. 渤海海域渤中 19-6构造及围区深层孔店组砂砾岩优质储层成因及孔隙演化[J/OL]. 地球科学: 1-20[2022-11-05]. . |
PANG Xiaojun, DU Xiaofeng, WANG Guanmin, et al. Genetic mechanism and pore evolution of high-quality glutenite reservoirs of the deep Kongdian Formation in southwestern, BZ19-6, Bohai Sea[J/OL]. Earth Science: 1-20[2022-11-05]. . | |
12 | 王鸿祯. 中国地壳构造发展的主要阶段[J]. 地球科学, 1982(3): 155-178. |
WANG Hongzhen. The main stage of tectonic development of the earth’s crust in China[J]. Earth Science, 1982(3): 155-178. | |
13 | 翟明国. 克拉通化与华北陆块的形成[J]. 中国科学: 地球科学, 2011, 41(8): 1037-1046. |
ZHAI Minguo. Cratonization and the formation of North China Block[J]. Scientia Sinica(Terrae), 2011, 41(8): 1037-1046. | |
14 | 薛永安, 柴永波, 周园园. 近期渤海海域油气勘探的新突破[J]. 中国海上油气, 2015, 27(1): 1-9. |
XUE Yongan, CHAI Yongbo, ZHOU Yuanyuan. Recent new breakthroughs in hydrocarbon exploration in Bohai Sea[J]. China Offshore Oil and Gas, 2015, 27(1): 1-9. | |
15 | 祝春荣, 韦阿娟, 王保全. 油气运聚模拟在目标钻前研究中的成功应用——以渤海海域渤中21-22区为例[J]. 海洋石油, 2013, 33(3): 23-28. |
ZHU Chunrong, WEI Ajuan, WANG Baoquan. Successful application of hydrocarbon migration and accumulation modeling in predrilling target study of exploration well in Bohai Sea area[J]. Offshore Oil, 2013, 33(3): 23-28. | |
16 | COOK J E, GOODWIN L B, BOUTT D F. Systematic diagenetic changes in the grain-scale morphology and permeability of a quartz-cemented quartz arenite[J]. AAPG Bulletin, 2011, 95(6): 1067-1088. |
17 | 杨兵, 张占松, 张超谟. 渤中19-6气田孔店组砂砾岩储层分类研究[J]. 当代化工, 2020, 49(12): 2786-2790, 2817. |
YANG Bing, ZHANG Zhansong, ZHANG Chaomo. Investigation of reservoir classification of glutenites in Bozhong 19-6 Gas Field[J]. Contemporary Chemical Industry, 2020, 49(12): 2786-2790, 2817. | |
18 | 李建平, 周心怀, 刘士磊, 等. 渤海孔店组及其油气勘探意义[J]. 地层学杂志, 2010, 34(1): 89-96. |
LI Jianping, ZHOU Xinhuai, LIU Shilei, et al. On the distribution of the Kongdian Formation in the Bohai area with special reference to its bearings on oil exploration[J]. Journal of Stratigraphy, 2010, 34(1): 89-96. | |
19 | 王德英, 刘晓健, 邓辉, 等. 渤海湾盆地渤中19-6区中-新生代构造转换特征及其对太古宇潜山大规模储层形成的控制作用[J]. 石油与天然气地质, 2022, 43(6): 1334-1346. |
WANG Deying, LIU Xiaojian, DENG Hui, et al. Characteristics of the Meso-Cenozoic tectonic transformation and its control on the formation of large-scale reservoirs in the Archean buried hills in Bozhong 19-6 area, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(6): 1334-1346. | |
20 | 贾海松, 李振鹏, 张汶, 等. 渤海B气田孔店组砂砾岩储层特征及主控因素分析[J]. 重庆科技学院学报(自然科学版), 2020, 22(3): 44-48. |
JIA Haisong, LI Zhenpeng, ZHANG Wen, et al. Analysis of characteristics and main controlling factors of glutenite reservoir of E1-2k2 Formation in B Gas Field of Bohai Sea[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2020, 22(3): 44-48. | |
21 | 曹英权, 王清斌, 曲希玉, 等. 岩屑的有机酸溶蚀实验及验证——以渤中凹陷CFD6-4油田东营组为例[J]. 石油学报, 2020, 41(7): 841-852. |
CAO Yingquan, WANG Qingbin, QU Xiyu, et al. A dissolution experiment of organic acid of cuttings and its verification: A case study of the Dongying Formation of the CFD6-4 Oilfield, Bozhong Sag[J]. Acta Petrolei Sinica, 2020, 41(7): 841-852. | |
22 | 曲希玉, 苗长盛, 李瑞磊, 等. 致密碎屑岩储层物性影响因素及优质储层主控因素——以松辽盆地长岭断陷龙凤山次凹营城组为例[J]. 天然气地球科学, 2022, 33(7): 1036-1048. |
QU Xiyu, MIAO Changsheng, LI Ruilei, et al. Influencing factors of tight clastic reservoir physical properties and main controlling factors of high-quality reservoirs: Taking the Yingcheng Formation of Longfengshan sub-sag in Changling fault depression of Songliao Basin as an example[J]. Natural Gas Geoscience, 2022, 33(7): 1036-1048. | |
23 | 黄思静, 杨俊杰, 张文正, 等. 不同温度条件下乙酸对长石溶蚀过程的实验研究[J]. 沉积学报, 1995, 13(1): 7-17 |
HUANG Sijing, YANG Junjie, ZHANG Wenzheng, et al. Experimental study of feldspar dissolution by acetic acid at different burial temperatures[J]. Acta Sedimentologica Sinica, 1995, 13(1): 7-17. | |
24 | 杨俊杰, 黄月明, 张文正, 等. 乙酸对长石砂岩溶蚀作用的实验模拟[J]. 石油勘探与开发, 1995, 22(4): 82-86, 113-114. |
YANG Junjie, HUANG Yueming, ZHANG Wenzheng, et al. Experimental approach of dissolution of feldspar sand stone by acetic acid[J]. Petroleum Exploration and Development, 1995, 22(4): 82-86, 113-114. | |
25 | 罗孝俊, 杨卫东. 有机酸对长石溶解度影响的热力学研究[J]. 矿物学报, 2001, 21(2): 183-188. |
LUO Xiaojun, YANG Weidong. The effect of organic acid on feldspar solubility: A thermodynamic study[J]. Acta Mineralogica Sinica, 2001, 21(2): 183-188. | |
26 | 向廷生, 蔡春芳, 付华娥. 不同温度、羧酸溶液中长石溶解模拟实验[J]. 沉积学报, 2004, 22(4): 597-602. |
XIANG Tingsheng, CAI Chunfang, FU Huae. Dissolution of microcline by carboxylic acids at different temperatures and complexing reaction of Al anion with carboxylic acid in aqueous solution[J]. Acta Sedimentologica Sinica, 2004, 22(4): 597-602. | |
27 | 张文正, 杨华, 解丽琴, 等. 鄂尔多斯盆地上古生界煤成气低孔渗储集层次生孔隙形成机理——乙酸溶液对钙长石、铁镁暗色矿物溶蚀的模拟实验[J]. 石油勘探与开发, 2009, 36(3): 383-391. |
ZHANG Wenzheng, YANG Hua, XIE Liqin, et al. Secondary porosity formation of Upper Paleozoic low porosity-permeability coal-formed gas reservoirs, Ordos Basin: Simulation on dissolution of anorthite and dark-colored femic minerals in acetic acid solution[J]. Petroleum Exploration and Development, 2009, 36(3): 383-391. | |
28 | 李美蓉, 宋来弟, 于海鹏, 等. 酸碱度对长石溶蚀及增孔效应的影响[J]. 中国石油大学学报(自然科学版), 2021, 45(5): 33-41. |
LI Meirong, SONG Laidi, YU Haipeng, et al. Influence of pH value on feldspar dissolution and pore-increasing effect[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(5): 33-41. | |
29 | 曾庆鲁, 张荣虎, 王力宝, 等. 库车坳陷白垩系深层致密砂岩储层溶蚀作用实验模拟研究[J]. 沉积学报, 2018, 36(5): 946-956. |
ZENG Qinglu, ZHANG Ronghu, WANG Libao, et al. Experimental simulation for dissolution of Cretaceous tight sand rocks as deep reservoir in Kuqa Depression[J]. Acta Sedimentologica Sinica, 2018, 36(5): 946-956. | |
30 | 李宝帅. 库车坳陷克拉苏构造带深层致密砂岩气成藏机制[J]. 特种油气藏, 2021, 28(5): 17-22. |
LI Baoshuai. Accumulation mechanism of deep tight sandstone gas reservoir in Kelasu structural belt, Kuqa Depression[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 17-22. | |
31 | 朱翔, 陈倩倩, 伏美燕, 等. 多种流体体系与砂岩水岩反应的实验研究[J]. 海相油气地质, 2018, 23(2): 17-24. |
ZHU Xiang, CHEN Qianqian, FU Meiyan, et al. Experimental study on water-rock reaction of sandstone in various fluid systems[J]. Marine Origin Petroleum Geology, 2018, 23(2): 17-24. | |
32 | SUN Xiuting, LI Meirong, XING Juntao, et al. The complex effect of organic acids on the dissolution of feldspar at high temperature[J]. Environmental Earth Sciences, 2021, 80(7): 244. |
33 | 曹婷婷, 曲希玉, 蒋龑, 等. 混积条件下有机酸-矿物溶蚀模拟实验[J]. 矿物岩石地球化学通报, 2021, 40(5): 1181-1188. |
CAO Tingting, QU Xiyu, JIANG Yan, et al. Dissolution simulation of organic acids and minerals under mixed deposition[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5): 1181-1188. | |
34 | 方晓玲, 蒋定建. 乙酸条件下长石溶解—沉淀过程探究[J]. 当代化工, 2019, 48(9): 1990-1994. |
FANG Xiaoling, JIANG Dingjian. Study on dissolution and precipitation process of feldspar under acetic acid condition[J]. Contemporary Chemical Industry, 2019, 48(9): 1990-1994. | |
35 | 冯佳睿, 高志勇, 崔京钢, 等. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320. |
FENG Jiarui, GAO Zhiyong, CUI Jinggang, et al. Reservoir porosity evolution characteristics and evaluation of the Jurassic deep reservoir from Dibei in Kuqa Depression: Insight from diagenesis modeling experiments under the influence of burial mode[J]. Advances in Earth Science, 2018, 33(3): 305-320. | |
36 | 郭沫贞, 朱国华, 寿建峰, 等. 碎屑岩压裂缝的特征、成因与油气勘探意义[J]. 沉积学报, 2006, 24(4): 483-487. |
GUO Mozhen, ZHU Guohua, SHOU Jianfeng, et al. Features, origin and petroleum explorative significance of crushed fracture in clastic rock[J]. Acta Sedimentologica Sinica, 2006, 24(4): 483-487. | |
37 | 曾联波, 李跃纲, 王正国, 等. 川西南部须二段低渗透砂岩储层裂缝类型及其形成序列[J]. 地球科学(中国地质大学学报), 2007, 32(2): 194-200. |
ZENG Lianbo, LI Yuegang, WANG Zhengguo, et al. Type and sequence of fractures in the second member of Xujiahe Formation at the South of Western Sichuan Depression[J]. Earth Science(Journal of China University of Geosciences), 2007, 32(2): 194-200. | |
38 | 吴元燕, 吴胜和, 蔡正旗. 油矿地质学[M]. 3版. 北京: 石油工业出版社, 2005. |
WU Yuanyan, WU Shenghe, CAI Zhengqi. Industrial geology of petroleum[M]. 3rd ed. Beijing: Petroleum Industry Press, 2005. | |
39 | 李绍华, 何汶锶, 吴育鹏. 低渗透砂砾岩储层裂缝发育特征及主控因素[J]. 西部探矿工程, 2015, 27(1): 73-74, 77. |
LI Shaohua, HE Wensi, WU Yupeng. Fracture development characteristics and main controlling factors of low permeability glutenite reservoir[J]. West-China Exploration Engineering, 2015, 27(1): 73-74, 77. | |
40 | 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3): 525-532. |
LONG Pengyu, ZHANG Jinchuan, TANG Xuan, et al. Feature of muddy shale fissure and its effect for shale gas exploration and development[J]. Natural Gas Geoscience, 2011, 22(3): 525-532. | |
41 | SCHERER M, 侯瑞云. 影响砂岩孔隙度的参数——一种预测砂岩孔隙度的模式[J]. 地质科学译丛, 1988(2): 74-79. |
SCHERER M, HOU Ruiyun. Parameters affecting porosity of sandstone: A model for predicting sandstone porosity[J]. Journal of Geoscience Translations, 1988(2): 74-79. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 娄瑞, 孙永河, 张中巧. 渤海湾盆地渤南低凸起西段低角度正断层分段生长特征及其油气地质意义[J]. 石油与天然气地质, 2024, 45(3): 710-721. |
[4] | 韩载华, 刘华, 赵兰全, 刘景东, 尹丽娟, 李磊. 渤海湾盆地临南洼陷古近系沙河街组源-储组合类型与致密(低渗)砂岩油差异富集模式[J]. 石油与天然气地质, 2024, 45(3): 722-738. |
[5] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[6] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[7] | 邵长印, 宋璠, 张世奇, 王秋月. 渤海湾盆地黄河口凹陷SC7区块古近系东营组二段下亚段滩坝储集体构型特征[J]. 石油与天然气地质, 2024, 45(2): 486-501. |
[8] | 曾联波, 巩磊, 宿晓岑, 毛哲. 深层-超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1): 1-14. |
[9] | 雷文智, 陈冬霞, 王永诗, 巩建强, 邱贻博, 王翘楚, 成铭, 蔡晨阳. 渤海湾盆地济阳坳陷东部深层砂砾岩多类型油气藏成藏机理及模式[J]. 石油与天然气地质, 2024, 45(1): 113-129. |
[10] | 陈昌, 邱楠生, 高荣锦, 周晓龙, 孙永河, 杨琳琳, 付健. 渤海湾盆地辽河坳陷西部冷家—雷家地区中-深层超压成因及其对油气成藏的影响[J]. 石油与天然气地质, 2024, 45(1): 130-141. |
[11] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[12] | 张宏国, 杨海风, 宿雯, 徐春强, 黄志, 程燕君. 源外层系油气运聚关键环节研究与评价方法[J]. 石油与天然气地质, 2024, 45(1): 281-292. |
[13] | 远光辉, 彭光荣, 张丽丽, 孙辉, 陈淑慧, 刘浩, 赵晓阳. 珠江口盆地白云凹陷古近系深层高变温背景下储层成岩作用与低渗致密化机制[J]. 石油与天然气地质, 2024, 45(1): 44-64. |
[14] | 杨小艺, 刘成林, 王飞龙, 李国雄, 冯德浩, 杨韬政, 何志斌, 苏加佳. 渤海湾盆地渤中凹陷西南洼古近系东营组超压分布特征及成因[J]. 石油与天然气地质, 2024, 45(1): 96-112. |
[15] | 刘惠民, 李政, 包友书, 张守春, 王伟庆, 吴连波, 王勇, 朱日房, 方正伟, 张顺, 刘鹏, 王敏. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||